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Radix Aconiti, also known as Tie-bang-chui (TBC), Pang-a-na-bao, and Bang-na,
is a typical aconitumTibetanmedicine and a perennial herb of the genus Aconitum
pendulum Busch. and A. flavum Hand. -Mazz. dry roots. It has high toxicity and
remarkable efficacy; as such, it is a typical “highly toxic and effective” drug that
needs be processed and used. Processing methods of this Tibetan medicine
include non-heating of highland barley wine (HBW) and fructus chebulae soup
(FCS). This work aimed to understand differences in chemical composition
between non-heat processed products and raw TBC. In this study, high-
performance thin-layer chromatography (HPTLC) and desorption electrospray
ionization mass spectrometry imaging (DESI-MSI) were used to analyze the
chemical composition of TBC processed by FCS (F-TBC) and HBW (H-TBC).
The MRMmode of HPLC-QqQ-MS/MS was selected to determine the changes of
several representative alkaloids to comparisonwith the former results. A total of 52
chemical constituents were identified in raw and processed products, and the
chemical composition of F-TBC and H-TBC changed slightly compared with that
of raw TBC. The processing mechanism of H-TBC was also different from that of
F-TBC, which might be related to the large amount of acidic tannins in FCS. It was
found that the content of all six alkaloids decreased after processing by FCS, and all
five alkaloids decreased except aconitine increased after processing by HBW. The
combination of HPTLC and DESI-MSI could be an effective method for rapid
identification of chemical components and changing rules in ethnicmedicine. The
wide application of this technology provides not only an alternativemethod for the
traditional separation and identification of secondary metabolism but also a
reference for research on the processing mechanism and quality control of
ethnic medicine.
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1 Introduction

Radix Aconiti, also known as Tie-bang-chui (TBC), Pang-a-
na-bao, Bang-na in Tibetan medicine, is a perennial herb of the
genus Aconitum pendulum Busch. and A. flavum Hand. -Mazz.
dry root and is mainly distributed in Qinghai, Gansu, Sichuan,
Tibet and other regions of China. (Wang et al., 2016). TBC is a
traditional medicinal material used in Tibetan medicine; which
is sweet, slightly bitter, heat, and highly toxic and has
remarkable efficacy. It is a typical “highly toxic and effective”
drug with both strong toxicity and excellent efficacy. TBC is
used to expel cold and relieve pain, dispel wind, and calm shock
mainly for Long disease, cold disease, Huangshui disease,
leprosy, madness, and so on (Dimaer, 1986).

TBC is commonly used as a highly poisonous aconite Tibetan
medicine. Many processing methods are used for TBC in ancient
and modern times to ensure its safety; these methods include heat
processing (baking, stir-frying, simmering, steaming, boiling, etc.)
and non-heat processing (liquid auxiliary material soaking,
bleaching, etc.) (Li et al., 2022). The main materials used for
processing this Tibetan medicine are highland barley wine
(HBW) and fructus chebulae soup (FCS) (Figure 1). Previous
literature review and on-the-spot investigation showed that non-
heat processing methods are often used in Tibetan hospitals and
medicine factories. However, research on the related mechanism of
non-heat processing is still in the primary stage and needs
further work.

Various analytical methods, such as thin layer chromatography
(TLC), high-performance liquid chromatography (HPLC), liquid
chromatography mass spectrometry (LC-MS), and so on, have been
used to determine aconitum alkaloid components. HPLC separation
is the most commonly used method, but it has some disadvantages,
such as long analysis time, complex preparation of mobile phase,
and high solvent consumption (Csupor et al., 2007; Zhi et al., 2020).
Therefore, a time-saving method with low reagent requirement

should be developed to visualize changes in alkaloid composition
of non-heat processed TBC.

Desorption electrospray ionization (DESI) was first proposed by
Cooks team. DESI has rapid, highly sensitive in situ detection and
has made great progress, especially in situ tumor analysis, in situ
brain imaging, real-time dynamic change detection of chemical
composition in the processing of traditional Chinese medicine,
etc. This method has been widely used in food, drugs, forensic
medicine, environment, and other fields (Milojković-Opsenica et al.,
2022).

TLC detection is the simplest and most effective method for
central control of almost all chemical drugs and quality control of
traditional Chinese medicines and their excipients, which was used
for quality control analysis in nearly 94% of the varieties in the first
part of the Chinese Pharmacopoeia in the 2020 edition and nearly
40 varieties in the fourth part of the Chinese Pharmacopoeia in the
fourth part of the excipients. Low cost, flexible and convenient
operation, simple sample pre-treatment, high throughput and easy
instrument coupling are the outstanding advantages of TLC. High-
performance thin-layer chromatography (HPTLC) is a thin-layer
chromatographic method using a higher separation efficiency thin-
layer plate, which has improved separation, sensitivity and
reproducibility compared to conventional TLC. HPTLC is
commonly used in drug analysis but is often insufficient to
obtain information on chemical composition. HPTLC involves
chromatography for separation and can be combined with DESI-
MSI to obtain better identification ability than DESI-MSI or HPTLC
alone. In recent years, HPTLC-DESI-MSI has been used to analyze
plant metabolites and peptides (Bagatela et al., 2015; Kaddi et al.,
2015; Liu et al., 2022). Therefore, HPTLC has been proved to be a
simple, rapid, efficient, and solvent-saving technique for the
separation and characterization of chemical components in
complex samples. However, no research has investigated the use
of HPTLC-DESI-MSI to separate and detect dynamic changes in
chemical composition in the processing of ethnic medicines.

FIGURE 1
Traditional processing method of TBC in Tibetan medicine.

Frontiers in Pharmacology frontiersin.org02

Tan et al. 10.3389/fphar.2023.1104473

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1104473


In this study, TBC samples from unheated FCS and HBW were
prepared. TBC samples and mixed reference substances were
separated on HPTLC and detected by DESI-MSI. According to
the constructed database and reference materials, the chemical
components of different processed products were qualitatively
detected. Changes in alkaloid content in non-heat processed TBC
were characterized quickly and intuitively. In order to verify the
feasibility of using HPTLC-DESI-MSI to rapidly monitor the
changes of the constituents before and after processing, the
MRM mode of HPLC-QqQ-MS/MS was selected to determine
the changes of several representative alkaloids to comparison
with the former results, and it was found that the trends of the
changes were consistent, which proved the feasibility of the method.

2 Materials and methods

2.1 Materials and reagents

The reference standards (HPLC>98%) of aconitine (39),
acetylaconitine (42), mesaconitine (37), deoxyaconitine (36),
hypaconitine (33), and benzoylaconine (31) were purchased from
PUSH Biotechnology Co., Ltd. (Chengdu, China). Reserpine (DST
Biological Co., Ltd., HPLC≥98%, Lot No. DST210628-056). LC-MS-
grade methanol, acetonitrile and formic acid were obtained from
Sigma–Aldrich (United States). HPTLC silica 60 F254 was acquired
from Merck KGaA (Darmstadt, Germany). Analytical-grade
anhydrous ether, chloroform, 25% ammonia, and methanol were
provided by Chengdu Kelong Chemical Co., Ltd. (Chengdu, China).
HBW was produced by Qinghai Huzhu Highland Barley Wine Co.,
Ltd. (Huzhu, China). UPLC-grade ultrapure water was produced by
Elga Labwater Purelab system (Elga-Veolia, High Wycombe,
United Kingdom). Leucine encephalin (LE) as internal standard
(IS) was supplied by Waters (Waters Corporation, United States).
TBC samples were collected from Qinghai. FCS was purchased from
Chengdu New Lotus Market and identified by Professor Zhang Yi of
Chengdu University of Traditional Chinese Medicine. The related
specimens were stored in the School of Ethnic Medicine, Chengdu
University of Traditional Chinese Medicine.

2.2 Instruments

Lac part analytical weighing scales (Shanghai Liangping
Instrumentation Co.), Ultrasonic Machine (Ningbo New Yicai
Ultrasonic Equipment Co., Ltd.), Rotary evaporator (BUCHI
Rotavapor R-300, Switzerland), Nitrogen blowing instrument
(KL-512), Waters Snapt Q-Tof mass spectrometer equipped with
a DESI source (United States), High performance liquid
chromatograph (Model 1260) Tandem triple quadrupole mass
spectrometer (Model 6420) (Agilent, United States), ShimNex CS
HPLC C18 column (5μm, 4.6 mm × 250 mm).

2.3 Sample preparation

FCS were obtained by boiling FC 50 g with 1500 mL of water for
30 min, filtered to obtain filtrate, repeat boiling three times,

consolidated filtrate, concentrated to 500 mL by rotary evaporator
and cooled.

For traditional Tibetan medicine processing of TBC (Li et al.,
2022), an appropriate amount of TBC powder was placed in a
mortar, added three times the amount of HBW, soaked for 1 h,
ground for 5 h, fermented at room temperature for 1 day, and dried
to obtain TBC processed by HBW (H-TBC). TBC and three times
amounts of FCS were obtained for 2 days, turned every 4 h, soaked,
and dried to obtain TBC processed by FCS (F-TBC).

In brief, 2.5 g of powders of raw TBC (R-TBC), H-TBC, and
F-TBC were accurately weighed and placed in 100 mL stopper
conical flask. The mixture was added by 35 mL of the mixed
solution of ether trichloromethane (3/1, v/v) and 3 mL of
ammonia test solution. The mixture was shaken, extracted by
ultrasound for 1 h, stood for 10 min, and filtered. The residue
was discarded and concentrated by nitrogen blowing. The
residue was transferred to a 25 mL volumetric flask with
acetonitrile for constant volume (Lin et al., 2011). The sample
solution was diluted to the appropriate concentration before use,
and then filtered through a 0.22 µm filter membrane before
testing.

Appropriate amounts of aconitine, acetyl aconitine,
hypoaconitine, mesaconitine, deoxyaconitine, and benzoyl
aconitine were accurately weighed. The mixed reference
solution (D-TBC) containing 1.7 mg of aconitine (39),
1.50 mg of acetyl aconitine (42), 1.9 mg of hypoaconitine
(33), 1.1 mg of mesaconitine (37), 1.6 mg of deoxyaconitine
(36), and 1.4 mg of benzoyl aconitine (31) was prepared by
adding acetonitrile and shaking well. The internal standard
solution was prepared by weighing 1 mg of reserpine,
dissolving it in acetonitrile, transferring it to a 50 mL
volumetric flask, fixing the volume with acetonitrile, and
filtering it through a 0.22 μm microporous organic
membrane, waiting to be used.

2.4 HPTLC separation

Silica gel-precoated HPTLC plate (200 mm × 100 mm ×
0.2 mm) was used for HPTLC separation. The extract
solution or D-TBC with a volume of 5 µL was continuously
sampled onto the HPTLC plate with a quantitative capillary.
Cyclohexane/ethyl acetate/diethylamine (8/2/1, v/v/v) was used
as the mobile phase. The sample was presaturated at room
temperature (25°C) for 20 min and unfolded in the mobile
phase until the front of the solvent reached the defined finish
line. Finally, the sample was taken out, dried naturally, and
detected by mass spectrometry.

2.5 HPTLC-DESI-MSI detection

DESI-MSI experiment was carried out on a Waters Synapt G2-SI
Q-TOF mass spectrometer equipped with a DESI source (Figure 2).
The DESI parameters were optimized to obtain good ion signal
intensity: nebulizing gas (nitrogen) pressure of 0.45 MPa; spray
solvent of 70% methanol water, 30% H2O, 0.2% formic acid, and
0.1 mM LE at a flow rate of 2 μL min-1; capillary voltage of 4.5 kV; and
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positive ionization mode. The pixel size (150 μm X and Y pixel size)
was determined based on the total scanning time of the mass
spectrogram and the speed of the X–Y pixel size scanner. The mass
range was m/z 100–1000, and the scanning speed was 300 μm s-1. HDI
software was used to process raw MS files and create and view MSI.

2.6 HPTLC-DESI-MSI data processing

The MS raw data file was imported into HDI for imaging, and the
regions of interests (ROIs) expanded by four points were exported.
The self-built database, retention factor (Rf), and reference materials
were used for chemical composition identification.

2.7 HPLC -QqQ-MS detection

2.7.1 HPLC-QqQ-MS data acquisition
The mobile phase consisted of 0.1% formic acid water (A) and

pure acetonitrile (B), the flow rate was 0.4 mL min−1, column
temperature was maintained at 25°C, sample injection volume
was 3 μL, and the gradient elution were as follows: 0–10 min,

23%–25% B; 10–25 min, 25%–45% B; 25–35 min, 45%–60% B;
35–45 min, 60%–60% B; 45–50 min, 60%–100%. The negative
and positive ion modes were compared for the MS analysis. The
positive mode resulted in a higher sensitivity and cleaner mass
spectral background than the negative mode. ESI ion source, positive
ion mode detection, atomization temperature: 300°C, nitrogen flow
rate 5 L min-1, nebulizing gas pressure: 45 psi, capillary voltage:
3500 V. The collision energy and fragment ions voltage parameters
were optimized as follows Table 1.

2.7.2 Method validation
The specificity of the method was inspected by ion flow diagrams

of the blank solvent and different channels for each control alkaloid
(Figure 3 and Supplementary Table S1). From the ion flowdiagram, it
can be seen that the method has good specificity.

To measure the sensitivity and precision of the method based on
MRM mode of HPLC-QqQ-MS/MS, the standard curve, linear
range, recovery, limit of detection (LOD), limit of quantification
(LOQ) and precision were examined. The precision was measured
by calculating the relative standard deviation (RSD) of the intra- and
inter-day variations in the signal intensity (peak area). Recoveries
were determined using R-TBC sample spiked with standard

FIGURE 2
Detection schematic diagram of HPTLC-DESI-MSI testing process.

TABLE 1 Mass spectrum parameter information of each reference substance.

Compound TR/min Precursor ion m/z Product ion m/z F(V) CE

Benzoylaconine 19.42 604.4 105.1 190 48

Mesaconitine 36.35 632.5 572.4 150 42

Aconitine 37.34 646.5 586.4 200 40

Acetylaconitine 37.53 688.3 628.2 200 42

Hypaconitine 37.36 616.5 524.2 150 43

Deoxyaconitine 38.14 630.2 570.2 200 41

Reserpine 37.95 609.1 194.9 200 30
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alkaloids. The recovery was calculated with the following equation:
recovery (%) = (actual test content - found content)/spiked content
*100%. LOD and LOQwere evaluated at signal-to-noise ratios (S/N)
of 3:1 and 10:1, respectively. Each standard of alkaloids was weighed

and dissolved in acetonitrile to get a concentration about of
300 μg mL-1. A standard mixture was obtained by mixing the
individual alkaloids standard solution, and then diluted to yield
concentration ranges of benzoylaconine, mesaconitine, aconitine,

FIGURE 3
HPLC–QqQ–MS EIC of the 6 reference standard compounds, internal standard (reserpine, R) and blank solvent (B).
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acetylaconitine, hypaconitine, deoxyaconitine are 1.11–355.84,
0.09–143.36, 1.34–855.04, 0.15–240.64, 0.12–38.4 and
0.13–165.89 ng mL-1 separately for the construction of standard
curves. For the intra-day variability test, the samples were
analyzed six times within 1 day; while for the inter-day variability
test, the samples were examined on three consecutive days. Three
repetitions were analyzed.

Standard curves for six different concentrations of alkaloids
were constructed by plotting the signal intensity (ratio of
compound to internal standard peak area) versus
concentration in HPLC-QqQ-MS/MS analysis. The standard
curves, linearity, correlation, linear range, LOD, LOQ, intra-day
and inter-day precision and stability are detailed in Table 2. The
recovery rates of the six alkaloids are shown in Table 3. The
standard curves of the six alkaloids showed good linear
correlation (R2 > 0.999) in a certain concentration range. The
values of LOD and LOQ obtained in HPLC-QqQ-MS/MS assay
are less than 0.01 and 0.02 ng mL-1. The intra-day and the inter-
day RSD of signal intensity (peak area) were less than 2.73% and
2.82%, respectively. Besides, the values of recovery varied from

85.73% to 98.01% for the six alkaloids. Thus, it suggested that
the MRM mode of UPLC-QqQ-MS/MS have good
reproducibility and precision.

3 Results

3.1 HPTLC-DESI-MSI analysis of main
chemical components in different TBC
processed products

According to the investigation of the previous conditions and in
alkaloid composition analysis, the response signal of the alkaloid
components obtained using 70% methanol water +0.2% formic acid
spray solvent was strong (Liu et al., 2022). Therefore, this condition was
adopted in the present work. In literature, the contents of six
components such as benzoylaconine (31), hypaconitine (33),
deoxyaconitine (36), mesaconitine (37), aconitine (39), and
acetylaconitine (42) in TBC were relatively high. The development
conditions of TBC were investigated with the six components as the

TABLE 2 HPLC-QqQ-MS detection parameters, regression equations, linear range, precision, repeatability, and stability of six alkaloids.

Compound tR
(min)

Regression
equation

R2 Linear
range

(ng·mL-1)

LOD
(ng·mL-1)

LOQ
(ng·mL-1)

Precision Repeatability Stability

Intraday
(n = 6)

Interday
(n = 3)

31 19.42 y =
0.0210x +0.0010

0.9997 1.11–355.84 0.04 0.11 1.11 1.60 2.71 1.03

37 36.35 y =
0.0012x −0.0002

0.9998 0.09–143.36 0.03 0.09 1.87 1.93 1.51 2.17

39 37.34 y = 0.0017x +
0.0013

0.9998 1.34–855.04 0.01 0.02 2.31 2.73 2.75 1.89

33 37.36 y = 0.0013x -
0.0010

0.9997 0.15–240.64 0.07 0.22 2.82 2.04 1.06 1.44

42 37.53 y =
0.0149x +0.0025

0.9998 0.12–38.4 0.12 0.41 1.03 1.71 2.26 2.09

36 38.14 y =
0.0231x −0.0035

0.9999 0.13–165.89 0.12 0.39 0.19 0.20 2.51 1.98

Note: In the regression equation, x is the ratio of peak area of analyte to peak area of internal standard reserpine, y the concentration of each analyte (ng·mL-1), and R2 the correlation coefficient.

LOD, limit of detection (S/N = 3), LOQ, limit of quantification (S/N = 10). Intra-, inter-day precision, repeatability, and stability are shown in RSD (%).

TABLE 3 Recoveries of the standard addition test of the six alkaloids.

Compound 80% spiking 100% spiking 120% spiking

Found
(n = 3, mg)

Spiked Recovery
(%)

Found
(n = 3, mg)

Spiked Recovery
(%)

Found
(n = 3, mg)

Spiked Recovery
(%)

31 1.0875 0.88 93.15 1.0875 1.09 95.45 1.0875 1.32 96.74

37 0.0125 0.01 85.73 0.0125 0.012 88.11 0.0125 0.015 88.60

39 3.6125 2.91 96.66 3.6125 3.62 97.74 3.6125 4.35 98.01

33 0.0125 0.01 86.55 0.0125 0.012 88.32 0.0125 0.015 89.11

42 0.04 0.03 85.83 0.04 0.04 87.49 0.04 0.05 88.88

36 0.8025 0.65 90.60 0.8025 0.82 93.73 0.8025 0.97 95.29
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target (Supplementary Table S2). A relatively ideal result was obtained
through optimization (Figure 4A). The HPTLC aluminum plate easily
blackens under the action of alkaloid chromogenic agent, so the
unfolding results were observed under UV 254 nm. Five obvious
spots were found in different processed products of TBC, but these
spots could not be completely compared with the mixed reference
substance. In this regard, ambientmass spectrometry (MS) imaging was
used for HPTLC direct in situ imaging and analysis. As shown in
Figure 4B, the six components in the mixed control substance were well
separated in HPTLC. The contents of hypaconitine (33) and
mesaconitine (37) in the samples were lower than those of
benzoylaconine (31), deoxyaconitine (36), aconitine (39), and
acetylaconitine (42). Under limited conditions, the two components
were not found in the imaging results. Based on the results of HPTLC
and DESI-MSI, the main chemical constituents of TBC changed after
processingHBW and FCS. The content of aconitine (39) in H-TBCwas
more than those of the raw product and F-TBC, while the contents of
benzoylaconine (31), deoxyaconitine (36) and acetylaconitine (42) in
H-TBC were less than R-TBC, but more than F-TBC. The results
indicated that some chemical reactions possibly occurred during the
processing of TBC.

3.2 HPLC-QqQ-MS for the determination of
changes in the content of six alkaloids
before and after TBC processing

The content of six alkaloids before and after TBC processing have
been relative quantified using the signal intensity (peak area) of
corresponding product ion by the MRM mode of HPLC-QqQ-MS/
MS. The results showed that the content of aconitine (39) was up to
1 mg g-1 or higher and in H-TBC>R-TBC>F-TBC, benzoylaconitine
(31), deoxyaconitine (36) and acetylaconitine (42) were all much lower
than aconitine (39), but in R-TBC > H-TBC > F-TBC. The content of
hypaconitine (33) and mesaconitine (37) was extremely low, only
0.005 mg g-1 in R-TBC and even lower after processing. It was found
that the content of all six alkaloids decreased after processing by FCS, and

all five alkaloids decreased except aconitine (39) increased after
processing by HBW, which was consistent with the result Figure 4 of
HPTLC-DESI-MSI assayed in 3.1. Due to the difference in the sensitivity
of the detectionmethods, hypaconitine (33) andmesaconitine (37) were
detected in very small amounts inHPLC-QqQ-MS/MS but not observed
in HPTLC-DESI-MSI. In conclusion, the results of this content
determination fully validated the feasibility of HPTLC-DESI-MSI to
rapidly and accurately identify and visually present most of the variation
differences of the components except for the very trace components.

3.3 Visual characterization of the chemical
composition of different processed
products of TBC by HPTLC-DESI-MSI

TLC can only analyze main components and needs a
reference substance for comparison. The results have a high
possibility of being false positive. DESI-MSI can characterize
not only known components but also unknown components, and
the m/z obtained can be used for identification (Mohana Kumara
et al., 2019). Therefore, more accurate information can be
obtained by HPTLC combined with DESI-MSI and can be
directly visualized.

TBC, as a plant of the genus Aconitum, contains a large number
of alkaloids, such as diterpenoid and aliphatic alkaloids. Most of
these alkaloids have m/z between 300 and 900. After the
comparison with reference substances, accurate molecular
weight, and related references and combined with the m/z of
DESI-MSI, 52 chemical constituents were inferred and
identified from TBC and its different processed products. The
specific information is shown in Figures 5, 6 and Table 4. In
Figure 5, most alkaloids are concentrated in the m/z 300–700 and
m/z 800–900 region ranges. The aliphatic alkaloids m/z are mainly
between 900–800 (Csupor et al., 2009), the contents of 8-
palmitoleic acid −14-benzoylmesaconine (46), 14-
benzoylaconine-8-palmitate (48), and 8-linolenic acid
benzoyldeoxyaconine (49) are high in F-TBC. Combined with

FIGURE 4
HPTLC and DESI diagrams of target control alkaloids in R-TBC, H-TBC, and F-TBC.
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HPTLC and DESI-MSI, it is found 8-O-Linoleoyl-14-
benzoylaconine (52) is less in F-TBC, while the content of
lipodeoxyaconitine (50) is the largest in H-TBC. The m/z of

diterpenoid alkaloids was mainly concentrated in the range of
500–700 (Wang et al., 2003), among which the alkaloids with the
biggest difference were aconine (23), 16-epi-pyrodeoxyaconitine

FIGURE 5
Signal of DESI-MSI acquired for mass range m/z 300–900 from HPTLC plate regions of the D-TBC, R-TBC, F-TBC and H-TBC in the positive ion
mode. Putatively identfied alkaloids are labeled with m/z and compound number. See Table 4 for more details on the compound identification.
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(27), deoxyaconitine (36), and aconitine (39). Compared with TBC
raw products, the contents of aconitine (39) in F-TBC decreased
significantly, while the contents of aconine (23) and 16-epi-
pyrodeoxyaconitine (27) increased. In addition, the content of
aconitine (39) in H-TBC was significantly increased. However, no
significant change in 16-epi-pyrodeoxyaconitine (27) was found in
H-TBC compared with that in R-TBC. Hence, the processing and
detoxification mechanism of F-TBC may be related to the
conversion mode of alkaloids shown in Figure 7, which is
consistent with previous literature reports (Wang et al., 2010).

As shown in Figure 5, compared with R-TBC, the relative
contents of napelline (5), pseudaconine (19), 8-O-methylaconine
(24), 8-linolenicacid-lenzoylhypaconine (47) in T-TBC and H-TBC
increased significantly, while the contents of dehydrolucidusculine
(8), 14-acetylneoline (17), 8-acetyl-15-hydroxyneoline (21),
kongboendine (26), and 1-demethoxyyunaconitinone/
anhydroaconitine (35) decreased significantly. Interestingly,
songorine (4), nagaconitine A (43) and 8-heptadecenoic acid-
benzoylhypaconine (45) increased in F-TBC but decreased in
H-TBC, samandarin (1) and karakanine (7) decreased in F-TBC
and increased in H-TBC. In addition, it was worth noting that some
components increased irregularly. For example, compared with

R-TBC, the content of 10-hydroxyllycoctonine (22), 16-epi-
pyroaconitine (28), austroconitine B/geniculatine B (30) and 8-
O-methyl-14-benzoylaconine (34) in F-TBC increased, while the
content of acoridine (9), 12-acetyl-12-epi-napelline (10), olividine
(20), and 1, 14-diacetylneoline (25) decreased, unchanged in
H-TBC. Finally, compared with R-TBC, the contents of guan fu
base Z (11) and 16-epi-pyrodeoxyaconitine (27) in H-TBC
decreased, but the two components did not change in F-TBC.
Based on the changes in these chemical components, the
processing mechanism of F-TBC and H-TBC is very different
and worthy of further study.

4 Discussion

In this study, the combined technique of HPTLC and DESI-MSI
was adopted, instead of the commonly used HPLC and LC-MS
detection, because this combined technique requires simple
equipment operation, no complicated sample preparation
process, fast analysis time and less solvent consumption, which is
a more time-saving and environment-friendly analysis method
(Tang et al., 2021; Milojković-Opsenica et al., 2022). In addition,

FIGURE 6
Mass Spectrometry Imaging comparison of 46 other identifiable alkaloid components on HPTLC (1: R-TBC, 2: F-TBC, 3: D-TBC, 4: H-TBC).
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TABLE 4 List of possible compounds.

NO. Compound Formula Theoretical
Value

[M+H] Observed
Value

mDa ppm Rf Ref

01 Samandarin C19H31NO2 305.2429 306.2433 306.2441 0.8 2.6 0.71 Habermehl and Ott
(1976)

02 Bullatine A C22H33NO2 343.2511 344.2590 344.2578 −1.2 −3.5 0.30 Yang et al. (2019)

03 Denudatine C22H33NO2 343.2511 344.2590 344.2585 −0.5 −1.5 0.56 Reinecke et al.
(1986)

04 Songorine C22H31NO3 357.2304 358.2382 358.2376 −0.6 −1.7 0.17 Xu et al. (2019)

05 Napelline C22H33NO3 359.2460 360.2539 360.2521 −1.8 −5.0 0.17 Yang et al. (2016)

06 Songorine N-oxide C22H31NO4 373.2460 374.2331 374.2323 −0.8 −2.1 0.06 Lu et al. (2010)

07 Karakanine C22H33NO4 375.2410 376.2488 376.2478 −1.0 −2.7 0.03 Sultankhodzhaev
(1993)

08 Dehydrolucidusculine C24H33NO4 399.2448 400.2488 400.2475 −1.3 −3.2 0.47 Wada et al. (1985)

09 Acoridine C23H31NO5 401.2216 402.2280 402.2268 −1.2 −3.0 0.46 Wang et al. (2016)

10 12-Acetyl-12-epi-napelline C24H35NO4 401.2566 402.2644 402.2638 −0.6 −1.5 0.56 Lu et al. (2010)

11 Guan Fu base Z C24H33NO5 415.2359 416.2437 416.2429 −0.8 −1.9 0.07 Reinecke et al.
(1986)

12 Neoline C24H39NO6 437.2777 438.2856 438.2836 −2.0 −4.6 0.20 Wei et al. (2019)

13 Dehydrodelcosine C24H37NO7 451.2627 452.2648 452.2631 −1.7 −3.8 0.49 Takayama et al.
(1988)

14 Chasmanine C25H41NO6 451.6124 452.3012 452.2997 −1.5 −3.3 0.50 Wei et al. (2019)

15 14-O-acetylsenbusine A C25H39NO7 465.2727 466.2805 466.2787 −1.5 −3.2 0.16 Frejat et al. (2017)

16 Liangshantine/Diacetylheteratisine C26H37NO7 475.2570 476.2648 476.2633 −1.5 −3.1 0.32 Peiqin et al. (1997)

17 14-Acetylneoline C26H41NO7 479.2883 480.2961 480.2949 −1.1 −2.3 0.37 Díaz et al. (2000)

18 1-O-benzoylkaracoline C29H39NO5 481.2676 482.2906 482.2894 −1.2 −2.5 0.38 Xu et al. (2016)

19 Pseudaconine C25H41NO8 483.2832 484.2910 484.2893 −1.7 −3.5 0.08 Tang et al. (2014)

20 Olividine C26H39NO8 493.2664 494.2744 494.2754 −1.0 −2.0 0.23 Grandez et al.
(2002)

21 8-Acetyl-15-hydroxyneoline C26H41NO8 495.2832 496.2910 496.2900 −1.0 −2.0 0.11 Wang et al. (2010)

22 10-Hydroxyllycoctonine C26H43NO8 497.2987 498.3067 498.3052 −1.5 −3.0 0.07 Zhang and Jia
(1999)

23 Aconine C25H41NO9 499.2781 500.2860 500.2844 −1.6 −3.2 0.06 Chen S et al. (2014)

24 8-O-methylaconine C26H43NO9 513.2938 514.3016 514.3010 −0.6 −1.2 0.06 Song et al. (2019)

25 1,14-Diacetylneoline C28H43NO8 521.2926 522.3067 522.3050 −1.7 −3.3 0.46 Fuente et al. (1988)

26 Kongboendine C32H43NO7 553.3040 554.3118 554.3118 −0.0 −0.0 0.68 A et al. (2002)

27 16-epi-Pyrodeoxyaconitine C32H43NO8 569.2989 570.3067 570.3068 −0.1 −0.2 0.77 Wang et al. (2011)

28 16-epi-Pyroaconitine C32H43NO9 585.2938 586.3019 586.3016 0.3 0.5 0.41 Wang et al. (2011)

29 Benzoyldeoxyaconine C32H45NO9 587.3094 588.3173 588.3156 −1.3 −2.2 0.33 Lu et al. (2010)

30 Austroconitine B/Geniculatine B C33H47NO9 601.3251 602.3329 602.3301 −2.8 −4.6 0.50 Liu et al. (2022)

31 Benzoylaconine C32H45NO10 603.3043 604.3122 604.3132 1.0 1.7 0.16 #

32 13-Deoxyanhydroaconitine C34H45NO9 611.3036 612.3173 612.3154 −1.9 −3.1 0.59 Li et al. (2003)

33 Hypaconitine C33H45NO10 615.3043 616.3122 616.3124 0.2 0.3 0.59 #

34 8-O-methyl-14-benzoylaconine C33H47NO10 617.3256 618.3278 618.3267 −1.1 −1.8 0.23 Li et al. (2018)

(Continued on following page)
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DESI-MSI can be used for in situ detection and direct identification
of compounds according to ion mass-charge ratio, which makes up
for the limitation of HPTLC in identifying compounds dependent
on reference substances (Parrot et al., 2018; Ristivojevi´c et al.,
2020). The results showed that HPTLC was used for
chromatographic separation of extracts, and only 5 main
compound spots could be seen under fluorescence, and
52 compounds could be identified by in situ detection combined
with DESI-MSI, and the relative content difference between the
extracts before and after processing with TBC was visually displayed.
The content of the six target alkaloids before and after different
processing methods were also detected by HPLC-QqQ-MS, and the
differences in content changes were highly consistent with the
results of HPTLC-DESI-MSI analysis. This study further
confirms that HPTLC-DESI-MSI is a simple, rapid, efficient, and
solvent-saving technique with significant advantages in the

separation and characterization of chemical components in
complex samples.

The results showed certain changes in alkaloids after the processing
of F-TBC and H-TBC, such as pseudaconine (19), 8-O-methylaconine
(24), and deoxyaconitine (36) were decreased. However, the
changes of compounds caused by the two processing methods
were not identical. Compared with aconitine (39) increased in
H-TBC, but in F-TBC was decreased more, and aconine (23), 16-
epi-pyrodeoxyaconitine (27), 16-epi-pyroaconitine (28),
benzoylaconine (31), 8-O-methyl-14-benzoylaconine (34), 8-
heptadecenoic acid-benzoylhypaconine (45), 14-
benzoylaconine-8-palmitate (48), 8-O-linoleoyl-14-
benzoylaconine (52), and other components increased. Almost
all of these added components were the products of degradation
or hydrolysis of ester aconitine and aconitine. Studies have been
confirmed that the main toxic components of TBC are diester-

TABLE 4 (Continued) List of possible compounds.

NO. Compound Formula Theoretical
Value

[M+H] Observed
Value

mDa ppm Rf Ref

35 1-Demethoxyyunaconitinone/
Anhydroaconitine

C34H45NO10 627.3043 628.3122 628.3134 1.2 1.9 0.56 Wang et al. (2017)

36 Deoxyaconitine C34H47NO10 629.3200 630.3278 630.3278 0.0 0.0 0.67 #

37 Mesaconitine C33H45NO11 631.2993 632.3071 632.3081 1.0 1.6 0.22 #

38 (−) -(a-c)-8β-Acetoxy-14α-benzoyloxy-N-
ethyl-13β,15α-dihydroxy-lα, 6α,l6β,18-

tetramethoxy-19-oxo-aconitane

C34H45NO11 643.2993 644.3071 644.3053 −1.8 −2.8 0.28 Wei et al. (2019)

39 Aconitine C34H47NO11 645.3149 646.3227 646.3249 2.2 3.4 0.33 #

40 Yunaconitine C35H49NO11 659.3326 660.3384 660.3372 −1.2 −1.8 0.36 Sultankhodzhaev
et al. (1980)

41 Polyschistine A C36H51NO11 673.3462 674.3540 674.3527 −1.3 −1.9 0.20 Wang et al. (1985)

42 3-Acetylaconitine C36H49NO12 687.3255 688.3333 688.3345 1.2 1.7 0.48 #

43 Nagaconitine A C36H51NO12 689.3411 690.3490 690.3505 1.5 2.2 0.11 Zhao et al. (2017)

44 8-Palmitoyl-benzoylhypa-conine C47H73NO10 811.5298 812.5313 812.5346 3.3 4.1 0.68 Kitagawa et al.
(1984)

45 8-Heptadecenoic acid-benzoylhypaconine C48H73NO10 823.5202 824.5313 824.5331 1.8 2.2 0.71 Kitagawa et al.
(1984)

46 8-Palmitoleic acid −14-benzoylmesaconine C48H75NO10 825.5489 826.5469 826.5487 1.8 2.2 0.79 Kitagawa et al.
(1984)

47 8-Linolenicacid-benzoylhypaconine C50H75NO9 833.5513 834.5520 834.5515 −0.5 −0.6 0.83 Kitagawa et al.
(1984)

48 14-Benzoylaconine-8-palmitate C48H75NO11 841.5340 842.5418 842.5410 −0.8 −0.9 0.43 Kitagawa et al.
(1984)

49 8- Linolenic acid -benzoyldeoxyaconine C50H73NO10 847.5326 848.5313 848.5316 0.3 0.4 0.78 Kitagawa et al.
(1984)

50 Lipodeoxyaconitine C50H75NO10 849.5391 850.5469 850.5478 0.9 1.1 0.80 Kitagawa et al.
(1984)

51 8-Linolenicacid-14-benzoylaconine C50H73NO11 863.5234 864.5262 864.5284 2.2 2.5 0.67 Kitagawa et al.
(1984)

52 8-O-Linoleoyl-14-benzoylaconine C50H75NO11 865.5340 866.5418 866.5427 0.9 1.0 0.39 Kitagawa et al.
(1984)
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diterpenoid alkaloids such as aconitine, deoxyaconitine and 3-
acetylaconitine (Singhuber et al., 2009; Zhang et al., 2014). FCS
mainly contains tannin and phenolic acids. In the processing
process, FCS can accelerate the leaching of alkaloids and reduce
the concentration of toxic alkaloids (Li et al., 2021; Zha et al.,
2000). At the same time, some of the diester-diterpenoid alkaloids
were converted into less toxic monoester-diterpenoid or non-
esterified diterpene alkaloids (Chen R et al., 2014) (Figure 6).
However, compared with F-TBC, aconitine (39) increased,
aconine (23), 16-epi-pyrodeoxyaconitine (27), and
benzoylaconine (31) almost unchanged, while samandarin (1),
14-O-acetylsenbusine A (15), and 8-linolenicacid-
benzoylhypaconine (47) increased slightly. Songorine (4), Guan
Fu base Z (11), 8-acetyl-15-hydroxyneoline (21), 13-
deoxyanhydroaconitine (32), nagaconitine A (43), and 8-
Heptadecenoic acid-benzoylhypaconine (45) decreased slightly,
but the changes of these compounds did not show obvious
transformation trend, and their chemical mechanism was
unclear. These results also indicated that the processing
mechanisms of F-TBC and H-TBC were completely different.

According to the processing experiment, H-TBC and F-TBCbelong
to the non-heating processing methods of traditional Tibetan medicine,
which are obviously different from other heating processing methods
such as boiling, steaming and frying. It has been reported that heating
processing method could hydrolyze or pyrolyze diester-diterpenoid
toxic alkaloids, such as deoxyaconitine (36), aconitine (39), 3-
acetylaconitine (42) into monoester-diterpenoid or non-esterified
diterpene alkaloids (Wang et al., 2010). For example, the content of
aconitine (39) was less than one-tenth the amount of raw aconitine after
heating and was undetectable (Zhi et al., 2020). Although the content of

deoxyaconitine (36) and 3-acetylaconitine (42) was decreased by non-
heating processing of H-TBC and F-TBC not as significant as that of
heating processing, especially, the content of aconitine (39) was instead
increased during the HBW processing. Previous studies proved the
toxicity after heating type processing of TBC < F-TBC<H-TBC, and the
efficacy was the drug effect was consistent with the toxicity, which
indicated that the diester-diterpenoid alkaloids were not only the toxic
substances of TBC, but also the key pharmacodynamic substances
(Zhou et al., 2015).

In conclusion, the chemical transformation mechanism of TBC
non-heating processing method was significantly different from that
of heating processing method. Compared with the heating
processing method, the chemical transformation mechanism of
the non-heating processing was more complex and diverse, and
the main chemical transformation mechanism of the processing of
F-TBC was basically clear through this study. While the chemical
composition change of H-TBC was not found out obvious rules.
Therefore, the mechanism of the two non-heating processing
methods needs to be further studied, and the principle of
detoxification needs to be further clarified through body
experiments, which will provide guidance for the correct clinical
use of the traditional non-heating processing F-TBC and H-TBC,
and expanding the application range of TBC.

5 Conclusion

In this study, a combination of HPTLC and DESI-MSI was
developed for rapid and high-resolution characterization of alkaloid
changes in raw and processed products of TBC. A total of

FIGURE 7
Possible mechanism of alkaloids transformation in the process of F-TBC.
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52 chemical constituents were identified in TBC, and 27 chemical
constituents were changed during processing, including 9 common
constituents in F-TBC and H-TBC, 12 chemical constituents unique
in F-TBC, and 6 constituents unique in H-TBC. According to the
changes in diester and monoester alkaloids, these components of
F-TBC and H-TBC did not change much, and a large number of
diester alkaloids were retained. Monoester and ethanolamine
alkaloids increased or decreased. From the change of the whole
chemical composition, F-TBC has a certain change rule. FCS
contains a large amount of tannins and is acidic, which can
accelerate the hydrolysis of toxic diester alkaloids. Tannins in
FCS can complex with alkaloids to form insoluble substances.
H-TBC does not have this rule. In conclusion, HPTLC-DESI-MSI
is a feasible method to quickly and accurately identify and visualize
most of the variation differences in components except for very trace
components, which can be used to separate and identify alkaloids of
different processed varieties of TBC. This study not only provides an
alternative method for the traditional separation and identification
of secondary metabolism but also develops a method reference for
the study of processing mechanism and quality control of ethnic
medicine.
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