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Background: Although aluminum (Al) is not biologically crucial to the human
body, classical studies have demonstrated that excessive human exposure to Al
can induce oxidative damage, neuroin�ammatory conditions and neurotoxic
manifestations implicated in Alzheimer’s disease (AD). Exposure to Al was
reported to be associated with oxidative damage, neuroin�ammation, and to
enhance progressive multiregional neurodegeneration in animal models. Several
plant-derived natural biomolecules have been recently used to reduce the toxic
effects of Al through decreasing the oxidative stress and the associated diseases. A
good candidate still to be tested is an active natural furanocoumarin, the
isoimperatorin (IMP) that can be extracted from Lemon and lime oils and other
plants. Here, we examined the neuroprotective effects of IMP on aluminum
chloride (AlCl3)-induced neurotoxicity in albino mice.

Methods: Twenty-four male albino mice were used in this study. Mice were randomly
devided into 5 groups. The �rst group was given distilled water as a control, the
second group was given AlCl3 orally (10 mg/wt/day) starting from the 2nd week to the
end of the 6th week, the third group received AlCl3 orally and IMP interperitoneally, i.
p. (30 mg/wt/day) starting from week 2 till week 6 where IMP was supplement 1st and
then 4 h later AlCl3 was given to mice. The fourth group received the control (IMP
30 mg/wt, i. p.) from the 2nd week till the end of the experiment. Rodent models of
central nervous system (CNS) disorders were assessed using object location memory
and Y-maze tests in 6th week began. Essential anti-in�ammatory and oxidative stress
indicators were evaluated, including interleukin-1 � (IL-1�), tumor necrosis factor �
(TNF-�), malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase activity
(CAT). In addition, serum levels of brain neurotransmitters such as corticosterone,
acetylcholine (ACh), dopamine and serotonin in brain homogenates were measured
calorimetrically.

Results: The study results revealed that the daily treatment of AlCl3 upregulated
the TNF-� and IL-1� levels, increased MDA accumulation, and decreased TAC and
CAT activity. In addition, aluminum induced a reduction in concentrations of ACh,
serotonin and dopamine in the brain. However, IMP signi�cantly ameliorates the
effect of AlCl3 through modulating the antioxidant and regulating the
in�ammatory response through targeting Nrf2 (NF-E2-related factor 2) and
mitogen-activated protein kinase (MAPK).
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Conclusion: Thus, IMP might be a promising treatment option for neurotoxicity
and neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s
disease, which are associated with neuro-in�ammation and oxidative stress.
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1 Introduction

Aluminum is one of the most abundant metals found in the earth
crust. It is found in many products, making humans prone to daily
exposure (Abbas et al., 2022; Hamdan et al., 2022; Turkez et al., 2022).
The daily intake of aluminum depends up on the food type. Moreover,
some vaccines contain Al salts as adjuvants, which boost the body’s
response to the vaccine (Del Giudice et al., 2018; Nouchikian et al., 2018;
Principi and Esposito, 2018; Shi et al., 2019; Goullé and Grangeot-Keros,
2020). In addition, drugs used to treat ulcers contain high percentages of
Al (Mei and Yao, 1993; Dordevic et al., 2019). Moreover, studies have
indicated that antacids contain various Al salts and other metals as
active ingredients. Consequently, metal toxicity can be induced by
antacid consumption or abuse (Shrivastava et al., 2018; Rahimzadeh
et al., 2022). Al affects bone formation and remodeling. Increasing doses
of Al slow down osteoblast and osteoclast activity and cause
osteomalacia and adynamic bone disease in bone, both clinically and
experimentally. Humans and animals’ levels of parathyroid hormone
(PTH) are disrupted by Al. In Al-dependent osteotoxicity, altered PTH
levels may play a major or even minor role. Al causes a microcytic
anemia in hematopoietic tissue, which isn’t reversible by iron (Jeffery
et al., 1996). However, the blood-brain barrier is relatively highly
permeable to Al, leading to its accumulation in the brain. Al
accumulation in the brain results in central nervous system (CNS)
dysfunction, leading to motor, cognitive and behavioral problems
(Wang, 2018; Ishaq et al., 2021; Roe, 2021). On the other hand,
patients doing kidney dialysis can experience neurobehavioral
symptoms, seizures, CNS toxicity, and even die from Al exposure in
the dialysis �uid (Chen et al., 2018; Inan-Eroglu and Ayaz, 2018; Ravat
and Gosala, 2018; Lukiw et al., 2019).

In animal models, AlCl3, has been reported to stimulate
in�ammation, dysfunction in synaptic system and
neurodegeneration in several areas of the brain and spinal cord.
Mechanistic studies clari�ed that in�ammation stimulates the I�B
kinase protein to phosphorylate inhibitor kappa B (NF-lB), allowing
the translocation of NF-lB dimers into the nucleus, where they bind to
the promoter site of the target gene. This pathway is triggered by certain
pro-in�ammatory mediators, such as tumor necrosis factor � (TNF-�)
and interleukin-1 � (IL-1�). In�ammatory mediators are also regulated
by mitogen-activated protein kinases (MAPKs), including c-Jun NH2-
terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and
p38 in mammals (Zhou et al., 2018; Ji et al., 2021; Zong et al., 2021;
Mehrbeheshti et al., 2022). Related to that, the phosphorylation events
caused by AlCl3 stimulation can activate JNK, ERK, and p38
(Mehrbeheshti et al., 2022; Tsai et al., 2022). Al exposure and it
subsequent accumulation in the brain was shown to be associated
with neurodegenerative disorders, such as Parkinson’s disease and
Alzheimer’s disease (AD) (Dalla Torre et al., 2019; McLachlan et al.,
2019; McLachlan et al., 2020; Bondy and Campbell, 2021; Hassan and
Kadry, 2021; Kawahara et al., 2021; Zeng et al., 2021; Abbas et al., 2022).

These disorders are characterized by changes in the levels of
neurotransmitters, i.e., acetylcholine (Ach). Thus, this promotes
neuroin�ammation and neurodegeneration, resulting in Alzheimer’s
disease. These toxic effects stimulate complex mechanisms to defend
against toxicity, such as heme oxygenase 1 (HO-1), NAD(P)H: quinone
oxidoreductase 1 (NQO-1), superoxide dismutase 1, glutathione
peroxidase, thioredoxins, and glutathione S-transferase (Li et al.,
2014), which are activated by NF-E2-related factor 2 (Nrf2) in the
CNS (Loboda et al., 2016; Wang et al., 2019). In addition, HO-1 and
NQO-1 were demonstrated to reduce oxidative stress and maintain
mitochondrial integrity, thereby protecting neurons (Yang et al., 2015).
In parallel with that, patients with dementia display altered levels of
HO-1 and NQO-1 expression (Wang et al., 2000). However,
overexpression of Nrf2 was found to provide suf�cient protection
against neurotoxicity (Wang et al., 2019). Thus, to reduce symptoms
of oxidative stress and treating neurodegenerative diseases, stimulating
the Nrf2 signaling pathway might be a valuable tool.

Several plant-derived antioxidants that protect against metal
toxicity, in�ammation and apoptosis-related neurodegenerative
disorders have recently been identi�ed (Cherrak et al., 2016; Yadav
et al., 2016; Lakey-Beitia et al., 2021). Angelica dahurica, Rhizoma et
Radix Notopterygii, and Radix Peucedani contain isoimperatorin
(IMP), an active natural furanocoumarin (Lai et al., 2021). Lemon
and lime oils also contain IMP. Among its pharmacological effects, IMP
has anti-hypertensive (Hwang et al., 2017), anti-in�ammatory
(Wijerathne et al., 2017; Chen et al., 2021), anti-tumor (Yang et al.,
2018a), antibacterial (de Souza et al., 2005; Pokharel et al., 2006), and
liver protective (Pokharel et al., 2006) effects, including diastolic
vasoactivity (Lai et al., 2021), among other effects (Wijerathne et al.,
2017; Kiyonga et al., 2021; Lai et al., 2021; Chahardoli et al., 2022; Kim
et al., 2022; Liu et al., 2022). Dietary furocoumarin IMP was shown to
stimulate glucagon-like peptide secretion and reduces blood sugar in
rats by activating the G protein-coupled bile acid receptor (Wang et al.,
2017). In addition, IMP was found to enhance adipocyte differentiation
in lipodystrophic patients. These patients had a triglyceride storage
defects and severe insulin resistance because of ectopic lipids
accumulate in adipose tissue. As a result of increased fat storage
capacity in adipose tissue with low-fat mobilization, fat mass
expands which is the most optimal method of storing lipids (Jiang
et al., 2019). This study tested whether IMP protects albino mice against
AlCl3-induced behavioral de�cits, neurotransmitter abnormalities, and
oxidative in�ammatory damage.

2 Materials and methods

2.1 Chemicals

Sigma-Aldrich Co., (St. Louis, MO, United States) provided IMP
and AlCl3. Stock solutions were prepared every week. The AlCl3 was
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dissolved in distilled water, while the IMP was dissolved in DMSO
�rst, then diluted in normal saline to 0.1% DMSO. Aseptic
conditions were used to prepare and inject the drugs.

2.2 Animal groups

Twenty-four male albino mice were used in this study. Each group
included six mice (6–8 week old). Throughout the research, all methods
were conducted according to relevant guidelines and regulations at King
Faisal University. In a normal laboratory atmosphere, mice were kept at
a temperature of 24°C and were subjected to a 12/12-h light/dark cycle.
Mice were randomly divided into 5 groups. The �rst group was used as
a control an received distilled water, the second group was given
AlCl3 orally (10 mg/wt/day) starting from the 2nd week to the end
of the 6th week, the third group received AlCl3 orally and IMP
interperitoneally, i. p. (30 mg/wt/day) starting from week 2 till week
6 where IMP was supplement 1st and then 4 h later AlCl3 was given to
mice. The fourth group received the control (IMP 30 mg/wt, i. p.) from
the 2nd week till the end of the experiment. At the end of the
experiment, mice were sedated with ether before being culled. To
weigh the brain after excision, we used a Nimbus balance (MK,
UK). In accordance with the protocol, the biochemical parameters
were measured immediately after the brains were homogenized.

2.3 Object-location memory

6 weeks after beginning, an object recognition test was
conducted. We put green and yellow color small plates Each
mouse was adapted for 10 min in a 120 × 80 cm box. Intbox1
30 min’ intervals, they started training. 5 min were given to each
mouse to practice object-location memory in a quadratic box
(120 × 80 cm, 25 cm high). The apparatus was set up with two
identical plastic objects 120 cm from the wall. There was a 1-day
break between training and testing. The mice were tested with two
identical objects 120 cm from the wall. Time spent looking at
objects was used to measure animals’ behavior.

2.4 Y-Maze

6 weeks after beginning, an Y-Maze test was conducted. Studies
have shown that excessive spontaneous alteration behavior is linked to
enhanced cognitive performance. We followed Buried Food Test, the
protocol have published by Mu Yang and Dr. Jacqueline N. Crawley.
Simple Behavioral Assessment of Mouse Olfaction (Yang and Crawley,
2009). A Y-maze was used to analyze mice’s behavior. It was made of
brown pointed sheets with three arms that were 60 cm long, 15 cm high,
and 15 cm wide at the bottom and top. Mouse sessions lasted from three
to 5 min. In the right arms of Y, there is food. The mouse capability to
remember if food is located in one arm or the other (Limnios et al.,
2022). By this way conditions could affect learning and memory and
help to analyze the mice behavior. For the food identi�cation, each
mouse’s arm position was recorded manually 3 times in different days
for 5 min each.

2.5 Evaluation of brain neurotransmitters

The acetylcholine levels were measured in brain supernatants using
a colorimetric assay kit (BioVision Inc., Waltham, United States) at
570 nm (Contoli et al., 2017). Colorimetric measurements of serotonin
(Chellammal et al., 2019) and dopamine (Chellammal et al., 2019) were
also conducted (BioVision).

2.6 Quanti�cation of markers of oxidative
damage in brain tissue

A competitive ELISA kit (Cell Biolabs, San Diego, CA,
United States) was used to measure malondialdehyde (MDA).
ELISA immunoassay for MDA-protein adduct products was used
for this assay. Moreover, total capacity of antioxidants was measured
Capacity Assay Kit (Cell Biolabs) based on copper (II) being reduced
to copper (I) by antioxidants. By reducing copper (I) ions, a coupling
chromogen increases 490 nm absorbance. The net absorbance was
compared to that of the standard curve based on known uric acid

FIGURE 1
Effect of IMP on body and brain weight of experimental animals. (A) Body weight of animal starting date (g). (B) Body weight of the animal at the end
of experimental date (g). The difference between the treatment and control groups was statistically signi�cant; *p < 0.05, #p < 0.05 was considered
statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 indicates signi�cant differences between the AlCl3 alone group and the control
group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP with AlCl3.

Frontiers in Pharmacology frontiersin.org03

Rajendran et al. 10.3389/fphar.2023.1103940

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1103940


concentrations. An ELISA kit for mice catalase (CAT) (Cusabio,
Wuhan, China) was used to measure catalase activity.

2.7 Western blot

Western blot was conducted according to a standard method.
Isolated proteins were electrophoresed on SDS-PAGE gels and then
transferred to PVDF membranes. The blots were probed overnight at
4°C using primary antibodies (Supplementary Table S1) after being
blocked with 5% nonfat dry milk for 60 min. Blots were then incubated
with the suitable HRP-conjugated secondary antibody (Supplementary
Table S1) for 60 min at room temperature. To visualize the protein
bands, we used Digit Blot (a 3,600-00-C-) Scanner. The untreated
control band was normalized to 1 with Image Studio Lite software
(Lincoln, NE, United States). We repeated each experiment three times.

2.8 Estimation of pro-in�ammatory
biomarkers

E-labscience (Beijing, China) ELISA Kits were used to determine
IL-1� and TNF-� levels in the brain. The Sandwich-ELISA principle
is used in this ELISA kit. A TNF-� and IL-1� speci�c antibody has
been pre-coated on the micro ELISA plate in this kit. ELISA plates
are �lled with standards or samples and speci�c antibodies are
added. A biotinylated detection antibody and Avidin-Horseradish
Peroxidase (HRP) conjugate are added successively to each

microplate well and incubated. Components that are not needed
are washed away. The substrate solution is added to each well. Wells
containing Mouse TNF-� and IL-1�, biotinylated detection
antibody, and Avidin-HRP conjugate will be blue. When stop
solution is added, the enzyme-substrate reaction stops and the
color turns yellow. In spectrophotometry, optical density is
measured at 450 nm ± 2 nm. A high OD value means more
Mouse TNF-� and IL-1�. Using the standard curve, we can
calculate the concentration of Mouse TNF in the samples. A
Molecular Devices SpectraMaxTM Multimodal plate reader was
used to get all the readings.

2.9 Histopathology

The brain tissues were embedded in paraf�n and �xed in 10%
formalin to prepare them for histopathology. Four-mm-wide sections of
embedding brain tissues lobes stained with H&E. An optical microscope
was used to study the prepared sections. A Leica D6000 microscope
(Leica, Wetzlar, Germany) was used for measurements, and microscopy
obtained images from cerebral cortex (×200 magni�cation).

2.10 Statistical analysis

Data analysis for behavioral, biochemical and histopathological
evaluations was done using Prism 8 (GraphPad). Differences
between groups were analyzed using ANOVA, followed by

FIGURE 2
Spatial memory learning of mice. (A) Object place recognition test. (B) Y-maze test. The difference between the treatment and control groups was
statistically signi�cant; *p < 0.05, #p < 0.05 was considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 indicates that there
are signi�cant differences between the AlCl3 alone group and the control group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP
with AlCl3.
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Tukey’s post hoc test. Data are presented as means ± SD. For in vivo
experiments, at least three independent experiments were
performed. The probability value of 0.05 was considered to be
signi�cant variation.

3 Results

3.1 Effect of IMP on AlCl3-induced body
weight of experimental animals

First, we have compared the body weight (initial and end) of
treated groups. According to the statistical analysis the end of body
weight values show signi�cant differences among the studied
groups, (Figures 1A, B).

3.2 Effect of IMP on mice behavior

3.2.1 Object-location memory test
In rodent models of CNS disorders, object-location memory is

used to assess cognition, and speci�cally spatial memory and
discrimination. The effect of IMP treatment on novel object
memory was also explored. A noticeable increase in the object
memory index was found in the control group when the novel
object-location memory test was compared to the training session.

Treatment with AlCl3 also worsened amnesia (Figure 2A). However,
pretreatment with IMP (30 mg/kg) prevented de�cits in memory
(p 0.05) caused by long-term exposure to AlCl3 (Supplementary
Vedio S1). Therefore, IMP protects mice from the effects of AlCl3 on
memory and object location.

3.2.2 IMP prevented memory damage
Spatial working memory was analyzed using a Y-maze task.

Food rewards were placed around the arms of mice treated with
AlCl3 were less likely to enter. When mice received IMP alone or
in combination with AlCl3, altered behavior was signi�cantly
modulated (p < 0.05), indicating that IMP improved memory in
AlCl3-treated mice (Figure 2B). There were no signi�cant
differences between group IV (Figure 2B) and the control
group in response to the food rewards placed in the arms
[(Supplementary Vedio S1)]. Then, IMP may improve the
working memory.

3.3 IMP improved ach levels in mice with
AlCl3-induced neurotoxicity

The acetylcholine, the �rst identi�ed neurotransmitter, plays a
signi�cant role in hippocampal memory and AD pathogenesis. It is
synthesized by choline acetyltransferase, AchE, an enzyme found in
cerebrospinal �uid and plasma. The AchE is an enzyme that

FIGURE 3
Effect of IMP on the level of Ach, Serotonin and Dopamine. (A) Level of acetylcholine concentration (nmol/min/mg protein). (B) Level of dopamine
(pg/mg protein). (C) Level of serotonin (pg/mg protein). The difference between the treatment and control groups was statistically signi�cant; *p < 0.05,
#p < 0.05 was considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 indicates that there are signi�cant differences
between the AlCl3 alone group and the control group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP with AlCl3.
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metabolizes Ach at synaptic clefts (Karami et al., 2021; Huang et al.,
2022). To further test neuroprotective effects of IMP on brain
damage, we examined cholinergic dysfunction, as indicated by a
decreased Ach content (5.5 fold). Figure 3A shows that IMP reversed
the reduction in Ach content (5 fold). The AlCl3 group had

signi�cantly lower dopamine and serotonin levels than the
control group, and the AlCl3 + IMP group had signi�cantly
higher levels than the AlCl3 group (Figures 3B, C). Our �ndings
suggest that IMP (30 mg/wt) helps alleviate AlCl3-induced
neurotoxicity.

FIGURE 4
Level of pro-in�ammatory cytokines in brain homogenates. (A) Level of TNF-� (pg/mg protein). (B) Level of IL-1� (pg/mg protein). (C) Western blot
analysis of NF-lB and the pro-in�ammatory cytokine (TNF-� and IL-1�) expression in brain homogenates. The difference between the treated groups and
the control group was calculated; *p < 0.05, #p < 0.05 was considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p <
0.05 indicates signi�cant differences between AlCl3 treated group and the control group. #p < 0.05 shows signi�cant differences between
AlCl3 alone and IMP with AlCl3.

FIGURE 5
Activity of antioxidant enzymes. (A) Formation of MDA in brain homogenates (nmol/g tissue). (B) The activity of catalase (µM of H2O2 decomposed/
min/mg tissue). (C) Total antioxidant capacity (µmol/g tissues). The difference between the treatment and control groups was statistically signi�cant; *p <
0.05, #p < 0.05 was considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 indicates that there are signi�cant differences
between the AlCl3 alone group and the control group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP with AlCl3.
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3.4 IMP downregulates pro-in�ammatory
markers

Neuroin�ammation and monoamine neurotransmitters are closely
related to AlCl3-induced neuronal damage (Stephenson et al., 2018; Ji
et al., 2021). Enzyme-linked immunoassay was used to detect pro-
in�ammatory cytokine levels in mice. In Figures 4A, B, TNF-� and IL-
1� levels in mouse brains were remarkably higher after AlCl3 treatment,
but IMP (30 mg/wt) induced a signi�cant decrease in these levels. Then,
IMP reduced the in�ammation caused by AlCl3.

3.5 IMP inhibits NF-lB activation and its
associated in�ammatory cytokines in AlCl3-
induced mice

Innate and adaptive immune functions are controlled by NF�B
(Mulero et al., 2019; Capece et al., 2022). It also mediates
in�ammation (Rajendran et al., 2018; Nichols et al., 2019; Peng
et al., 2019). In IMP-pretreated and AlCl3-stimulated mouse brain
tissues, we tested the ef�cacy of NFB in suppressing in�ammation.
Figure 3C illustrates that nuclear protein extracts from the brain

FIGURE 6
Expression of MAPK kinase in brain homogenates. Western blot analysis of brain homogenates determines the expression of pJNK and pP38—total
JNK and total p38 as a loading control. The difference between the treatment and control groups was statistically signi�cant; *p < 0.05, #p < 0.05 was
considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 means that there are signi�cant differences between the AlCl3-
alone group and the control group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP with AlCl3.

FIGURE 7
Expression of Nrf2 in brain homogenates. Western blot analysis of Nrf2, HO-1, and NQO-1 expression in control and experimental animals. The
difference between the treatment and control groups was statistically signi�cant; *p < 0.05, #p < 0.05 was considered statistically signi�cant. Values are
expressed as mean ± SD, n = 3. *p < 0.05 indicates signi�cant differences between the AlCl3-alone group and the control group. #p < 0.05 shows
signi�cant differences between AlCl3 alone and IMP with AlCl3.
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tissue showed a remarkable increase in p65 levels after
AlCl3 stimulation. AlCl3-induced p65 levels were signi�cantly
attenuated by IMP pretreatment. Next, we tested the effect of
IMP on TNF-� and IL-1� by Western blotting. The Western blot
results showed that AlCl3 stimulation overexpressed TNF-� and IL-
1�. However, IMP suppressed this effect signi�cantly, suggesting
that IMP suppressed the activation of p65, which further suppressed
the expression of in�ammatory enzymes and cytokines (Figure 4C).

3.6 Effect of aluminum treatment and IMP
on LPO and antioxidant enzymes

Various oxidant and antioxidant enzymes tightly regulate ROS
production in cells as by-products of oxidative metabolism
(Rajendran et al., 2014; Snezhkina et al., 2019). MDA is an
indicator of oxidative stress caused by lipid peroxidation in cells
and tissue (Fauziah et al., 2018; Subramanyam et al., 2018). Our �rst
experiment was conducted to observe how IMP affected AlCl3-
induced MDA levels. MDA levels signi�cantly increased in mice
exposed to 10 mg/kg AlCl3 for 6 weeks (Figure 5A). A consistent,
signi�cant decrease in Catalase and TAC content was caused by
AlCl3 (Figures 5B, C). All of these pro-oxidative stress effects were

potently inhibited by the co-administration of IMP. These results
suggest that IMP protects the brain from oxidative damage caused
by AlCl3.

3.7 MAPK signaling pathway is affected
by IMP

In�ammation and apoptosis are triggered by MAPKs, including
JNK and p38 kinases (Kasuya et al., 2018; Aluko et al., 2021; Ijomone
et al., 2021). As shown in Figure 6, AlCl3 increased the
phosphorylation of the MAPKs p38 and JNK by AlCl3, while
phosphorylation was inhibited by IMP treatment. IMP suppresses
p38 and JNK activation. Thus, IMP attenuates in�ammation by
downregulating MAPK signaling through the inhibition of p38 and
JNK activation in AlCl3-induced brain damage in mice.

3.8 AlCl3-stimulated ROS generation is
attenuated by IMP

HO-1 and NQO are antioxidant enzymes that are regulated by
the Nrf2 pathway (Wang et al., 2000; Li et al., 2014; Yang et al.,

FIGURE 8
Histopathological analysis of brain tissue. The difference between the treatment and control groups was statistically signi�cant; *p < 0.05, #p <
0.05 was considered statistically signi�cant. Values are expressed as mean ± SD, n = 3. *p < 0.05 indicates signi�cant differences between the AlCl3-alone
group and the control group. #p < 0.05 shows signi�cant differences between AlCl3 alone and IMP with AlCl3.
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2018b). To understand the molecular mechanisms underlying the
protective effects of IMP, we studied the Nrf2 pathway in mouse
brain tissue. In mouse brains, exposure to AlCl3 for 6 weeks
inhibited Nrf2 expression, which was profoundly restored by the
co-administration of IMP (30 mg/wt) (Figure 7). We also evaluated
Nrf2-dependent anti-oxidative and detoxifying enzymes. Compared
with the AlCl3 group, the AlCl3 + IMP group demonstrated
increased protein expression of HO-1 (Figure 6).
NQO1 expression was partially rescued by IMP when
AlCl3 decreased it. Overall, IMP treatment rescued AlCl3-
induced oxidative damage by activating Nrf2.

3.9 Histopathological evaluation of brain
tissue

Figure 8 showed cerebral histopathological analysis. Control
group showing normal cerebral cortex composed of six layers (I-VI).
I- Molecular layer, II- External granular layer, III- External
pyramidal layer, IV- Internal granular layer, V- Internal
pyramidal layer, VI- Multiform layer. Pyramidal cells (P) have
multipolar shape, vesicular nuclei, and basophilic cytoplasm
while granular cells (G) have small nuclei and little cytoplasm.
Smaller neuroglia cells appear scattered (N). AlCl3 group showing
distortion and disappearance of normally arranged cortical layers
and congested blood vessels (BV), neurophil vacuolation (black
arrows), degenerating neurons with pyknotic nuclei in panel (red
arrows) and vacuolation (*). AlCl3 + IMP Showing some
disorganized layers, shrunken pyramidal cells (P black arrows)

with loss of processes, dark cytoplasm and small darkly stained
nucleus while granular cells (G) are surrounded by halos,
degenerating neurons with pyknotic nuclei and dilated blood
vessel (BV). IMP alone treated animals showing an improvement
in histoarchitecture of organized layers, Pyramidal cells (P) and
granular cells (G) appear more normal and few of degenerating
neurons with pyknotic nuclei (red arrows). Together these data
indicate that IMP partially reversed the effects of chronic AlCl3.

3 Discussion

In the present study, we show that IMP protects the brain from
alunimium toxicity through modulating the levels of antioxidant
and anti-in�ammatory markers. In addition, it can partially reduce
the effects of chronic AlCl3 exposure on object recognition index
and spatial working memory.

Neurodegenerative disease progression has been extensively
shown to be in�uenced by oxidative stress, in�ammation, and
apoptosis (Behl et al., 2021; Merelli et al., 2021; Zarneshan et al.,
2022). In this regard, previous studies indicated that Al exposure
can induce various neurological disorders (Aly et al., 2011;
Hamdan et al., 2022; Turkez et al., 2022). Therefore, chronic
exposure to Al in mouse models has frequently been used as an
experimental model of neurodegenerative diseases.
Supplemented AlCl3 is able pass through the blood-brain
barriers and then induces neuroin�ammation (Baydar et al.,
2003; He et al., 2022). Moreover, AlCl3 is found to activate
oxidative mediators (Abbas et al., 2022). Acute and chronic

FIGURE 9
Aproposed scheme to summarizing the obtained results. Mechanistic interaction between signaling molecules is shown. In the present study when
mice are treated with AlCl3, in�ammation occurs, which increases expression of in�ammatory markers such as TNF-�, IL-1�, and NF-kB. TNF-1�, NF-kB,
and MAPK activation are attenuated by supplementation with IMP. IMP supplementation attenuates Nrf2 and antioxidant enzymes activation during
AlCl3 treatment.
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neurodegenerative diseases are closely related to excessive
AlCl3 accumulation because they activate ROS production and
oxidative neurotoxicity (Khalid et al., 2020; Li et al., 2020; Madi
et al., 2020).

The current study results showed that IMP partially reversed the
effects of chronic AlCl3 exposure on object recognition index and
spatial working memory. During depression, the central
serotonergic system is hypofunctional and the brain serotonin
levels are lower than normal (Hashmi et al., 2018; Kaur et al.,
2022). Consistent with that, AlCl3 reduced brain serotonin levels,
while AlCl3/IMP combined treatment maintained adequate levels,
which may explain the mitigation of depressive symptoms. In
addition, exposure to AlCl3 reduced the ACh concentration in
the brain. Suppressed cholinergic transmission was reported to
activate the in�ammatory system by increasing N-methyl-D-
aspartate receptor expression, disrupting cognition, and
increasing neurotoxicity (Haider et al., 2020; Amanzadeh Jajin
et al., 2021; Firdaus et al., 2022). AlCl3 may cause
neurodegeneration through multiple interlocking pathogenic
pathways (Wang et al., 2019; Shunan et al., 2021; Hamdan et al.,
2022). However, one of the reasons that IMP is effective against Al-
induced neurotoxicity is probably due to its anti-in�ammatory
action on cytokines and its role in normalizing ACh levels in the
brain.

Activation of microglia in brain disease was reported to be
associated with the release of copious quantities of pro-
in�ammatory cytokines, which were believed to contribute to
neuronal death and degeneration during neuroin�ammation and
brain disease (Ahmad et al., 2019). In the Nrf2/HO-1 axis of the
AlCl3 group, NF-lb expression showed a signi�cant increase,
thereby increasing pro-in�ammatory cytokines, including TNF-�
and IL-1�, causing neuroin�ammation in the brain (Hamdan
et al., 2022). Natural �avonoids have been studied for their
multiple neuroprotective properties, including their role in
suppressing in�ammation and neuronal apoptosis as well as in
boosting neuronal survival and memory (Infante-Garcia and
Garcia-Alloza, 2019). Our �ndings indicate that IMP
suppressed the pro-in�ammatory mediators induced by
AlCl3 and consequently attenuated AlCl3-induced
neuroin�ammation in mice. MAPK pathway proteins such as
p38, JNK, and ERK1/2 have been reported to contribute to NF-�B
activation. The phosphorylation of MAPKs is essential for
regulating cell division, proliferation, and differentiation.
Ruther more, MAPKs can trigger apoptosis (Kahkhaie et al.,
2019; Yu et al., 2019; Ijomone et al., 2021; Huang et al., 2022).
Moreover, as shown above, IMP suppressed the activation of
p38 and JNK caused by AlCl3. Based on that, IMP appers to exert
anti-in�ammatory effects in mice treated with AlCl3 through
inhibiting the MAPK signaling pathway.

Neurodegenerative diseases are associated with an imbalance
between free radicals (i.e., ROS) and antioxidants and antioxidant
enzymes (Ajayi et al., 2021; Bardallo et al., 2022; Kõsadere et al.,
2022), leading to the induction of oxidative stress (Haider
et al., 2020; Amanzadeh Jajin et al., 2021; Abdel-Salam, 2022;
Mishra et al., 2022). The main antioxidant enzymes that protect
against the harmful effects of ROS in cells are SOD and CAT, are
among the brain’s most prominent antioxidant enzymes.
Additionally, GSH-Px plays a crucial role in preventing

membrane damage that may result from lipid peroxidation. In
this regard, SOD, CAT, and GSH-px activity levels were found to
be associated with the ability of the organism to eliminate free
radicals from the environment (Stankovic et al., 2020). Related to
that, we detected changes in these molecules, where the brain MDA
levels in AlCl3 treated group showed a signi�cant increase relative to
the control group. Since dopamine and serotonergic signaling are
tightly regulated, IMP sems to reverse these abnormalities by
preserving serotonergic signaling by directly protecting
serotonergic neurons or by maintaining dopamine levels.

In the current study, IMP increased Nrf2 activation and HO-1,
NQO-1, and CAT expression in mouse brain tissue, thereby reducing
AlCl3-induced ROS production. AlCl3-induced oxidative stress was
attenuated by IMP by activating Nrf2, Nrf2, a critical signaling molecule
for ROS detoxi�cation in the brain, is essential for protecting the brain
from oxidative stress (Bardallo et al., 2022). In addition, various cellular
antioxidants are regulated by Nrf2 (Gureev and Popov, 2019).
Phosphorylation of Keap1 causes Nrf2 to migrate to the nucleus
when cells it is exposed to neurodegenerative disease-induced
oxidative stress (Zhou et al., 2018; Ji et al., 2021; Zong et al., 2021;
Mehrbeheshti et al., 2022). In parallel with that, Nrf2 signaling pathway
is activated in HT22 cells by antioxidant enzymes such as catalase,
NQO-1, and HO-1 (Lone et al., 2018). Thus, the activated Nrf2 as a
result of IMP treatment protects the brain from the oxidative damage
induced after exposure to AlCl3. In the present study when mice are
treated with AlCl3, in�ammation occurs, which increases expression of
in�ammatory markers such as TNF-, IL-1b, and NF-kB. TNF-1b, NF-
kB, and MAPK activation are attenuated by supplementation with IMP.
IMP supplementation attenuates Nrf2 and antioxidant enzymes
activation during AlCl3 treatment. A representative shame to
summarize that is shown in Figure 9.

4 Conclusion

In the present study, systemic administration of AlCl3 to mice
resulted in abnormal behavior, neurotransmitter de�cits, and
reduced Nrf2 expression in the brain, re�ecting oxidative
in�ammatory stress. Due to its potential antioxidant and anti-
in�ammatory activities, IMP partially reversed the toxic effects of
AlCl3. The results obtained in this work in the AlCl3 model lead
us to suggest the IMP as an ideal candidate in diseases that involve
processes involving in�ammation, dysfunction in synaptic system
and neurodegeneration in several areas of the brain and
spinal cord.
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