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Early-stage drug discovery is highly dependent upon drug target evaluation,
understanding of disease progression and identification of patient
characteristics linked to disease progression overlaid upon chemical libraries of
potential drug candidates. Artificial intelligence (AI) has become a credible
approach towards dealing with the diversity and volume of data in the modern
drug development phase. There are a growing number of services and solutions
available to pharmaceutical sponsors though most prefer to constrain their own
data to closed solutions given the intellectual property considerations. Newer
platforms offer an alternative, outsourced solution leveraging sponsors data with
other, external open-source data to anchor predictions (often proprietary
algorithms) which are refined given data indexed upon the sponsor’s own
chemical libraries. Digital research environments (DREs) provide a mechanism
to ingest, curate, integrate and otherwise manage the diverse data types relevant
for drug discovery activities and also provide workspace services from which
target sharing and collaboration can occur providing yet another alternative with
sponsors being in control of the platform, data and predictive algorithms.
Regulatory engagement will be essential in the operationalizing of the various
solutions and alternatives; current treatment of drug discovery data may not be
adequate with respect to both quality and useability in the future. More
sophisticated AI/ML algorithms are likely based on current performance
metrics and diverse data types (e.g., imaging and genomic data) will certainly
be a more consistent part of the myriad of data types that fuel future AI-based
algorithms. This favors a dynamic DRE-enabled environment to support drug
discovery.
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Introduction

The drug discovery process and milestones

The discovery phase includes early aspects of drug research
designed to confirm pharmacologic targets, identify investigational
drug candidates, and perform initial experiments that allow scientists
to rank and select candidates for preclinical evaluation. This first stage
of the process takes approximately three to 6 years. Researchers hope
to identify one or more promising drug candidates for further
investigation, ultimately in humans. Investigators conduct studies
in cells, tissues, and animal models to determine whether the target
can be influenced by a drug candidate. Target validation is crucial to
help scientists identify the most promising approaches before going
into the laboratory to develop potential drug candidates, increasing
the efficiency and effectiveness of the R&D process.

In actuality this phase consists of two distinct segments: an
initial discovery phase, followed by a development phase. These two
phases differ significantly from each other with respect to scope,
challenges, and approaches. Differences notwithstanding, discovery
and development must be integrated into a coherent whole for the
process to be successful. Accordingly, much thought has been
devoted to insuring scientific, logistical, and organizational
aspects of such integration are taken into consideration and
optimized. Figure 1 provides a schematic representation of the
modern drug discovery process focusing only on the elements
critical to target validation and candidate selection. As the
current discovery and preclinical phases of development are very
much defined by the design and conduct of discrete experiments
(e.g., the initial pre-clinical pharmacological screening especially
while in vivo studies are ongoing), AI/ML approaches can help by
both refining these experiments as well as test assumptions related to
their outcome. As confidence in this approach improves, this could

obviate the need for some of these experiments entirely and limit the
amount of in vivo animal testing.

The entire process of drug discovery and preclinical development
is summarized for the eventual purpose of filling a new drug
application, in standardized form of Common Technical
Document (CTD), containing five modules (Jordan, 2014). A high-
level summary of the process would include diverse data, critical
decisions and documentation but this would be true of all drug
development phases on the surface. Artificial intelligence (AI)
approaches to inform drug development are most focused at early
and late stages of development mostly based on the nature and type of
data generated in these stages. At early stages of development, the
chemical space is generally viewed as comprising > 1,060 molecules
(Paul et al., 2021). The virtual chemical space is vast and suggests a
geographical map of molecules by illustrating the distributions of
molecules and their properties. The idea behind the illustration of
chemical space is to collect positional information about molecules
within the space to search for bioactive compounds and, thus, virtual
screening helps to select appropriate molecules for further testing.
Several chemical spaces are open access, including PubChem
(PubChem, 2023), ChemBank, DrugBank (Drug Bank, 2023),
ChEMBL (ChEMBL, 2023), and ChemDB.

AI is well-suited for these tasks because it can handle large volumes
of data with enhanced automation (Bohr and Memarzadeh, 2020). AI
involves several method domains, such as reasoning, knowledge
representation, solution search, and, among them, a fundamental
paradigm of machine learning (ML). ML uses algorithms that can
recognize patterns within a set of data that has been further classified. A
subfield of theML is deep learning (DL), which engages artificial neural
networks (ANNs).While discovery groups are eager to leverage AL/ML
to acquire meaningful insights from the enormous data they hold or
acquire, the accuracy of the AI/MLmodels depends on the volume and
quality of the data used as an input for training them. Inaccurate input
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data can result in misleading outcomes delivered by the AI/ML models
but generally this approach ismore forgivingwith respect to data quality
and uncertainty relative to traditional modeling approaches. While
automation systems can cleanse data based on explicit programming
rules (e.g., imputation algorithms), it’s almost impossible for them to fill
in all missing data gaps without some manual intervention or plugging
in additional data source feeds. However, machine learning can make
calculated assessments on missing data based on its reading of the
situation.

The cost of bringing new drugs from bench to bedside has become
excessively steep. In identifying these trends, AI/ML-driven in silico
platforms are alluring to the pharmaceutical and healthcare industry
due to their multidimensional, predictive capabilities, and the
associated increased efficiency. Traditional model-informed drug
development (MIDD) approaches have been used in drug discovery
and development over the last 2decades with the recent increase in
complexity from the usage of AI/ML-driven in silico platforms. Table 1
highlights some of the more common model types and impact on
early-phase drug development. Application opportunities for AI/ML
can be associated with all stages of drug discovery and development.
For example, drug-target validation and engagement, identification of
prognostic biomarkers and evaluation of digitized clinical pathology
data in clinical trials, and finally high-accuracy predictions of the
pharmacokinetic, pharmacodynamic, and efficacy parameters from a
limited pool of physiological and pharmacological preclinical and
clinical datasets. As each of these decision points also represents a
milestone for early phase drug development, one can also appreciate
that there are no obvious gaps in an AI-driven approach which seems
to coincide with the recent investment in these approaches (Maharao
et al., 2020; Paul et al., 2021).

AI expertise is highly desirable by a multitude of sectors now and
AI technologies are being recruited by universities and scientific
institutions. As these technologies advance and become more
sophisticated, experts are certain that they will revolutionize

academia. It has been maintained by some that areas in which
AI-enabled technologies will change the game in science and
academia are varied and driven by enhanced access to data in an
unprecedented speed and volume, peer review procedures that
enable data-driven scientific hypotheses and.

AI-enabled technologies that are paving the way for open-source
science (Lexis Nexis Report, 2020). As drug development is inherently
multidisciplinary, it will be incumbent upon the leadership in the core
disciplines of biology, chemistry, engineering, pharmacy and other life
and quantitative sciences to offer AI/ML curriculum to its student
population in order to better prepare the future workforce and ensure
that the supply of core disciplines has the requisite training to
appreciate and apply these methodologies.

Collaborative research environments:
Platforms, TREs and DREs

Data generation and FAIR
The hurdle to speeding the pace of both patient diagnosis and drug

development is that patient health data is often held and accessed by
a single group or organization (“silos,” in other words), and patient
confidentiality and uncertainty around governance and provenance
makes data-sharing problematic. Adding to that aspect is the fact the
what constitutes patient level health data is not all maintained in the
same operational data store. It is quite common for patient records,
pharmacy data and genomic data to reside in different data structures
(more silos). To overcome this hurdle, researchers and organizations
are leaning into a relatively newmethod of health datamanagement, by
establishing trusted research environments (TREs) (Bacchelli, 2022).
TRE is becoming a commonly used acronym among the science and
research community. In general, a TRE is a secure collaborative
research environment for digital analysis of data. TREs can only be
accessed by approved researchers. Governance processes and TRE

FIGURE 1
Schematic of typical Discovery phase activities used in the process of target identification and early candidate selection; often referred to and
described as the “DMTA cycle” (Design-Make-Test-Analyze).
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features ensure only approved researchers can access data, and no data
enters or leaves the environment without the express permission of an
approved proxy for the data owner. Because data stays put, the risk of
patient confidentiality is reduced. However successful the TRE is at
reducing risk of sharing sensitive data across separate invited
collaborators, it is not inherently a means to breaking down siloes.

Essential companions to the TRE are dynamically-updated and
searchable metadata catalogs, in situ analysis tools with code
versioning, as well as data provenance, and audit trails (Graham
et al., 2022). Without these, a TRE is simply a safe place for a single
project to be completed and then archived with limited usefulness for
new projects or data consumers on other project teams. A DRE
Workspace is a Trusted Research Environment–providing a safe-
haven for clinical researchers, bioinformaticians and pharmacologists
to analyze and develop models on sensitive data with the confidence

that the data and models developed are secure and protected. A DRE
builds on the concept of a TRE in that it provides remote access to data
alongside tools for analysis in a securely controlled workspace, but it
also adds essential components that allow the data and tools to be FAIR
(Findable, Accessible, Interoperable, and Reusable), version-controlled
and dynamically growing in size or quality as a result of each
collaboration, and to break down the silos often created by
aggregating and analyzing data as a single-use asset.

Vital to collaborative development is the need for individuals to
modify, change and fix on their own versions of code without
disrupting other team members. When code is committed and a
submission is made, either to a research paper, as a thesis or for
approval from a regulatory body–reproducibility of outcomes is
essential. It must be possible to re-run the exact code, on the exact
data on the exact compute infrastructure and verify that the results

FIGURE 2
Diagram illustrating a typical flow for development and review purposes based on the Aridhia DRE Workspace Environment.

TABLE 1 Data, model and stage-gate decision connectivity in a traditional MIDD drug discovery paradigm.

Stage-gate
decision

Typical data to inform decision Complimentary
model(s)

Stakeholders

Target validation Drug discovery data: in vitro screening data; chemical libraries;
in silico modeling results, etc.

QSAR, QSP models Pharmacology, Medicinal Chemistry

Target
indication(s)

Commercial data on medical need, prevalence, etc. (e.g., claims
data; epidemiologic data)

HECON; pharmacoeconomic
models

R&D Therapeutic areas, Franchise commercial
groups

Candidate selection Preclinical (animal in vivo) PK/PD experiments, Toxicology
(TK/outcomes) trials, in vitro biomarker data, IVIVC data,
Human PK/PD, patient RWD

PK, PK/PD, Pop-PK/PD Pharmacology, Formulations, Toxicology/Safety
Assessment, Epidemiology, Clinical Pharmacology,

FIH dose PBPK, Biopharmaceutic models,
QSP models

R&D Therapeutic Areas

Biomarker strategy

POC trial design

Endpoint selection

Patient enrollment
criteria
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and outcomes are unchanged. Such transparent reproducibility is
only possible with version control software.

Outside of a workspace, Git -Scm (2023), the open-source
versioning control software, along with GitHub (2023) for
hosting has become the standard for collaborative development,
not only for code but for API standards and, significantly for
healthcare data science, ontologies. Figure 2 illustrates a typical
flow for development and review purposes for the Aridhia DRE as an
example of a DRE workspace environment. Important elements of
the workflow are the security access to the DRE in general, the FAIR
data services which manage the ingestion, curation and integration
aspects of the process and provide audit trails to any further data
transformation and the workspace tooling of both open-souce and
proprietary software or connectivity to other platforms that could
provide AI/ML solutions via access from the DRE.

Inside a workspace, where data is often highly sensitive, security is
of paramount importance and access to online repositories is typically
prohibited, users still require the Git-like abilities to create
repositories, clone them, import external repositories (with
appropriate review and security controls) and push reviewed and
approved code to repositories or other workspaces as part of the
outbound airlock process. For drug discovery purposes there are a
number of open source databases that would provide an anchor for
AI-based predictions but most commonly these data will be joined by
proprietary data from drug sponsors seeking to protect their
intellectual property. Best practice recommendations for code
development and publishing with a Trusted Research Environment
(Chalstrey, 2021) have been proposed by the Turing Institute.

The paper by the Turing Institute promotes best practice
recommendations (Chalstrey, 2021). Key to the conclusions
within the paper is the requirement to version code, data and
compute within the scope of a DRE. Outcomes must be digitally
reproducible and the paper recommends the use of Conda for
package management and Git for code, model and (where
appropriate) data versioning. The Aridhia DRE workspace
provides support for the use of Anaconda (https://knowledgebase.
aridhia.io/article/installing-anaconda-and-running-jupyter-
notebooks-on-the-virtual-machine/) and has now released the
integration of Gitea (https://gitea.io/en-us/). Users of a workspace
now have access to their own completely secure version control
system. This is completely locked within the scope of a Workspace,
ensuring that data and code cannot leak to other workspaces or leave
the workspace environment without going through the accepted
airlock release checks and balances. Based on discussion with data
science, modelling and governance communities, this approach
seems to hit the right balance between freedom to operate for
workspace owners and the rigorous security and information
governance requirements of data controllers.

As it pertains to drug discovery in particular, historically most
large PhRMA companies have relied on their own chemical libraries
as sources for both target validation and candidate selection. This is
limiting in the sense that this data defines therapeutic areas of
current interest where historical libraries may be thin. To augment
this deficit, occasionally companies may either develop partnerships
with some organizations having more extensive libraries or acquire
them entirely [BioProcess Online Press release. “ChemRx To
Develop Compounds For Signal Pharma Under New
Agreement,”1998, https://www.bioprocessonline.com/doc/chemrx-

to-develop-compounds-for-signal-pharma-0001 and Astellas press
release, “Astellas Announces Acquisition of Nanna,” 2020, https://
www.astellas.com/en/news/15756] both of which are timely, costly
and may have intellectual property (IP) considerations. This
behaviour continues with a single goal in mind, to significantly
extend capabilities to support drug discovery. More is definitely
better in the case of chemical libraries. Even though this is often
outside the realm of data sharing, the details of data acquisition,
curation and integration are essential and often not exposed to any
great extent and are likely to be time consuming and costly. It’s
likewise a setting where an internally facing DRE may have an
advantage over more traditional ETL (extract, transform, load)
procedures. In the case where collaborations are in place (e.g.,
academic and industry based with IP sharing under contractual
agreement), data sharing must be more directly dealt with and
described in detail in both data collaboration and data use
agreements (DUAs and DCAs) (Barrett, 2020). The data sharing
application of both TREs and DREs are obvious withmany examples
including Yoda (Ross et al., 2018), RDCA-DAP (Larkindale et al.,
2022), ADDI (ADDI, 2021) and ICODA (Zariffa et al., 2021) to
name a few. Some focus on providing honest broker services for data
designated for public sharing (Yoda) and others emphasize a
collaborative research environment from which data sharing and
collaboration via analytic tool development (RDCA-DAP) can
actually occur.

AI/ML–Drug discovery use cases

There are many open-source projects which have been creating
collaborative tooling for drug discovery (e.g., VirtualFlow, https://
github.com/VirtualFlow/VFVS). The opportunity for different drug
discovery libraries to be used within a DRE can further aid in creating
a trustworthy, transparent, and collaborative research environment.
Scarcity of biological data for the purpose of building accurate and
robustMachine learningmodels in the area of drug discovery is a well-
known problem. Open source tools and projects are providing a
solution through the additional tooling and collaborative approach to
addressing this problem. Below we identify several, mostly academic
efforts to guide and support drug discovery in targeted therapeutic
areas where AI-based approaches have been integrated into drug
discovery milestones. The use cases are reviewed highlighting their
focus and track record in advancing drug discovery science. We also
provide and assessment for how these use cases could be further
optimized in a DRE environment.

Drug discovery for TB combination
therapy—TUFTS university

Until COVID-19 appeared in 2020, tuberculosis (TB) was
acknowledged as the deadliest infectious disease and still tops the
list of deadly infectious diseases (European Centre for Disease
Prevention and Control Press Release, 2022). Its current
therapeutic treatment is based on a cocktail of four drugs taken
for 4 months durationwith significant side effects thatmake it difficult
for many patients to complete the regimen. TB is also becoming
increasingly resistant to standard treatments. The TUFTS research
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environment and platform creates accurate predictions of how
effective treatments will perform when moving from testing in a
lab to testing in mouse models which is typically the purview of drug
discovery. Promising new antibiotics aimed at TB have been
developed recently. But researchers and drug developers have been
challenged to find ways to cheaply and effectively determine which
drugs will work best in combination (Terreni et al., 2021). It’s a
mathematically complex, expensive, and time-consuming process
using traditional procedures.

During drug development, scientists first test potential
pharmaceuticals in the lab relying on in vitro experiments with
TB bacteria. Treatments that kill TB proceed to testing in lab
rodents, and those regimens that are determined effective in
rodents proceed eventually to clinical trials in humans.
Combination therapy is necessary because the TB bacterium
Mycobacterium tuberculosis is highly adaptive to its site of
infection, giving rise to differences in drug response among the
bacteria in a single person. Also, individuals may be infected with a
drug-resistant strain, or their TB infection may evolve over time to
become resistant to one or more of the traditional cocktail’s
antibiotics. Using mathematical models and artificial intelligence,
the Tufts team discovered a set of rules that drug pairs need to satisfy
to be potentially good treatments (Aldridge et al., 2021).

The AI predictive algorithm DiaMOND (Larkins-Ford et al.,
2022) is based on diagonal measurement of n-way drug
interactions, a method to systemically study pairwise and high-
order drug combination interactions to identify shorter, more
efficient treatment regimens for TB and diseases that require
combination drug therapy. With design rules established,
researchers believe this system can increase the speed at which
discovery scientists can determine which drug combinations will
most effectively treat tuberculosis. This modeling system and the
use of drug pairs (rather than combinations of three or four drugs)
cuts down significantly on the amount of testing that needs to be done
before moving a drug pair into further study. As this system becomes
an option for drug developers, mechanisms to deal with varied data
contributors and data governance/provenance issues may necessitate
the evolution of this platform to become a multi-stakeholder DRE. At
the moment, interested stakeholders can contact the PI for interest in
supplying drug for experimental and in silico analysis with potential
combination outcomes generated in an iterative manner. External
stakeholders cannot access the environment directly and are reliant on
the research team to publish findings to generate their own summary
data for subsequent analyses.

DeepChem and TorchDrug and other
chemical library examples

Another project aiming to create collaborative open-source tools
for drug discovery as well as material science, quantum chemistry
and biology is the DeepChem project (DeepChem, 2022). The
project aims to address some of the key issues when building
machine learning models on molecules, namely, limited amount
of data, wide range of outputs to predict, large heterogeneity in input
molecular structure and appropriate learning algorithms to
benchmark model performance (Wu et al., 2018). The paper
“Low Data Drug Discovery with one-shot learning” points out

the central problem of small-molecule based drug discovery is to
optimize the candidate molecule by finding analogue molecules with
increased pharmaceutical activity and reduced patient risks. The
paper outlines the capacity for deep neural networks is underpinned
by their ability to learn from large amounts of biological data. The
lack of large datasets for models to learn and form accurate
predictions for novel compounds remains a challenge in drug
discovery. Using the DeepChem open-source framework for
deep-learning they demonstrate how one-shot learning can lower
the amount of data required to make meaningful predictions in drug
discovery (Altae-Tran et al., 2017). The DeepChem library was
extended into an end-to-end modelling pipeline for drug discovery
through the ATOM Modeling PipeLine [AMPL] (Minnich et al.,
2020). AMPL showed DeepChem can be used in a large scale
pipeline for Pharma drug discovery efforts.

Build on top of the PyTorch library, TorchDrug benchmarks a
variety of important tasks in drug discovery, including molecular
property prediction, pretrained molecular representations, de novo
molecular design and optimization, retrosynthsis prediction, and
biomedical knowledge graph reasoning (Zhu et al., 2022).
Therapeutics Data Commons (TDC) a platform comprised of
three components, namely, 66 AI-ready datasets and 22 learning
tasks for drug discovery and development, an ecosystem of tools and
community resources and leaderboards for therapeutics machine
learning (Huang et al., 2022). In the context of relational deep
learning, ChemicalX (Rozemberczki et al., 2022) is a deep learning
library for drug-drug interactions, polypharmacy side effect, and
synergy predictions. Its deep neural network architecture can be
used to solve the drug pair scoring task. By predicting the outcome of
administering two drugs together in a biological or chemical context
(ChemicalX, 2022). In the area of genomic deep learning, a tool that
is envisioned to facilitate drug discovery is Graphein (Jamasb et al.,
2020). It is a tool for transforming raw data from widely-used
bioinformatics databases into machine learning-ready datasets. It
is a Python library for constructing graph and surface-mesh
representations of protein structures and biological interaction
networks for computational analysis. The use cases in this
example illustrate how chemical libraries can be interfaced with
AI-based tooling to answer early phase drug development questions.
The missing element in these efforts in the appropriateness of the
various “AI-ready datasets” described above to certain, specific
contexts of use across a variety of target therapeutic areas and
drug targets. Likewise, the incremental benefit of augmented such
data with data from a drug sponsor is not known. Both of these
aspects could be accommodated within the confines of a sponsor-
governed and owned DRE in which the such libraries could co-exist
and in which software and tooling could be directly deployed within
a DRE workspace or run within a virtual machine that is deployed in
a DRE workspace.

DRE requirements for AI/ML data
exploitation and collaboration

Data requirements
Despite somemisconceptions about the ability to simply drop an

army of messy data into a generic file repository, run some
algorithms, and receive magical insights, data requirements for
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efficient, effective AI and ML models are significant (Paullada et al.,
2021). When biotech companies outsource AI projects in the drug
discovery phase, they often ship their proprietary data off to external
vendor platforms to be transformed and standardized as needed for
aggregation with subsets from open-source data repositories. In
addition to the risk of data leakage, companies lose visibility into the
data curation work and may have a loose connection to its
provenance. This situation creates potential for unintended costs
in time, insights, and money in several ways. Different vendor teams
may be repeating the same data cleaning each time and charging
proportionately, or they may choose to leave data as it is received but
charge for the excessive compute resources needed to analyze messy
data. In some cases, messy data give insights but take longer to
process, and in other cases the messy data produce noisy and
unhelpful mathematical results.

Moreover, companies’ transformed data are not useful for future
projects with new formats or model input specifications, which also
fails to extract the full potential of the data for later phases of the
drug development process. An alternative that solves these concerns
is keeping proprietary data in a private company DRE where data
transformations and other cleaning processes may be standardized
across projects with audit trails to provide provenance and a robust
metadata catalog to increase interoperability and reusability.
Owning internal data curation standards allows federated access
to open-source repositories by maintaining the interoperability of
internal data assets. The DRE in this case reduces the multiplying
cost of sending data to outsourced vendors to be repeatedly
processed, but it also facilitates dynamic improvement of data
assets for all projects in the organization. Because the DRE
provides internal AI/ML experts and external contractors secure
access to data, tools and scalable compute resources in one audited
environment, the downstream advantage is that companies may use
their proprietary data assets in later phases of drug development
where regulatory tolerance for data and algorithms without
provenance is minimal.

Compute requirements
The DRE, as the research environment, requires access to

appropriately sized and configured pools of compute. Depending
on the tools used and environment required to run them, these can
range from dedicated machines, such as a Virtual Machine or
“Instance” in a cloud environment to High Performance
Compute (HPC) clusters dedicated to running batch systems,
where discrete jobs can be run across a cluster in parallel,
allowing for distributed compute and processing. These batch
processing environments will orchestrate the execution of jobs in
accordance with developer configuration, to produce optimal
results. These systems can significantly reduce the time to
execute ML processes, however, can often be cost prohibitive. An
alternative to a dedicated HPC cluster is to take advantage of cloud
services offered by all the major cloud vendors such as AWS, Azure
and Google. Each has ML focused batch compute environments that
can be run on demand using only the compute they need.
Developers and researchers can choose the balance between
runtime and costs and the system ensures that only the compute
required is run at any point in time.

As learning algorithms need to run against as many different
training sources as possible, potentially across various geographies,

the need to federate this compute across multiple environments
becomes more pertinent. The Global Alliance For Genomic Health
has developed a standard application programming interface (API)
known as the Task Execution Service (TES). The TES provides a
standard API for nodes of a federated network to implement,
allowing for an orchestrated machine learning system to execute
jobs relevant to their tasks on remote compute nodes. This can
ensure that data remains within the geography and within the DRE
implementing the API. The results of the execution are provided to
the orchestration engine to inform the learning process.

Discussion

AI/ML techniques have been successfully applied to drug
discovery and early stage drug development but most of the
successful use cases have been generated through partnerships
and outsourced solutions (Liu et al., 2021; Terreni et al., 2021;
Schauperl and Denny, 2022). The benefit of TRE or even DRE
solutions has been less appreciated as they appear to create a sense of
vulnerability from an intellectual property standpoint as data
sharing is the presumed emphasis of such solutions. Likewise,
FAIR and workspace services are appreciated for late stage drug
development but don’t always seem essential for drug discovery and
late stage development based on a presumed high overhead (effort
and cost). The reality however is that AI-based drug discovery
applications can be more easily managed and controlled in a
robust, DIY (do-it-yourself) approach which cannot only provide
an integrated solution owned and managed by the sponsor but also
offer a complementary solution to established MIDD approaches
that facilitate decision making.

Data sharing initiative are many including many consortia (e.g.,
https://www.melloddy.eu/, https://www.pistoiaalliance.org/, etc.)
but in fact the majority of these are focused on late-stage drug
development and the sharing of clinical trial, patient-level data and
not early-stage development or drug discovery data. Other initiatives
such as the Open Reaction Database (https://docs.open-reaction-
database.org/en/latest/index.html) are more complementary as they
seek to build an open access chemical reaction database to support
machine learning and related efforts in reaction prediction, chemical
synthesis planning, and experiment design. A consortium-based
approach to accumulating and sharing drug discovery data is
unlikely given concerns for IP as defined previously.

The MIDD approach is well entrenched in the current drug
development paradigm both from innovators seeking to develop
new drugs and new drug targets as well as regulators whomust judge
the suitability of evidentiary proof that proposed new treatments are
both safe and efficacious. The current approach is highly dependent
on quantitative scientists with expertise in various forms of
modeling and simulation methodologies, a suite of software
solutions that permit the development, codification, and
validation of discrete models that de-risk decision making and a
modern compute environment to house the software and model
libraries so that such resources can be maintained in a secure, Part
11 compliant manner and share among its practitioners. Most
importantly, the current MIDD approach relies on buy-in from
senior leaders within and organization and favorable interactions
with regulatory authorities. Likewise, as the approach evolves and
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certainly if considerations for an AI-enabled approach is put
forward, these interactions will require revisiting with additional
education and performance confirmation.

The field is constantly evolving requiring additional skillsets and
expertise as well as diverse software solutions, customized and
secure compute platforms and new methodologies and
approaches. Sponsors likewise recognize that investment in
MIDD is similarly evolving and growing. As the industry
constantly seeks more efficient and cost-effective solutions,
MIDD is not immune to this scrutiny. Much of the recent effort
to improve the efficiency of MIDD is based on improved access to
integrated data sources, creating libraries of model elements that can
be shared and combined as needed and improving the compute
platform to ensure that relevant tools and software solutions can
coexist on the same platform. Little has been done to alter the data or
model types that inform the commonly held critical decisions as
previously outlined.

Artificial intelligence has received much interest of late as a
complementary tool to answer specific drug development questions
and pharmaceutical sponsors have been both dedicating internal
resources and investing in external partnerships to enhance their
knowledge and expertise in this discipline (Liu et al., 2020). An
outgrowth of this interest has been the submission of some of these
efforts to regulatory authorities. As recent work suggests (Liu et al.,
2023), the number of these submissions has increased dramatically
recently allowing authorities to gain an understanding of the
diversity of applications that might support drug development
and judge the usefulness of the approach for regulatory decision
making. Some positive outcomes from this early experience includes
the generation of early thoughts on guiding principles and the
development of consortiums and shared resources. While these
are early days in the process of getting comfortable with the
approach and gaining confidence in the application, it is also an
opportunity to gage future requirements for submission of such AI/
ML implementations and consider how transformative the approach
could be in a more coordinated manner. Early regulatory guidance
(Liu et al., 2020; Liu et al., 2023) suggest that regulatory authorities
are also anticipating broader utilization.

A future, but hopefully near-term effort should include the
consideration of AI/ML application as either a complimentary or
entirely self-sufficient approach to support an MIDD paradigm,
particularly in support of early stage drug development. Early
adopters of the approach tend to compartmentalize the effort
into certain drug development sectors (Liu et al., 2020; Maharao
et al., 2020; Paul et al., 2021) but few have considered this as an
end-to-end solution. Moreover, the approach is still being

compared to traditional MIDD efforts, specifically around the
comparison of AI/ML prediction against specific model types
(PBPK, PK/PD, CTS, etc.) and not around the data types and
dimensions that would inform the various approaches or whether
a revamped approach considering the optimal information value
(driven by data and models) needed to guide regulatory
milestones. While drug discovery and early stage drug
development may be considered an acceptable frontier for this
effort at face value given the presumed lower bar for regulatory
buy-in and acceptance, there will be continuity gains for ensuring
data traceability and audit trails as the early-stage AI deliverables
become linked to later-stage efforts and milestones. Clearly, the
path forward involves collaboration and an open mind with
respect to optimized and informative data generation coupled
with tools that can be utilized with high fidelity based on
mutually agreed and objective performance criteria.
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