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Introduction: To evaluate the pharmacological profile of ocular formulations based
on cross-linked sodium hyaluronate (CL-SH), taurine (Tau), vitamin B6 (Vit B6) and
vitamin B12 (Vit B12) using in vitro and in vivo paradigms.

Methods: Rabbit corneal epithelial cells were used to assess wound healing and
reactive oxygen species (ROS) formation by scratch assay and oxidative stress
(0.3 mM H2O2; 30 min), respectively with or without ocular formulations
exposure. In vivo studies were carried out on albino rabbits to evaluate corneal
nerve regeneration and corneal wound healing with or without treatment with six
different formulations. Animals were anesthetized, the corneal epithelium was
removed, and formulations were topically administered (30 μL/eye; 3 times/day
for 6 days). Slit-lamp observation was carried out at different time points. After
6 days the animals were killed, and corneas were collected to evaluate corneal re-
innervation by immunohistochemistry of selective neuronal marker β-III tubulin.

Results: Formulations containing the concentrations 0.16% or 0.32% of cross-linked
sodium hyaluronate, taurine, vitamin B6 and vitamin B12 accelerated corneal wound
healing. Cells exposed to H2O2 led to significant (p < 0.05) increase of reactive
oxygen species concentration that was significantly (p < 0.05) counteract by
formulations containing cross-linked sodium hyaluronate (0.32%) and taurine with
or without vitamins. The extent of re-innervation, in terms of β-III tubulin staining,
was 5-fold greater (p < 0.01) in the eye of rabbits treated with formulation containing
0.32% cross-linked sodium hyaluronate, taurine, vitamins (RenerviX

®
) compared with

the control group (no treatment). Furthermore, re-innervation elicited by RenerviX
®

was significantly greater (p < 0.01) compared with the group treated with the
formulation containing 0.32% cross-linked sodium hyaluronate and taurine
without vitamins, and with the group treated with the formulation containing
0.5% linear sodium hyaluronate (SH), taurine, and vitamin B12, respectively.

Discussion: In conclusion, among the formulations tested, the new ophthalmic gel
RenerviX

®
was able to contrast oxidative stress, to accelerate corneal re-

epithelization and to promote nerve regeneration.
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Introduction

Corneal damage represents a frequent clinical problem consequent to
various chemical, physical, and pathological insults, including, but not
limited to, dry eye disease and refractive surgery (Ljubimov and
Saghizadeh, 2015; Bandeira et al., 2019), that generate a potent
inflammatory response (Mohan et al., 2022). Oxidative stress has been
demonstrated to play a central role in ocular inflammation eliciting
reactive oxygen species that contribute to ocular surface damage
(Cejkova and Cejka, 2015). Based on these premises, antioxidants may
represent a potential option to handle corneal damage (Dogru et al., 2018)
elicited by inflammatory process (Buddi et al., 2002; Jurkunas et al., 2010;
Shetty et al., 2017; Fresta et al., 2020). Corneal wound healing is a complex
and dynamic process which helps to preserve the integrity of the corneal
epithelial to ensure corneal transparency and clear vision. This process
includes, above all, the migration, proliferation, adhesion, and
differentiation of the stem cell of the corneoscleral junction, and the
remodeling of extracellular matrix (Mei et al., 2012; Di Girolamo et al.,
2015; Ljubimov and Saghizadeh, 2015; West et al., 2015; Chou et al.,
2018), regulated by many cytokines, growth factors, and signaling
pathways (Mohan et al., 2022). Furthermore, the preservation of
corneal nerves is crucial for normal corneal function but also in
promoting epithelial wound healing thanks to the release of essential
neurotrophins for corneal homeostasis (Bucolo et al., 2009; Cortina et al.,
2010; Bucolo et al., 2019; Puglia et al., 2021). Therefore, after a corneal
damage, it is essential to restore the epithelium, the stroma, but also the
nervous components (Bukowiecki et al., 2017; Wilson et al., 2017). As a
result, corneal repair and regenerative strategies should target multiple
pathways and mechanisms, and several approaches have been
investigated to maintain corneal homeostasis and healing process. For
example, the extracellular matrix components (such as proteoglycans)
regulate collagen deposition and matrix assembly, and while sodium
hyaluronate demonstrated to accelerate the healing of corneal epithelial
after injury (Mohan et al., 2003; Borderie et al., 2006; Yang et al., 2010;Wu
et al., 2013; Gupta et al., 2022). Moreover, vitamins have a role in
promoting the healing after damage and in maintaining the normal
cell growth, replication processes and reinnervation (Kim et al., 2012;
Romano et al., 2014; Reins et al., 2016; Fernandez-Villa et al., 2018;
Fogagnolo et al., 2020; Gujral et al., 2020). The research of topical products
able to modulate the wound healing is growing fast to find new
approaches to handle corneal damage. This study aims to evaluate the
pharmacological profile of different ocular formulations based on sodium
hyaluronate (linear and cross-linked) at different concentrations, taurine,
vitamin B6 and vitamin B12 using in vitro and in vivo paradigms.

Material and methods

Cell culture

Statens Seruminstitut rabbit corneal (SIRC) epithelial cells (ATCC
CCL-60) were cultured in Eagle’s Minimum Essential Medium (EMEM,
Sigma-Aldrich,Milan, Italy) supplemented with 10% of fetal bovine serum
(FBS, Sigma-Aldrich), 1X Minimum Essential Medium Non-Essential
Amino Acids (MEM NEAA, Thermo Fisher Scientific, Waltham, MA,
United States) and 1X Penicillin/Streptomycin (P/S, Sigma-Aldrich) at
37 °C in 5%CO2 in humid air. Cell culture plates were coatedwith 5–10 µL
gelatin solution/cm2 (i.e., 0.1–0.2 mg/cm2 gelatin, G1393, Sigma-Aldrich)
to promote cell adhesion. SIRCs (P6) were cultured with or without test

formulations. All media were filtered with syringe filters, 0.45 µm
(Corning® 28mm Diameter Pore SFCA Membrane, Cat. No. 431220,
Arizona, United States) to ensure sterile conditions.

Ophthalmic formulations

Six different ophthalmic formulations were used: formulation #1
(F1), containing 0.5%SH-L, Tau and 0.05%Vit B12; formulation #2 (F2),
containing 0.48% cross-linked SH-CL, 0.5% Tau, 0.05% Vit B6 and
0.05% Vit B12; formulation #3 (F3), containing 0.32% SH-CL, 0.5% Tau,
Vit B6 and Vit B12 (Renervix® Alfa Intes I.T.S. s.r.l); formulation #4 (F4),
containing 0.16% SH-CL, 0.5% Tau, Vit B6 and Vit B12; formulation #5
(F5), containing 0.02% SH-CL, 0.5% Tau, Vit B6 and Vit B12;
formulation #6 (F6), containing 0.32% SH-CL, 0.5% Tau (no vitamins).

Scratch wound healing assay

The SIRC cells were grown to confluence in six-well dishes (5 × 104

cells/well). Reached the confluence, cells were washed twice with warm
phosphate saline buffer (PBS, 1X) and then incubated with a serum-free
medium for 5 h. Then, the confluentmonolayer of cells was scratched with
a 200 μL pipette tip. All the wells were washed with fresh medium to
remove detached cells before incubation in a serum-free medium
containing formulation #1, formulation #2, formulation #3, formulation
#4, formulation #5 or formulation #6. To be sure thewoundswith the same
wound area were compared, a couple of lines were made at two points of
thewell to link the opposite points in thewell with amarking pen, using the
lines as a reference for the photographic report at the time of the beginning
of the experiment (T0) and for 12 h (T12), 24 h (T24), 36 h (T36), 48 h
(T48) and 72 h (T72). Wound area was analyzed from six different wells
for each treatment, and all images were acquired with a Leica microscope
using a ×20 magnification. The average wound area, expressed in the
percentage of control (CTR), was determined using ImageJ Software
(Broken Symmetry Software, Bethesda, MD, United States).

Detection of ROS

ROS generation was evaluated in SIRC cells, after oxidative stress
induction by treatment with H2O2, by using the 2′,7′–dichlorofluorescin
diacetate (DCFDA)– Cellular Reactive Oxygen Species Detection Assay
Kit (ab113851, Abcam, Cambridge, United Kingdom) according to the
manufacturer’s protocol, as previously described by Maugeri et al.
(Antioxidants 2022. PMID: 35052632). Briefly, SIRC cells were plated
into 96-well plates (1 × 104 cells/well). After overnight growth, cells were
cultured for 60 min in the control medium (CTR); or in the presence of
the formulation #3, containing 0.32% sodium hyaluronate (SH-CL), 0.5%
taurine, 0.05% vitamin B6 and 0.05% vitamin B12 (RenerviX®); or in the
presence of formulation #6, containing 0.32% sodium hyaluronate (SH-
CL) and 0.5% taurine. Then, oxidative stress was induced with 0.3 mM
H2O2 treatment for 30 min. Subsequently, cells were washed gently in PBS
twice and incubated with 25 μMDCFDA previously dissolved in a buffer
solution for 45 min in the dark. ROS concentration was detected by
fluorescence spectroscopy with excitation and emission wavelength of
495 nm and 529 nm, respectively, using Varioskan Flash Multimode
Reader (Thermo Fisher Scientific). Twelve replicate wells were used
for each group.
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Corneal epithelial wound healing

Male New Zealand albino rabbits (1.8–2.0 kg) were purchased from
Envigo (Udine, Italy). Animals were housed under standard conditions

with food and water provided ad libitum in a light-controlled room and
set temperature and humidity. Animal care and experimental
procedures were carried out according to the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research. Protocols were

FIGURE 1
Wound healing in SIRCs monolayer. (Top Panel) Representative images of wound healing assays performed in SIRCs exposed to the six different
formulations at 0, 12, 24, 36, 48 and 72 h. (Bottom Panel) The bar graph shows the average wound area expressed in the percentage of CTR. *p < 0.01 vs. F1,
F2 and F5 as determined by one-way ANOVA followed by the Tukey’s post hoc test. Data are shown as mean ± SD of five independent experiments (n = 5).
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approved by the Institutional Animal Care and Use Committee of the
University of Catania (project #303). Animals were anesthetized and the
corneal epitheliumwas removed with 0.5 mm corneal rust ring remover
(Algerbrush, EyeBM Vet, Milan, Italy), under a dissecting microscope.
The eyes were treated as follow: group 1) Formulation #6 containing
0.32% SH-CL and 0.5% Tau; group 2) Formulation #3 containing 0.32%
SH-CL, 0.5% Tau, 0.05% Vit B6 and 0.05% Vit B12, RenerviX®); group
3) Formulation #1 containing 0.5% SH-L, 0.5% Tau and 0.5% Vit B12.
All formulations were topically administered (one drop, three times per
day for 6 days) starting the same day of corneal epithelial debridement.
Slit-lamp observation was carried out at different time points. After
6 days, the animals were killed, and corneas were collected for the
immunohistochemical analysis to evaluate corneal re-innervation by
immunohistochemical analysis of the selective neuronal marker beta-III
tubulin.

Immunohistochemistry analysis

The expression and distribution of ß-III tubulin in rabbit cornea were
evaluated through immunohistochemical analysis. Briefly, after dewaxing
in xylene, the corneal slides were hydrated through graded ethanol and
incubated for 30 min in 0.3% H2O2/methanol to quench endogenous
peroxidase activity and then rinsed for 20 min with phosphate-buffered
saline. The sections were then heated in a thermoregulated bath (80° for
30 min) with rodent decloaker (Biocare Medical, Pacheco, CA,
United States), to perform antigen retrieval. The blocking step to
prevent non-specific binding of the antibody was performed before
application of the primary antibody with 1% bovine serum albumin
(BSA, Sigma, Milan, Italy) in PBS for 1 h in a moist chamber. After
blocking, the sections were incubated overnight at 4 °C with ß-III Tubulin
antibody (ab78078, Abcam, Cambridge United Kingdom), work dilution
in PBS and 1%BSA 1:100. Immune complexes were then treated with a
biotinylated link antibody (HRP-conjugated anti-rabbit was used as
secondary antibodies) and then detected with peroxidase labeled
streptavin, both incubated for 10 min at room temperature (LSAB +
System-HRP, K0690, Dako, Denmark). The immunoreaction was
visualized by incubating the sections for 3 min in 3,3′-

diaminobenzidine solution (DAB substrate Kit; SK-4100, Vector
Laboratories, Burlingame, CA, United States). The samples were
lightly counterstained with hematoxylin, mounted in vecta mount
(Vector Laboratories) and observed with an Axioplan Zeiss light
microscope (Carl Zeiss) and photographed with a digital camera
(AxioCam MRc5, Carl Zeiss). Densitometric analysis was carried with
ImageJ. ß-III Tubulin staining in the corneal epitheliumwas quantified as
previously described by Romano et al. (2014).

Statistical analysis

Statistical analysis was performed by GraphPad prism 7
(GraphPad software La Jolla, California). The data generated by all
experiments are reported as mean ± SD. One-way analysis of variance
(ANOVA) was carried out, and Tukey’s post hoc test was used for
multiple comparisons. Differences between groups were considered
statistically significant for p-values <0.05.

Results

Wound healing in SIRCs

We performed wound healing assay to evaluate the impact of the
formulations in the wound repair capability of SIRC cells. As shown in
Figure 1, at 12 and 24 h after confluent SIRCs were scratched, all
formulations produced a significant (p < 0.01) reduction of the average
wound area as compared to control. However, starting from 36 h until to
72 h, the corneal cells exposed to F3, F4, and F6 showed the best
performance in terms of wound closure compared to control group and
the other formulations (p < 0.01 vs. F1, F2, F5). No significant differences
were observed between F3, F4, and F6. These findings suggest that these
formulations exert comparable positive effects on the wound healing rate in
SIRC cells. We then analyzed the effect of F3 against oxidative stress
induced by treatment with H2O2 (0.3 mM) for 30 min using a DCFDA
assay. To assess the role of vitamins contained in F3, we also tested F6,
containing similarly to F3, 0.32% SH-CL and 0.5%Tau, but no vitamins. As

FIGURE 3
Wound healing in rabbit eye. T0 (day 1), T1 (day 2), T2 (day 4).
Formulation 6 (F6); RenerviX

®
(F3); Formulation 1 (F1); Control

group. Data are showed as % of corneal re-epithelialization. No statistical
differences were observed between treated groups. Data are
shown as mean ± SD (n = 4).

FIGURE 2
Detection of intracellular ROS production in corneal cells.
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shown in Figure 2, cellular ROS levels significantly (p < 0.05) increased in
SIRC cells after H2O2 treatment compared to control. The treatment with
F3 and F6 significantly (p < 0.05) reduced ROS formation after H2O2 stress.

ROS levels were measured in SIRCs after 0.3 mM H2O2 treatment
for 30 min alone or in cells previously treated for 60 min with F3 or F6,
using the cytoplasmic probe, DCFDA. *p < 0.05 vs. CTR; #p < 0.05 vs.
H2O2 as determined by one-way ANOVA followed by Türkiye’s
multiple comparison test. Data are shown as mean ± SD of five
independent experiments (n = 5).

Corneal epithelial wound healing in vivo study

The aim of the in vivo study was to evaluate the effects of
RenerviX® on corneal wound healing and to evaluate the
expression and the localization of regenerated nerve fibers after
corneal abrasion in rabbit eye. As showed in Figure 3 all the
ophthalmic formulations tested [Formulation 6 (F6) containing
0.32% SH-CL and 0.5% Tau; Formulation 3 (F3) (RenerviX®)
containing 0.32% SH-CL, 0.5% Tau, 0.05% Vit B6 and 0.05% Vit
B12; Formulation 1 (F1) containing 0.5% SH-L, 0.5% Tau and 0.5%Vit
B12] contribute to the corneal wound healing even though no
statistical differences were observed between treated groups (Figure 3).

Effects of ocular formulations on corneal
nerve regeneration

Corneal re-innervation was examined by immunohistochemical
analysis of the selective neuronal marker, beta-III tubulin after
mechanical injury. As shown in Figure 4, immunohistochemical
analysis demonstrated the presence of regenerating nerve fibers
expressing β-III tubulin in the apical areas of the cornea of eyes
treated with all three formulations (F1; F3 and F6) (p < 0.05 and p <
0.01 vs. CTR). However, the extent of re-innervation was significantly

greater in the eye of rabbits treated with RenerviX® compared with the
group control and the groups treated with formulations containing
0.32% SH-CL and Tau (F6) and formulation containing 0.5% SH-L,
0.5% taurine and 0.5% vitamin B12 (F1) (p < 0.05 vs. F6 and F1).

Discussion

In the present study we demonstrated that RenerviX®, was able
to improve corneal wound healing, to restore functional corneal
nerves, and to protect corneal cells from oxidative stress.
Treatment with RenerviX® stimulates re-innervation of the
injured cornea in rabbit eye with a significant difference when
compared to formulation 6 and formulation 1. Finally, no levels of
taurine, pyridoxine (vit B6) and cyanocobalamin (vit B12) were
detected after 18 h in the cornea samples of rabbit eyes treated with
a single instillation of RenerviX®, suggesting that no deposit of
these molecules occurred after topical administration. Altogether,
these findings suggest that pyridoxine (vitamin B6) present in
RenerviX®, significantly contributes to the corneal preservation
and recovery after an insult.

Previous studies demonstrated the importance of vitamins in
maintaining ocular surface homeostasis, suggesting the possible
protective effects against damages (Lasagni Vitar et al., 2022).
Vitamins are essential for many corneal functions and help
ensuring corneal integrity supporting the epithelial barrier and cells
survival (Yin et al., 2011; Bucolo et al., 2015; Reins et al., 2015; Gozzo
et al., 2021; Kaminska et al., 2021; Lasagni Vitar et al., 2022).
Moreover, their anti-inflammatory, antimicrobial and antioxidant
properties have been demonstrated (Wimalawansa, 2019). Vit
B6 role is important for several biosynthetic pathways such as
purine, pyrimidine, and amino acids syntheses and in maintaining
the normal cell growth and replication processes (Fernandez-Villa
et al., 2018; Fiorillo and Romano, 2020; Fogagnolo et al., 2020). For
example, the local treatment with Vit B12 led to faster repair of corneal

FIGURE 4
Immunohistochemical analysis. Measurement of corneal ß-III tubulin expression. Formulation 6 (F6); Formulation 3 (F3, RenerviX

®
); Formulation 1 (F1);

Control group. *p < 0.01 vs. CTR; **p < 0.01 vs. F6 and F1. Data are shown as mean ± SD (n = 4).
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damage and facilitated reinnervation (Romano et al., 2014). This is in
line with the evidence that Vit B12 promotes the synthesis of
neurotrophic factors, supporting neurite growth and survival
(Scalabrino and Peracchi, 2006; Okada et al., 2010). Indeed, Vit
B12 deficiency is associated with sensory innervation impairment,
optic neuropathy, eye movement disorders and corneal damage
(Chavala et al., 2005; Akdal et al., 2007; Jurkunas et al., 2011;
Conti et al., 2021).

Moreover, Vit B6 has been recognized as a potent antioxidant as well
as an established cofactor for several metabolic enzymes, including,
among others, those involved in protein metabolism, conversion of
tryptophan to niacin, and neurotransmitter function (Kannan and
Jain, 2004; Tunali, 2014; Hsu et al., 2015).

The role of Vit B6 as a therapeutic agent has been demonstrated in
several disorders such as diabetes (Jain, 2007; Amato et al., 2021) and
cardiovascular diseases (Wierzbicki, 2007). For example, the
antioxidant and scavenging properties have been considered in
reducing oxidative stress markers associated with homocysteinemia
or in preventing free radicals formation and lipid peroxidation in
cellular models (Mahfouz and Kummerow, 2004).

In addition, Vit B6 is involved in the immune system regulation
and the regulation of neurotransmitters (Baltrusch, 2021). Being
essential for the amino-acid metabolism, Vit B6 regulates the
synthesis of neurotransmitters, responsible for signal
transmission (Yang and Wang, 2009; Baltrusch, 2021). In
preclinical models, vitamin B6 showed neuroprotective effects
against glutamate damage stimulating nerve regeneration, and
prevention of neuronal death in the retina after ischemic
damage (Wang et al., 2002; Yang and Wang, 2009).
Furthermore, some clinical evidence supported the regenerative
effect of Vit B6 (Talebi et al., 2013). These evidences are important
with an impact on corneal nerves protection necessary for the
maintenance of a healthy ocular surface (Muller et al., 2003) and
support corneal healing (Yu and Rosenblatt, 2007; He et al., 2010;
Marfurt et al., 2010; Toro et al., 2021).

In conclusion, among the formulations tested, the new
ophthalmic gel based on 0.32% SH-CL, 0.5% taurine, 0.05%
vitamin B6 and 0.05% Vitamin B12 (RenerviX®), demonstrated to
better contrast oxidative stress, to accelerate corneal re-epithelization
and to promote nerve regeneration, suggesting an important
advantage in clinical practice, ranging from corneal abrasion and/
or neuropathy (diabetes or severe dry-eye) to help patients’ recovery
after eye surgery.
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