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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease
(ILD) without an identifiable cause. If not treated after diagnosis, the average life
expectancy is 3–5 years. Currently approved drugs for the treatment of IPF are
Pirfenidone and Nintedanib, as antifibrotic drugs, which can reduce the decline
rate of forced vital capacity (FVC) and reduce the risk of acute exacerbation of IPF.
However these drugs can not relieve the symptoms associated with IPF, nor
improve the overall survival rate of IPF patients. We need to develop new, safe and
effective drugs to treat pulmonary fibrosis. Previous studies have shown that cyclic
nucleotides participate in the pathway and play an essential role in the process of
pulmonary fibrosis. Phosphodiesterase (PDEs) is involved in cyclic nucleotide
metabolism, so PDE inhibitors are candidates for pulmonary fibrosis. This paper
reviews the research progress of PDE inhibitors related to pulmonary fibrosis, so as
to provide ideas for the development of anti-pulmonary fibrosis drugs.
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1 Introduction

IPF is a chronic, progressive age-related interstitial lung disease (ILD) of unknown
etiology. If not treated after diagnosis, the average life expectancy is 3–5 years (King et al.,
2011; Richeldi et al., 2017). Although the understanding of IPF has been significantly
improved, the critical pathways of disease still need to be further explored. It is generally
believed that environmental stressors and genetic susceptibility are the key factors that
activate and promote the development of pulmonary fibrosis (Maher et al., 2007;
Margaritopoulos et al., 2012). Genetic, environmental factors (smoking, dust, etc.),
infection (EB virus, cytomegalovirus, herpesvirus), aging and other aspects interact to
initiate continuous micro-damage of alveolar epithelial cells (Stewart et al., 1999; Lok et al.,
2001; Tang et al., 2003; Maher et al., 2007; Richeldi et al., 2017). Alveolar macrophages
recognize epithelial injury and amplify inflammatory response, secrete transforming growth
factor-β (TGF-β),IL-10, platelet-derived growth factor (PDGF), and other cytokines, recruit
fibroblasts to the injured site, transform fibroblasts into myofibroblasts, stimulate alveolar
epithelial cells to undergo epithelial-mesenchymal transformation (EMT), and
myofibroblasts secrete extracellular matrix components (ECM). It eventually leads to the
occurrence, development and maintenance of pulmonary fibrosis (Craig et al., 2015; Pardali
et al., 2017; Sgalla et al., 2018; Spagnolo et al., 2018). Many cell types and signaling pathways
are involved in disease pathogenesis. The process of pulmonary fibrosis involves epithelial
repair disorders, cell senescence, and immune response disorders. Because redundant cell
types, growth factors, and fibrosis pathways are involved in the pathogenesis of the disease,
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there is still a lack of effective treatment for the progressive stage of
IPF (Spagnolo et al., 2018).

Pirfenidone and Nintedanib, the latest two antifibrotic drugs,
can significantly reduce the decline rate of forced vital capacity
(FVC) within 1 year in IPF patients with mild and moderate lung
function impairment. Moreover, it can reduce the risk of acute
exacerbation in IPF patients with mild and moderate lung function
impairment. Nintedanib is a small molecular tyrosine kinase
inhibitor, which can inhibit platelet-derived growth factor
receptor (PDGFR), fibroblast growth factor receptor (FGFR) and
vascular endothelial growth factor receptor (VEGFR) on the cell
surface. It competitively binds to adenosine triphosphate (ATP)
binding sites on these intracellular receptor kinase domains, block
intracellular signal transduction and inhibit fibroblast proliferation,
migration, and transformation (Richeldi et al., 2017). Pirfenidone is
a broad-spectrum anti-fibrotic drug with anti-inflammatory and
anti-oxidant effects. Its mechanism is not completely clear
(Spagnolo et al., 2020). However, the clinical studies had found
that neither these two drugs alleviated the IPF-related symptoms nor
improved the overall survival rate of IPF patients (Noble et al., 2011;
King et al., 2014; Costabel et al., 2016). Furthermore, although
Nintedanib and pirfenidone have good safety in clinical trials,
there are still a few patients with adverse reactions, including
nausea and vomiting, skin photosensitization, dizziness, and liver
function damage (Richeldi et al., 2017). Therefore, we hope to
explore more effective drugs for IPF. As with other fibrotic
diseases, anti-fibrosis therapy focuses on avoiding tissue damage
and eliminating remodeling of tissue parenchyma and function
decline resulting from ECM deposition. Accumulating evidence
suggests that cyclic nucleotides are involved in the regulation of
pulmonary fibrosis.

Cyclic nucleotides cAMP and cGMP are typical second
messengers. In the classical paradigm, in response to extracellular
stimuli, cAMP or cGMP are respectively synthesized by adenylate
cyclase (AC) or guanylate cyclase (GC) located on the plasma
membrane, and then spread throughout the cell, where they
interact with the specific effector proteins that regulate cell
function, such as cell proliferation and differentiation,
inflammation, apoptosis and metabolic pathways (Bolger, 2021).
Phosphodiesterase (PDEs) is involved in cyclic nucleotide
metabolism. So exploring the role of cyclic nucleotides and PDEs
in the development of pulmonary fibrosis is helpful for developing
anti-fibrosis drugs.

2 Mechanism of cyclic nucleotides
regulating fibrosis

cAMP is an essential regulator of fibroblast function. The
extracellular stimulators bind to the G protein-coupled receptor
(GPCRs) on cell membrane, and adenylate cyclase (AC) responds to
the activation of GPCRs to produce cAMP. cAMP enables the
transmission of extracellular signals into the cell along defined
and specific pathways within the network, allowing for signal
regulation inside and outside the cell. This process, referred to as
Compartmentalization, is a crucial aspect of cAMP signaling (Zuo
et al., 2019a). cAMP participates in regulation mainly through four
effectors: PKA (protein kinase A protein kinase, PKA), Epac

(exchange protein activated by cAMP, Epac), cyclic nucleotide-
gated (CNG) ion channels, and the Popeye domain-containing
protein family (Zuo et al., 2019a). Furthermore, the cAMP/PKA
pathway and the cAMP/Epac pathway have been reported the most
in pulmonary fibrosis (Liu et al., 2004; Yokoyama et al., 2008; Insel
et al., 2012).

The NO-GC-cGMP signaling pathway initiates with the
catalytic conversion of arginine and molecular oxygen to NO and
citrulline by nitric oxide synthase. After binding of lipophilic NO to
sGC in the cytosol, sGC is fully activated and catalyzes the formation
of the second messenger cGMP. cGMP can then bind to a variety of
effectors to regulate cellular activity.

2.1 The cAMP/Epac pathway

Epac is widely found in lung, brain, and kidneyed. It participates
in cAMP-mediated signal transduction by activating Ras-like small
GTP enzyme Rap (Kawasaki et al., 1998). In cooperatione with PKA
or alone, it undertakes numerous cAMP functions, such as
regulating macrophage inflammation, epithelial cell adhesion,
fibroblast proliferation, and differentiation. Epac consists of a
regulatory region at its N-terminus and a catalytic region at the
C-terminus. Based on the differences in the N-terminal regulatory
region, Epac can be divided into two subtypes: Epac1 and Epac2
(Figure 1) (Niimura et al., 2009). By comparing pulmonary
fibroblasts from normal patients to those from pulmonary
fibrotic patients using Western blot, the study demonstrates that
Epac1 is primarily expressed in the former group (Huang et al.,
2008a). So, Epac1 may be responsible for the anti-fibrosis effect in
the lung. Moreover, the lower cAMP concentration prioritizes the
Epac pathway’s activation (Yokoyama et al., 2008). Based on these
findings, Epac appears to be an attractive therapeutic target for the

FIGURE 1
Domain architecture of EPAC isoforms: EPAC proteins are single
polypeptide molecules which consist of an N-terminal regulatory
region and a C-terminal catalytic region. The catalytic region at the C
terminus is mainly composed of three structural and: Ras
exchange motif (REM), Ras association (RA), CDC25 homology
domain [also known as the guanine nucleotide exchange factor for
Ras-like small GTPases (RasGEF) domain] responsible for nucleotide
exchange activity. The two subtypes had different structures in the
N-terminal regulatory region. The Epac2A regulation region contains
two CAMP-binding domains, CNB-B and CNB-A. However, Epac1,
Epac2A and Epac2B all have Disheveled/Egl-10/pleckstrin (DEP)
domains, which are correlated with subcellular localization of Epac.
Epac1 is widely expressed in human tissues, such as the hippocampus,
thyroid, breast, and lung. EPAC2A is mainly expressed in the central
nervous system, pituitary gland and adrenal gland.
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treatment of pulmonary fibrosis. Epac can regulate the proliferation,
migration, and relaxation of airway smooth muscle cells (ASMC) in
IPF, thereby correcting dysfunction and retarding the progression of
IPF, which may be due to the reduction of RhoA activity by cAMP/
Epac/Rap1 signaling (Roscioni et al., 2011; Zieba et al., 2011). Epac
agonist promotes endothelial cells (ECs) survival by reducing the
activities of pro-apoptotic caspases in a PI3K/Akt and MEK/ERK
signalling-dependent manner (Gündüz et al., 2019). Besides,
inhibition of MEK/ERK signaling enhances the stabilizing and
protective effects of cAMP/Epac activation on endothelial cell
barrier, indirectly inhibiting the progression of pulmonary
fibrosis (Gündüz et al., 2019). TGF-β is an important profibrotic
factor. In lung epithelial cells, EPAC is involved in the inhibition of
transforming growth factor-β-dependent cell migration and
adhesion, and endogenous TGFRI can form a complex with
EPAC1 (Conrotto et al., 2007). In immune cells, Epac also can
reverse the polarization of macrophages to pro-fibrotic M2, the
mechanism of which remains to be explored (Hartopo et al., 2013).
The antifibrotic effect of Epac may be multifaceted. Therefore, the
anti-fibrosis mechanism is not well explained (Yokoyama et al.,
2008). T cells also play an important role in the development of
pulmonary fibrosis. In the early stage of pulmonary fibrosis, the
major effector target T cells are regulatory T cells (Tregs). Treg are
involved in early pulmonary fibrosis by secreting pro-fibrotic factors
such as TGF-β, PDGF (Hou et al., 2017). However, as a homeostatic
regulator of the immune response, Tregs can also mediate upstream
inflammatory events and indirectly reduce the development of

fibrosis by suppressing inflammation and T helper cell responses
(Wilson and Wynn, 2009). Therefore, Tregs may have a different
role in the process of pulmonary fibrosis at each stage. Epac1 can
boosts Treg-mediated suppression effector T-cells (Teffs) while
sensitizing Teffs to suppression (Almahariq et al., 2015). So,
activation of Treg cells and regulating cAMP/EPAC in T cells
may become a new strategy for the prevention and treatment of
IPF. Mesenchymal Stem Cells (MSCs) is also involved in pulmonary
fibrosis, but the effects are multifaceted. On the one hand, MSCs
migrate to sites of lung injury to renew injured epithelial cells
(Toonkel et al., 2013). On the other hand, the migration and
adhesion of mesenchymal stem cells contribute to their
differentiation into myofibroblasts and aggravate pulmonary
fibrosis (El Agha et al., 2017). However, MSCs has been
suggested as a therapy for the treatment of IPF (Toonkel et al.,
2013). cAMP/Epac/Rap1 can promote the homing and migration of
MSCs by enhancing stromal cell derived factor 1 (SDF-1), thereby
enabling the repair of lung epithelial cells (Toonkel et al., 2013). A
summary of the above cell types’ correlation with EPAC and IPF is
shown in Figure 2.

2.2 The cAMP/PKA pathway

PKA is also involved in the regulation of fibrosis. Endoplasmic
reticulum stress (ER stress) contributes to the apoptosis of type II
alveolar epithelial cells (AECs), which are involved in the process of

FIGURE 2
Epac via differential cellular pathways inhibit the process of IPF. ↑ means increase or upregulated; ↓ means decrease or downregulated.
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pulmonary fibrosis (Kropski and Blackwell, 2018; Borok et al., 2020).
ER stress stimulates NLRP3 inflammasome activation and promotes
the process of lung fibrosis (Stout-Delgado et al., 2016). However,
cAMP/PKA is a negative feedback regulator of ER stress-induced
NLRP3 inflammasome activation, decreasing ACEⅡ pyroptosis
(Hong et al., 2022). Prostaglandin (PG) E2 is a metabolite of
arachidonic acid, mainly produced by alveolar epithelial cells and
lung fibroblasts (Wilborn et al., 1995). Although it is a
proinflammatory factor, it is essential in maintaining lung
homeostasis. In the lung, PGE2 inhibits cell migration,
proliferation, collagen accumulation, and differentiation into
myofibroblasts (Elias et al., 1985; Wilborn et al., 1995; Kohyama
et al., 2001). Therefore, PGE2 is considered to be a protective factor
in pulmonary fibrosis. The downstream signal transduction of
PGE2 is realized by binding to G protein coupled receptor EP1-
EP4. However, Gαs-coupled E prostanoid (EP) 2 receptor will lead
to an increaseing in cAMP (Huang et al., 2007). Therefore, the
antifibrotic effect of PGE2 may be realized by the downstream effect
mediated by cAMP.PGE2/Epac1/Rap pathway activation inhibites
fibroblast proliferation, whereas PGE2/PKA activation inhibites
collagen expression (Huang et al., 2008b). Futhermore, PGE2 can
induce de-differentiation of human pulmonary myofibroblasts
through cAMP/PKA pathway (Fortier et al., 2021).
p75 neurotrophin receptor (p75NTR), a TNF receptor superfamily
member upregulated after tissue injury, is involved in the regulation
of proteolytic activity and fibrin degradation (Sachs et al., 2007). In
neuronal tissues, p75NTR regulates tissue fibrosis through inhibition
of plasminogen activation via a PDE4/cAMP/PKA pathway.
However, p75NTR is also expressed in lung inflammation (Renz
et al., 2004). Therefore, the p75NTR/PDE4/cAMP/PKA pathway it
is a potential target for the study of pulmonary fibrosis. Respectively,
activating the EPAC and PKA pathways, with the cAMP analogs 8-
Me-cAMP and N6-cAMP, can reduce the sensitivity of fibroblasts to
TGF-β and the production of myofibroblasts and extracellular

matrix (ECM) (Insel et al., 2012). Recently, it has been reported
that a new pan-PDE inhibitor shows anti-fibrosis effect in lung tissue
by inhibiting the TGF- β signal pathway and activating the cAMP/
PKA pathway (Wójcik-Pszczoła et al., 2020). A summary of the
above the PKA and IPF is shown in Figure 3.

2.3 NO/SGC-cGMP pathway

cGMP can regulate heart, kidney, and liver fibrosis through the
NO/SGC-cGMP pathway (Schinner et al., 2015; Sandner et al., 2017;
Flores-Costa et al., 2018; Das et al., 2020). According previous
studies, myofibroblasts responsible for lung damage in other
ways besides the activity of contraction. The contractile force
provides a feedforward mechanism, that maintains the
differentiation of myofibroblasts in lung fibrosis. This is
accomplished by converting mechanical stimuli into biochemical
signals, which drive fibrosis progression (Desmoulière et al., 2005;
Hinz, 2007; Wipff et al., 2007; Wynn and Ramalingam, 2012).
Relaxin is a peptide hormone that regulates the production and
degradation of collagen, and it is responsible for mediating the
antifibrotic effects of collagen. Relaxin regulates myosin light chain
(MLC20) dephosphorylation and lung myofibroblast contraction
through the inactivation of RhoA/Rho-associated protein kinase by
a nitric oxide/cGMP/protein kinase G (PKG)—dependent
mechanism (Huang et al., 2011). Under conditions of high and
persistent guanylyl cyclase activation, the activation of downstream
cGMP can also reduce the differentiation of myofibroblasts induced
by TGF-β (Dunkern et al., 2007).

FIGURE 3
PKA pathways inhibit the process of IPF. cAMP/PKA can inhibit
endoplasmic reticulum stress and promote dedifferentiation of
myofibroblasts to realize anti-fibrosis. p75NTR regulates tissue fibrosis
through inhibition of plasminogen activation via a PDE4/cAMP/
PKA pathway. But it needs to be further verified in pulmonary fibrosis.

FIGURE 4
NO/sGC-cGMP pathway in pulmonary fibrosis. Aging leads to a
decrease in the antioxidant capacity of Nrf2. This pro-oxidant shift
results in NOS decoupling and a concurrent decrease in NO signaling
and PKG activity.
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Senescence is an important factor in the process of pulmonary
fibrosis (Schafer et al., 2017; Justice et al., 2019; Otoupalova et al.,
2020; Spagnolo et al., 2021a; Yao et al., 2021). Senescent alveolar
epithelial cells and lung fibroblasts contribute to pulmonary fibrosis
by secreting senescence-associated secretory phenotype (SASP) (Lin
and Xu, 2020). Aging is accompanied by the increased oxidative
stress and the accumulation of advanced glycation end products
(AGEs), both of which are associated with the development of
fibrosis (Richter and Kietzmann, 2016). One of the most
important regulators of antioxidant genes is NFE2-related factor
2 (Nrf2). The antioxidant capacity of Nrf2 is reduced in the lung
fibroblasts of agedmice, which results in a dynamic imbalance of cell
redox homeostasis (Hecker et al., 2014). This pro-oxidant shift
results in NO synthase (NOS) decoupling and a concurrent
decrease in NO signaling and PKG activity (Sampson et al.,
2012). Furthermore, in a variety of fibrotic diseases and also
during the natural course of aging, NO/cGMP production is low
(Sandner et al., 2017). Enhancement of NO/cGMP signaling by sGC
stimulators or sGC activators ameliorates the development of
fibrosis in various organs and tissues (Sandner et al., 2017). A
summary of the above the NO/sGC-cGMP pathway shown in
Figure 4.

2.4 Structure and subtype of PDE

PDEs work by hydrolyzing the phosphodiester bonds of the
cyclic nucleotides, cyclic adenosine 3′,5′-monophosphate (cAMP)
and cyclic guanosine 3′,5′-monophosphate (cGMP), which
terminates the downstream signalling of this second messenger.
It is subdivided into eleven subtypes based on its diverse structure.
Through selective splicing or transcriptional modification of mRNA,
these genes produce nearly one hundred PDE isozymes (Azevedo
et al., 2014). The structures that make up the PDE superfamily are
related but functionally distinct. These differences include tissue
distribution, cellular function, primary structure, affinity for cAMP
and cGMP, catalytic properties, and responses to specific activators,
inhibitors, and effectors and their regulatory mechanisms. PDE4,
PDE7, and PDE8 are PDEs that specifically degrade cAMP, while
some PDEs specifically degrade cGMP (PDE5, PDE6, and PDE9)
(Maurice et al., 2014). Most cells contain more than one PDE family
member but in varying amounts, proportions, and subcellular
locations. Although PDEs exhibit a broad tissue distribution,
some cells are relatively enriched in specific PDEs (Table 1).

PDEs contain two functional regions, regulatory and catalytic.
The catalytic region determines the specificity to the substrate or

TABLE 1 PDE family and Tissue expression.

PDE
family

Tissue expression Disease

PDE1 Significant in cardiac and vascular myocytes, central and peripheral neurons,
lymphoid (T and B cells) and myeloid cells Conti and Beavo (2007), Francis
et al. (2011), and Keravis and Lugnier (2012)

Alzheimer’s disease Cardiovascular disease Le et al. (2022).

PDE2 In the brain, myocytes, liver, adrenal cortex,T cell endothelium and platelets
Conti and Beavo (2007), Francis et al. (2011), Keravis and Lugnier (2012), and
Michie et al. (1996)

Cardiovascular Diseases Sadek et al. (2020). Cognitive Impairment
Abdel-Magid (2017).

PDE3 Cardiac and vascular myocytes, brain, liver, adipose tissues, airway cells Conti
and Beavo (2007), Francis et al. (2011), Keravis and Lugnier (2012), and Beute
et al. (2018)

Allergic airway inflammation Spagnolo et al. (2018). Age-Related Cognitive
Impairment Yanai and Endo (2019) Cardiomyopathy Movsesian (2003).

PDE4 Broad; significant in cells of the cardiovascular, neural, immune and
inflammatory systems Conti and Beavo (2007), Francis et al. (2011), and
Keravis and Lugnier (2012)

Airway inflammatory diseases: COPD, asthma Phillips (2020). Alzheimer’s
disease Gurney et al. (2015). Inflammatory bowel disease Li et al. (2022).

PDE5 vascular myocytes, lung, brain, platelets, kidney, gastrointestinal tissues and
penis Conti and Beavo (2007), Francis et al. (2011), and Keravis and Lugnier
(2012)

Erectile dysfunction Greco et al. (2006). Pulmonary hypertension Barnes et al.
(2019). Neurological disorders: Alzheimer’s disease Zuccarello et al. (2020),
Primary Hippocampal Neuronal Death Xu et al. (2020). Obesity and
metabolic syndrome Armani et al. (2011).

PDE6 Photoreceptors and pineal gland Conti and Beavo (2007), Francis et al. (2011),
and Keravis and Lugnier (2012)

Retinal diseases Gopalakrishna et al. (2017) and Wang et al. (2018)

PDE7 Spleen, brain, lung and kidney and lymphoid Conti and Beavo (2007), Francis
et al. (2011), and Keravis and Lugnier (2012)

Autoimmune Disorders:, autoimmune Hepatitis Świerczek et al. (2021)
Central nervous system diseases Chen et al. (2021): Parkinson’s disease (PD),
Alzheimer’s disease (AD), multiple sclerosis (MS),

PDE8 Thyroid, airway smooth muscle, T cell Dong et al. (2006), Conti and Beavo
(2007), Francis et al. (2011), Keravis and Lugnier (2012), and Basole et al.
(2022)

Inflammatory Dong et al. (2006)

PDE9 Spleen, brain, cardiac, intestinal cells, lower urinary tract, Bender and Beavo
(2006), Conti and Beavo (2007), Francis et al. (2011), Keravis and Lugnier
(2012), Nagasaki et al. (2012), and Dunkerly-Eyring and Kass (2020)

Obesity and cardiometabolic syndrome Mishra et al. (2021) Alzheimer’s
Disease Rabal et al. (2019)

PDE10 Brain, pancreatic Conti and Beavo (2007), Francis et al. (2011), and Keravis
and Lugnier (2012)

Neurological disorders: Huntington’s Disease Models Beaumont et al. (2016),
Mental illness: schizophrenia Abdel-Magid (2013)

PDE11 Prostate, testes and salivary and pituitary gland Conti and Beavo (2007),
Francis et al. (2011), and Keravis and Lugnier (2012)

Depressive disorder Bollen and Prickaerts (2012)
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inhibitor. The amino-terminal regulatory regions of PDEs are highly
heterogeneous, reflecting the different cofactors of PDE family
members (Maurice et al., 2014). A-kinase anchoring proteins
(AKAPs) are anchoring proteins that anchor PKA to specific
subcellular sites. AKAPs, PDEs, together, keep cAMP signalling
specific and physically compartmentalised. As PDEs are the only
route to cyclic nucleotides degradation, the specificity of the
temporal and spatial distribution of PDEs ensures the viability of
signal transduction. Without PDE-dependent control of local cAMP
levels, intracellular cAMP, cGMP would be distributed
indiscriminately. As a result, signalling specificity would be lost,
as all subpopulations of PKA present in the cell would be activated
(Brescia and Zaccolo, 2016). In this scenario, manipulation cyclic
nucleotides of levels by specific pharmacological inhibition of
individual PDE families is an effective treatment.

3 Studies of different classes of PDE
inhibitors in pulmonary fibrosis

3.1 PDE4 inhibitor

PDE4 is a cAMP-specific PDE with relatively high expression
levels in cells that regulate immune inflammatory responses and
tissue remodeling (Torphy, 1998; Maurice et al., 2014), including
macrophage activation (Hertz et al., 2009; Li et al., 2018).
Furthermore, primary alveolar A549 cells and human bronchial
epithelial (HBE) cells highly express PDE4 (Mata et al., 2005;
Oldenburger et al., 2012). The non-selective PDE4 inhibitor
Roflusteride is approved for use in severe COPD and acute
exacerbations due to its anti-inflammatory properties
(Hatzelmann et al., 2010). Studies have shown that
PDE4 inhibitors can inhibit the release of fibrogenic factors and
alleviate pulmonary fibrosis in a mouse model induced by bleomycin
(Cortijo et al., 2009; Udalov et al., 2010; Milara et al., 2015). In
transgenic mice expressing diphtheria toxin receptor under the
control of the mouse surfactant protein C promoter (a model of
pulmonary fibrosis targeting type Ⅱalveolar epithelial injury),
PDE4 inhibitor also downregulated plasma levels of selective
chemokines, and significantly reduces lung fibrosis induced by
targeted type II AEC injury (Sisson et al., 2018). In vitro,
PDE4 inhibitors inhibites FN-induced aggregation and collagen
synthesis of human fetal lung fibroblasts (HFL-1), downregulates
the sensitivity of fibroblasts to TGF-β, and promotes the inhibition
of fibroblast function by prostaglandin E2 (PGE2) in the presence of
PDE4 (Udalov et al., 2010). By decreasing reactive oxygen species,
and extracellular signal-regulated kinase phosphorylation, the
PDE4 inhibitor Rolipram or PDE4 small interfering RNA
effectively inhibits EMT changes in a Smad-independent manner
in the human alveolar epithelial type II cell line A549 (Kolosionek
et al., 2022). Therefore, PDE4 inhibitors are the potential drug
for IPF.

Still, the probability of side effects of non-selective
PDE4 inhibitors, such as diarrhea, headache, nausea, and
vomiting, makes the use of PDE4 inhibitors in patients limited
(Spina, 2008; Maurice et al., 2014). These inhibitors have
unfavorable side effects because they inhibit not just one PDE
but an entire family of PDEs. It is known as the off-target effect.

A coin has two sides, so as the off-target effects. On the one hand, it
may increase drug toxicity and cause severe adverse reactions.
However, acting with multiple targets may produce synergistic
effects that amplify drug effects. For example, methylxanthine
theophylline is a purine derivative, and it inhibits almost all types
of PDEs. Theophylline can be used in asthma to dilate the bronchi by
inhibiting PDE. And its anti-inflammatory actions -- which are
mediated via inhibition of the nuclear translocation of nuclear
factor-κb may be attributed to both PDE inhibition and
increased cAMP signaling (Minguet et al., 2005). However, the
therapeutic window of theophylline is narrow and toxic
symptoms are easy to occur (Jacobs et al., 1976).

According to the difference between the transcriptional
initiation site and selective mRNA splice site, PDE4 can be
divided into four subtypes of PDE4A-D. In human primary lung
fibroblasts (NHLF), PDE4A, B, and D are mainly expressed, while
PDE4C is slightly or not present. Knockdown of PDE4B by SiRNA
interference resulted in the most significant decrease in overall
PDE4 enzyme activity, followed by PDE4A and PDE4D. PDE4B
and 4D knockdown can inhibit the expression of α-SMA in TGF-
βinduced pulmonary fibroblasts, in which the inhibition of PDE4B
knockdown is the most effective, and the effect is similar to the non-
selective PDE4 inhibitors (Selige et al., 2011). The adverse effects of
PDE4 inhibitors appear to be related to the inhibition of PDE4D
(Giembycz, 2001; Maurice et al., 2014). Therefore, PDE4B inhibitors
seem to be ideal selective antifibrotic drugs.

BI101550, a PDE4 inhibitor with a high affinity to PDE4B, has
anti-inflammatory and anti-fibrosis effects. In vitro, BI
1015550 inhibits lipopolysaccharide (LPS) induced TNF-α and
phytohemagglutinin induced interleukin-2 synthesis in human
peripheral blood mononuclear cells, as well as LPS-induced TNF-
α synthesis in human and rat whole blood (Herrmann et al., 2022).
In two mouse models of pulmonary fibrosis induced by bleomycin
and silica, compared with a low dose (2.5 mg/kg), the higher
BI1015550 (12.5 mg/kg b.i.d.) could improve the pulmonary
function parameters of mice. High-dose BI1015550 could also
significantly improve the content of dense fibrotic tissue in lung
tissue. There is a synergistic effect between Nintedanib and
BI1015550, which shifts the concentration-response curve to the
left (Herrmann et al., 2022). Compared to roflumilast, BI
1015550 seems to be a safer option, and the male Suncus
murinus is less likely to experience nausea and vomiting as a side
effect (Herrmann et al., 2022). In a randomized, double-blind,
placebo-controlled study involving 147 patients with IPF, the
primary endpoint was the change from baseline in forced vital
capacity (FVC) during 12 weeks of treatment with BI1015550 as
monotherapy or in combination with antifibrotic background
therapy. The trial results showed that BI1015550 at a dose of
18 mg twice daily prevented a decline in lung function in
patients with IPF, regardless of background antifibrotic therapy.
However, at the same time, the safety of BI1015550 is also of
concern, with the most common adverse event being
gastrointestinal disease. A case of “suspected IPF exacerbation
and suspected vasculitis” was also reported (Richeldi et al., 2022).
The adverse reactions need to be further evaluated in subsequent
clinical trials. Nevertheless, BI1015550 is currently leading the way
in the research and development of new drugs for the treatment
of IPF.
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There are other types of PDE4 inhibitors reported at present.
AA6216 is a novel PDE4 inhibitor. AA6216, also ameliorated
pulmonary fibrosis in mice by inhibiting TGF-β release from
macrophages. However, in contrast to other PDE4 inhibitors,
AA6216 possesses a more potent inhibitory effect with lower risk
(Matsuhira et al., 2020). A novel PDE4 inhibitor was obtained by hit-
to-lead optimization of natural mangoside based on structure, and
its anti-pulmonary fibrosis effect was similar to that of pirfenidone.
More importantly, it is safe and has fewer adverse reactions (Huang
et al., 2021).

3.2 PDE5 inhibitor

PDE5 hydrolyzes cGMP exclusively. The pharmacological effect
of sildenafil, a representative drug of the PDE5 inhibitor, is to
increase the intracellular cGMP level by inhibiting cGMP
degradation. And then the NO/sGC-cGMP pathway, is used to
upregulate potassium channels, inhibit calcium channels, reduce
intracellular calcium concentration, and dilate blood vessels. Its
clinical indications include pulmonary hypertension (PH) and
erectile dysfunction (Giovannoni et al., 2010). Currently, there
are many studies on PDE5 inhibitors in pulmonary fibrosis. Due
to the degeneration of lung structure that accompanies the
progression of pulmonary fibrosis, pulmonary hypertension will
eventually develop. In multiple randomized, controlled clinical
trials, the addition of sildenafil in the context of antifibrotic
agents has not been found to have a significant effect on all-
cause mortality, hospitalization, or acute exacerbations (Kolb
et al., 2018; Behr et al., 2021; Kang and Song, 2021). But, the
efficacy evaluation of sildenafil in IPF is inconsistent (Collard
et al., 2007). Since sildenafil improves gas exchange function in
patients with severe pulmonary fibrosis by dilating pulmonary
vessels, it may be effective in IPF. However, it is still debatable
whether pulmonary vessel dilation can improve pulmonary gas
exchange function in IPF (Sakao et al., 2019). IPF-related
pulmonary arterial hypertension is distinct from idiopathic
pulmonary arterial hypertension.

On the one hand, due to the destruction of the alveolar structure,
the dysfunction of pulmonary gas exchange results in hypoxic
pulmonary vasoconstriction (HPV) (Sylvester et al., 2012; Sakao
et al., 2019). Early pulmonary vasoconstriction may be a
compensatory mechanism during the development of pulmonary
fibrosis. Pulmonary vasoconstriction can maintain the ventilation/
perfusion ratio (V/Q) balance. However, continuous pulmonary
vasoconstriction will lead to vascular remodeling, resulting in a
vicious cycle, which should not be allowed to develop (Sakao et al.,
2005; Sakao et al., 2006).

On the other hand, due to the destruction of the alveolar
structure in IPF, the respiratory membrane is disordered and
thickened, lung diffusion function is decreased, and dilated
pulmonary blood vessels will further mismatch V/Q (Sakao et al.,
2019). But is it feasible to use PDE5 inhibitors in the early stages of
disease, when the structural damage of the lung is not apparent? Due
to the insidious onset of IPF, non-specific clinical symptoms, and
lack of diagnostic methods with high specificity for early IPF, most
patients cannot be correctly diagnosed and treated at an early stage
(Spagnolo et al., 2021b). By the time most patients are diagnosed

with IPF, there is already apparent structural destruction of the lung.
Consequently, there appears to be a lack of research on the potential
benefits of initiating PDE5 inhibitor therapy at an early stage of IPF.

Additionally, sildenafil may contribute to pulmonary fibrosis
through additional mechanisms. In a rat model of bleomycin-
induced pulmonary fibrosis, sildenafil can reduce the oxidative
stress level of lung tissue by inhibiting lipid peroxidation, the
production and release of cytokines, and the aggregation of
neutrophils, so as to achieve the therapeutic effect on pulmonary
fibrosis (Yildirim et al., 2010). However, PDE5 inhibitors are not,
according to the recommendations of international guidelines,
appropriate treatment for IPF (Raghu et al., 2022).

3.3 Non-selective phosphodiesterase
inhibitor

Pentoxifylline (PTX) is a methylxanthine derivative and non-
selective phosphodiesterase inhibitor. Clinically, it is mainly used to
improve peripheral circulation and relieve muscle pain caused by
peripheral arterial diseases (Hood et al., 1996; Stevens et al., 2012).
Previous studies have demonstrated that PTX can significantly inhibit
the secretion of proinflammatory cytokines and the activation of NF-
kB, thereby alleviating chronic inflammation (Speer et al., 2017). In
RAW264.7 macrophages, the low dose of PTX (10 μg/mL) and the
high dose of PTX (300 μg/mL) had different biological effects on cells.
Low-dose PTX can reduce endoplasmic reticulum stress (ERS),
fibrosis, angiogenesis, and chronic inflammation while promoting
RAS/NF-kB signal transduction, proliferation, differentiation, and
inflammation. It can also enhance Fas-mediated apoptosis. High
doses of PTX, on the other hand, have the opposite effect by
preventing RAS/NF-kB signal transduction, which prevents cell
proliferation, inflammation, and fibrosis (Seo et al., 2022). It also
suggests that PTX is a potential antifibrotic drug. PTX has an anti-
fibrosis effect on radiation-induced pulmonary fibrosis by regulating
the expression of PKA and PAI-1 (Lee et al., 2017; Wen et al., 2017).
Our previous research found that, PTX could influence the expression
of fibrosis-related genes in the mouse model of pulmonary fibrosis. In
addition, we also found that the expression of senescence-associated
secretory phenotype (SASP) decreased in the PTX group (Lin et al.,
2022). Therefore, we speculated that PTX might may also alleviate
pulmonary fibrosis through anti-aging. mTOR (mechanistic target of
rapamycin) is a serine/threonine kinase involved in the integration of
multiple metabolic and growth-promoting signals. Accumulating
evidence indicates that mTOR activity is necessary for cell
senescence (Liu and Sabatini, 2020). A decrease in mTOR
activation was also observed after PTX treatment in human
melanoma cells (Sharma et al., 2016). So we hypothesized that
PTX may achieve its anti-fibrosis effect by affecting the mTOR
pathway and changing the autophagy level of senescent cells. But
that still needs to be tested. In other fibrosis models, including
intestinal fibrosis, hypertrophic scar, and glomerulonephritis, PTX
also has an anti-fibrosis effect (Boerma et al., 2008; Ng et al., 2009;
Yang et al., 2019; Lee, 2022). The FDA approved PTX in 1984 for the
treatment of arteritis. It is currently used to treat stroke because it
improves circulation (Bath et al., 2000). So its safety in humans has
been verified. “Drug repurposing” is a cost-effective option if the anti-
fibrosis ability of PTX can be further developed.
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3.4 Pan-PDE inhibitor

Because the antifibrotic effects of inhibitors of specific PDE
subtypes are not clearly understood, and given the possible
synergistic effects between different subtypes of PDE, the focus of
some studies has shifted to dual PDE or pan-PDE inhibitors. Pan-
PDE inhibitors represent compounds that can inhibit various
isoforms within several PDE classes. Unlike simple PDE
inhibitors, pan-PDE can inhibit individual PDE isoforms at the
nano and/or micromolar level (Wójcik-Pszczoła et al., 2021). In vitro
studies have shown that they have promising anti-inflammatory and
antifibrotic activities and high inhibitory activity against a selection
of PDEs. First, the PAN-PDE has significant inhibitory activity
against multiple PDE isoforms, including PDE1, PDE3, PDE4,
PDE5, PDE7, and PDE8, which are involved in airway
remodeling and the development of pulmonary fibrosis (Wright
et al., 1998; Fuhrmann et al., 1999). And next, considering the cAMP
signaling compartmentalization during EMT, a different
composition of individual isoforms within the cellular
compartments cannot be ruled out (Zuo et al., 2019b; Wójcik-
Pszczoła et al., 2022). In vitro, the pan-PDE inhibitors could
inhibit the TGF-β-induced expression of several markers,
including vimentin, fibronectin, collagen I, α-smooth muscle
actin, N-cadherin, and snail-1 transcription factor in alveolar
epithelial type II cells (Wójcik-Pszczoła et al., 2022).

4 Other novel anti-pulmonary fibrosis
drugs

At present, there are other types of anti-pulmonary fibrosis
drugs under development. The inflammasome NLR Family Pyrin
Domain-Containing Protein 3 (NLRP3) is an important regulator of
pulmonary inflammation and fibrosis (Colunga Biancatelli et al.,
2022). NLRP3 promotes the development of pulmonary fibrosis
mainly through the following aspects. Activated NLRP3 promotes
fibrosis by producing IL-1 β and IL-18 (Colunga Biancatelli et al.,
2022). NLRP3 mediated pyrolysis of csapase-1-dependent alveolar
epithelial cells. NLRP3 induced pulmonary mesenchymal stem cells
to differentiate into myofibroblasts (Ji et al., 2021). The activation of
NLRP3 is increased in pulmonary fibrosis, and inhibition of
NLRP3 can effectively delay the progression of pulmonary
fibrosis, indicating that targeted NLRP3 may be a new choice for
the treatment of pulmonary fibrosis. Although there are several
NLRP3 inhibitors in existence, most of these drugs are still in the
pre-clinical phase and there is a lack of validated data to confirm that
they are indeed effective in pulmonary fibrosis. Furthermore, the
indications for NLRP3 inhibitors are unclear. What clinical
applications will show the best efficacy for NLRP3-targeting
molecules? When, where, how is NLRP3 activated in human
disease? To apply NLRP3 to pulmonary fibrosis, these questions
need to be addressed.

GSDMD is a key effector of inflammasome signaling, because it
controls pyroptosis and the resultant release of proinflammatory
cellular contents. Given that GSDMD controls the release of IL-1β
downstream of multiple inflammasomes, GSDMD is an attractive
target for pulmonary fibrosis. Although, pyroptosis inhibitors will
decrease the release of proinflammatory cell contents, they will not

block the inflammasome-driven maturation of IL-1β or IL-18.
Therefore, its anti-fibrosis effectiveness needs to be further
confirmed. Heat-shock protein 90 (HSP) inhibitor, a new drug
also developed from the NLRP3 inflammasome. As a
multifunctional molecular chaperone, Hsp90 forms a complex
with NLRP3 to protect NLRP3 from degrading. In response to
stress stimuli, Hsp90 is released, and NLRP3 can be activated to
promote inflammation. Hsp90 inhibition block the activation of the
NLRP3 inflammasome. Inflammasome blockers show enormous
promise as a new generation of anti-inflammatory drugs. However,
these treatments are not mature at present, and there is still a long
way to go before the real clinical application. Compared with PDEs
inhibitors, the PDE inhibitors are more mature. Moreover, there are
exact data to prove the effectiveness of PDEs inhibitors in
pulmonary fibrosis.

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/
AKT) signaling pathway plays an important role in IPF. TGF-βand
PI3K/AKT promoted the formation of pulmonary fibrosis
synergistically. PI3K/AKT can promote pulmonary fibrosis by
regulating its downstreams such as mammalian target of
rapamycin (mTOR), hypoxia inducible factor-1a (HIF-1a).
Therefore, targeting PI3K/AKT has become a new strategy for
the treatment of IPF (Conte et al., 2013; Nie et al., 2017). Some
PI3K/AKT inhibitors has been investigated in clinical research.
Reported treatment-related adverse event mainly include
gastrointestinal effects. But for its effectiveness, there is a lack of
data at present (Wang et al., 2022). However, PI3K/AKT still
considered promising drug candidates for IPF treatment.

5 Discussion

Idiopathic pulmonary fibrosis is the most common type of
idiopathic interstitial pneumonia. It is a progressive, irreversible
and fatal disease. Its pathological mechanisms are complex and not
well understood at present. Therefore, antifibrotic drugs are also
limited. Although the current antifibrotic drugs, Pirfenidone and
Nintedanib, have a certain therapeutic effect, they do not improve
the prognosis of patients. Moreover, their current prices are relatively
expensive. Therefore, we need to develop new antifibrotic drugs.

The cAMP signaling pathway is a relatively old signaling pathway,
and scientists began to study it as early as 1953 (Zuo et al., 2019b). In
the lung, cAMP, and cGMPmainly reduce the sensitivity of fibroblasts
to pro-fibrotic factors and decrease the production of myofibroblasts.
However, the underlying mechanisms need to be further explored.
Our previous study shows that Pentoxifylline can inhibits pulmonary
fibrosis by regulating cellular senescence. This suggests that we can
study the possible mechanism of cyclic nucleotides against fibrosis
from the point of view of aging. In recent years, an increasing number
of studies have found that cAMP signalling also plays an important
role in age-related cognitive deficits. So, Therefore, studying the role of
cyclic nucleotides in pulmonary fibrosis from the perspective of aging
may provide new ideas to understand the pathogenesis of pulmonary
fibrosis further.

PDEs are involved in the metabolism of cyclic nucleotides, and
their inhibitors can increase the intracellular concentration of cyclic
nucleotides, thus exerting their anti-fibrotic effects. The “off-target”
effect is a problem in the application of drugs, and it is a double-
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edged sword. On the one hand, the “off-target” result may have side
effects on non-target sites, thus limiting the safe use of the drug. On
the other hand, there may be synergistic effects between PDE
isoforms, amplifying the drug’s therapeutic effects. A novel
compound PDE inhibitor, Pan-PDE, is a good example. In
contrast, PDE5 inhibitors, although some studies have shown
some antifibrotic effects, whether IPF patients really benefit from
them needs to be thoroughly evaluated.

Although there are many studies on PDEs inhibitors, most are
still in animal experiments, and their effectiveness in humans needs
further testing. But it is surprising that BI1O1550, a specific PDE4B
inhibitor, has already started clinical trials. This is a big step forward
in developing drugs to treat fibrosis.
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