
Bayesian model-guided
antimicrobial therapy in pediatrics

Haden T. Bunn1, Jogarao V. S. Gobburu1,2* and
Lindsey M. Floryance1

1Pumas-AI, Inc., Centreville, VA, United States, 2School of Pharmacy, University of Maryland, Baltimore,
MD, United States

Antimicrobials have transformed the practice ofmedicine,making life-threatening
infections treatable, but determining optimal dosing, particularly in pediatric
patients, remains a challenge. The lack of pediatric data can largely be traced
back to pharmaceutical companies, which, until recently, were not required to
perform clinical testing in pediatrics. As a result, most antimicrobial use in
pediatrics is off-label. In recent years, a concerted effort (e.g., Pediatric
Research Equality Act) has been made to fill these knowledge gaps, but
progress is slow and better strategies are needed. Model-based techniques
have been used by pharmaceutical companies and regulatory agencies for
decades to derive rational individualized dosing guidelines. Historically, these
techniques have been unavailable in a clinical setting, but the advent of
Bayesian-model-driven, integrated clinical decision support platforms has
made model-informed precision dosing more accessible. Unfortunately, the
rollout of these systems remains slow despite their increasingly well
documented contributions to patient-centered care. The primary goals of this
work are to 1) provide a succinct, easy-to-follow description of the challenges
associated with designing and implementing dose-optimization strategies; and 2)
provide supporting evidence that Bayesian-model informed precision dosing can
meet those challenges. There are numerous stakeholders in a hospital setting, and
our intention is for this work to serve as a starting point for clinicians who
recognize that these techniques are the future of modern pharmacotherapy
and wish to become champions of that movement.
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1 Setting the stage

Antimicrobials have transformed the practice of medicine, making life-threatening
infections treatable. Appropriate use of antimicrobials to treat infections reduces
morbidity and saves lives, for example, in cases of sepsis (Rhodes et al., 2017).

Optimizing the use of antibiotics is critical to effectively treat infections, protect patients
from harms caused by unnecessary antibiotic use, and combat antibiotic resistance. In recent
years, Antimicrobial Stewardship Programs (ASPs) have helped clinicians improve clinical
outcomes and minimize harms by improving antibiotic prescribing (Center for Disease
Control and Prevention, 2020). Despite this, ~30% of all antibiotics prescribed in U.S. acute
care hospitals are either unnecessary or suboptimal (Fridkin et al., 2014). Patients who are
unnecessarily exposed to antibiotics are placed at risk for adverse events with no benefit
(Tamma et al., 2017). Several antimicrobials (e.g., vancomycin, aminoglycosides) are difficult
to dose because of their narrow therapeutic index and cause serious adverse events in roughly
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20% of hospitalized patients who receive them. Individualized
dosing, guided by therapeutic drug monitoring (TDM) to reach
pharmacokinetic (PK) exposure targets can be used to ensure safe
and effective pharmacotherapy. Dose adjustments are typically
based on steady-state trough concentrations due to sampling
convenience and the availability of simplified PK calculations.
However, these simplified equations have significant limitations.
They are ill-suited for use in populations characterized by highly
variable PK (e.g., pediatrics) and their reliance on steady-state
precludes early intervention (i.e., dose adjustment).
Antimicrobials begin to elicit their pharmacologic effects (desired
and undesired) with the first dose and waiting until steady-state to
make therapeutic decisions could negatively impact patient
outcomes.

Pediatric pharmacotherapy is an area with considerable gaps in
knowledge, and thus, decisions around therapeutic dosing remain a
challenge. The physiological differences in pediatrics have not been
fully characterized, which makes it challenging to identify safe and
effective doses in this population (Barker et al., 2018). In addition,
the vulnerable nature of this population creates additional ethical
concerns and limits or prevents pediatric research from being
carried out (Carpenter et al., 2017). As a result, pediatric data are
unavailable for many medications which often leads to off-label use
in children with limited guidance to optimize dosing (Allen et al.,
2018). There have been concerted efforts to fill these knowledge
gaps, starting with the passage of the Pediatric Research Equality Act
and Best Pharmaceuticals Act for Children, which provided
significant progress in pediatric research (Green et al., 2018). The
challenges posed by antimicrobials are magnified by the paucity of
systematic research in pediatrics, particularly in neonates and the
critically ill. Model-based approaches have been helpful in
addressing some of the challenges in pediatric drug development,
but the underlying principles of pharmacometrics suggest that the
field could play a more encompassing role in pediatric
pharmacotherapy (Jarugula et al., 2021).

The objective of this report is to describe a holistic approach to
modern pharmacotherapy. The report is organized into the
following sections: a) the problem statement; b) generating
science-based individualized dosing regimens; c) role of Bayesian
modeling in pharmacotherapy and relevance to clinical practice; and
d) benefits of Bayesian algorithms.

2 Problem statement

There are two major challenges that clinicians currently face
when using individualized pharmacotherapy. First, data to inform
optimal dosing regimens for a variety of patients are not readily
available. Second, even if available, implementation of optimal
dosing strategies in hospitals requires professional expertise and
sophisticated analytics and technology.

Scientifically-sound individualized pharmacotherapy
algorithms require informative data and sophisticated analyses.
Drug development studies remain the most thorough means of
generating data pertaining to benefit-risk for treatments. Drug
development trials are designed to support a binary decision of
whether the treatment demonstrates efficacy in an average patient.
In contrast, clinical practice is entrusted with successfully treating

each individual patient. This fundamental philosophical difference
between drug development and clinical practice is a major factor
that limits the availability of optimal dosing information to
clinicians. Developing an individualized dosing algorithm is not a
requirement for drug approval and the need for individualized
dosing, which might require TDM, is perceived as a commercial
disadvantage.

Let us consider a recent treatment Teflaro (ceftaroline fosamil)
approved in 2010 for the treatment of Acute Bacterial Skin and Skin
Structure Infections and Community-Acquired Bacterial
Pneumonia (CABP). The CABP pediatric trial was a randomized,
parallel-group, active controlled trial in pediatric patients 2 months
to <18 years of age. The primary objective was to evaluate the safety
and tolerability of Teflaro. The study was not powered for
comparative inferential efficacy analysis, and no efficacy endpoint
was identified as primary. To evaluate the treatment effect of Teflaro,
an analysis was conducted in 143 patients with CABP in the MITT
population. This analysis evaluated responder rates at Study Day
4 based on achieving improvement in at least 2 out of 7 symptoms
(cough, dyspnea, chest pain, sputum production, chills, feeling of
warmth/feverish and exercise intolerance or lethargy) and an
absence of worsening in any of these symptoms. The clinical
response at Study Day 4 was 69.2% (74/107) for Teflaro and
66.7% (24/36) for the comparator, with a treatment difference of
2.5% (95% CI of −13.9, 20.9). Although the primary purpose of this
study in pediatrics was not efficacy, the small difference in relatively
low response rates of 69.2% or 66.7% was not a major point of
concern in the approval of the drug.

An observant reader may wish to point out the potential role
of post-market clinical trials in deriving individualized dosing
strategies but performing these trials for each antimicrobial
across multiple populations is impractical. Consider
vancomycin which was first approved in 1958 (before any of
the authors were born). The indications for use and our ability to
measure vancomycin levels have remained largely unchanged for
decades and yet the most recent guidelines (published 62 years
post-approval) advocate for a fundamental shift in how we
monitor vancomycin therapy (Rybak et al., 2020). This
perfectly illustrates that continuous quality improvement is
critical to effective pharmacotherapy. Still, a new paradigm is
needed, so patients do not need to wait for a generation before
optimal dosing is available.

3 Generating evidence-based
individualized dosing regimens

Modern technology has presented promising solutions to the
challenges described above, chief among them, model-informed
precision dosing (MIPD). Model-based methods that rely on
sophisticated pharmacostatistical analyses have been used for
decades by pharmaceutical companies and regulatory agencies to
derive rational individualized dosing guidelines (Booth et al., 2003;
Madabushi et al., 2011; Florian et al., 2013; Lala et al., 2013; Pereira
et al., 2022). Historically, the tools and personnel needed to perform
such analyses have been unavailable in the acute care setting. In
recent years, these complex analyses (e.g., Bayesian analysis) have
been made available to clinicians through clinical decision support
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(CDS) systems that are designed to deliver precision dosing
recommendations.

Figure 1 depicts the science-driven process of creating an
individualized dosing regimen. It begins with collecting prior
information about the drug itself and combining it with
Electronic Health Record (EHR) data (Step 1). Once approved,
the PK, efficacy and safety data for a new drug are publicly available.
For example, the exposure-efficacy model for Posaconazole was
published at the time of its approval and that model could be used as
the starting point for analyzing Posaconazole-related EHR data
(Jang et al., 2010). The use of EHR data collected in a hospital
setting offers a distinct advantage over clinical trial data because
hospitals do not have inclusion and exclusion criteria. In most cases,
EHR data provides evidence from a larger and more heterogeneous
patient population than a clinical trial which leads to a more robust
algorithm. This is particularly important for pediatrics, as they
constitute the most heterogenous patient population.

Bayesianmodel-based approaches allow clinicians to makemore
informed decisions earlier in the treatment period because they
preserve prior knowledge pertaining to the PK and pharmacology of
a drug (Step 2). As new evidence becomes available, the Bayesian
algorithm incorporates that information into its predictions, making
it a continuously evolving system. As a natural consequence, this
methodology is capable of quantifying, and more importantly,
making inferences about the uncertainty surrounding current and
future estimates of an individual patient’s PK parameters. Clinicians
are trained to make decisions without perfect data and the Bayesian
approach provides a more real-world prediction. In contrast,
conventional methods that rely on achieving steady-state over-
simplify the predictions and do not provide any measure of
uncertainty.

In the third step, a therapeutic algorithm is derived by exploring
competing dosing strategies and determining which is optimal, a
task for which traditional clinical trials are ill-suited. The starting
dose, maintenance dose, dosing interval, and titration scheme are all
evaluated to ensure that each patient has the highest probability of
achieving the therapeutic target. Performing clinical trials to
empirically evaluate competing algorithms is impractical because,
at best, the analyses of the resultant data render a single binary
inference (refer to Teflaro example above). Evaluating precision

dosing algorithms is an engineering problem that requires learning
and optimization cycles before arriving at the final algorithm. Once
finalized, the therapeutic algorithm can be validated using hospital
data prior to integration (Step 4).

Integration of the therapeutic algorithm into the EHR requires a
clinician-friendly CDS application that presents actionable
information while performing complex calculations in the
background. The CDS should be simple, intuitive, and guided by
clinical workflows. Patient data pertaining to demographics, labs,
and clinical assessments should be imported automatically into the
application and dosing recommendations should be provided along
with the probability of target attainment. Lastly, there should be a
mechanism to explore alternative doses based on clinical judgement.

4 Role of bayesian models in
pharmacotherapy

The mechanics of Bayesian model development and application
using vancomycin as a case study are described in this section.

4.1 Bayesian model development

Fundamentally, there are two types of modeling approaches:
Maximum-likelihood (ML) and Bayesian, both of which require
sophisticated software and advanced training. The relative ease of
implementing ML approaches has led them to dominate the field of
pharmacometrics for decades. The ML approach is based on a
Frequentist philosophy which assumes that for each clinical trial
that includes ML analyses, the model and its parameters are
unknown. The researchers develop PK models and estimate their
parameters de novo. The analysis might be motivated by prior
literature, but there is no formal method to incorporate previous
research. This inflates trial sizes and more importantly introduces
biases. For example, vancomycin’s prolonged distribution phase is
best described by a two-compartment model, but many publications
report vancomycin PK using a one-compartment model (Aljutayli
et al., 2020). The source of this discrepancy is the sparse sampling in
most of the studies. The only scientific reason for collecting sparse

FIGURE 1
The process of generating science-based individualized dosing regimens.
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data in patients is that prior knowledge (not necessarily data) from
rich sampling studies can be leveraged to supplement the new data
analysis which is a Bayesian principle. A study with a narrower range
of covariate values (e.g., serum creatinine, body weight) would yield
seemingly different results compared to another study with wider
ranges. Not because the underlying PK are different, but because of
design-limitations. Models developed from such studies are at best
descriptive, and not predictive. We need predictive models for
determining individualized dosing. The implication of this
limitation is not trivial. Imagine implementing divergent sets of
models and parameters for each patient population (e.g., neonates,
patients on extra-corporeal treatment, obese patients) in a CDS. The
same patient aging from a neonate to infant could end up with very
different and discordant doses if two different models and parameter
sets are used for the predictions. This discordant set of
recommendations can lead to inefficient decision making, or
worse, dose-related medication errors.

In contrast, Bayesian analyses preserve prior knowledge in a
formal manner. Bayes theorem, which was developed over 250 years
ago by Thomas Bayes (Bayes, 1763), a Presbyterian minister,
describes a unique method of applying probability to statistical
problems. There are several publications describing the approach in
great detail that are targeted toward clinicians (Introna et al., 2022).
A brief overview is provided here. Essentially, there are three
components in a Bayesian framework: historical (prior) data, new
data, and updated (posterior) knowledge. When applied to PK
modeling, a compartmental model and its parameters estimated
using the ML approach can serve as the prior. This includes the
uncertainty on each parameter (e.g., Clearance, between-subject
variability) which could be indicated by the standard errors. The
result of Bayesian modeling performed using new data would be an
updated estimate of model parameters and the uncertainties
(posterior).

The first application of Bayesian modeling (referred to as
“Bayesian Forecasting”) in clinical practice dates back to digoxin
(Sheiner et al., 1979). For digoxin, the researchers show that use of
one measured concentration, as opposed to none, improves forecast
precision for future levels by 40%, and two levels improves it by 67%.
The digoxin PK model and its parameters serve as the “prior”. The
one or two levels from the patient serves as the “new data”. Together,
the forecasted concentration profile at a new dose serves as the
“posterior” (updated). In 1979, this approach was evaluated as an
academic research project and limited to clinical settings with the
expertise. It can be said that not much progress has been made since
then, primarily due to a lack of technology for automating Bayesian-
driven dosing regimen design in a clinical setting.

An example of this strategy can be found in Jarugula et al.
who used EHR data to perform Bayesian modeling. Figure 2
describes the conceptual framework for implementing Bayesian
model-guided pharmacotherapy in a hospital. Each patient’s
baseline demographic information from the EHR is passed
through the algorithm to generate a dose recommendation
along with the probability of achieving the therapeutic target
for that patient. The clinician evaluates, and if necessary, adjusts
the recommendation before placing an order for the medication.
Subsequently, the patient is monitored for drug levels and other
clinical parameters. The new data are subjected to Bayesian
prediction again to provide an updated dose recommendation.
This cycle continues until the patient is cured or the medication is
discontinued.

4.2 Case study: vancomycin

Vancomycin is a difficult-to-dose glycopeptide antibiotic with a
narrow therapeutic index that is most commonly used to treat

FIGURE 2
Conceptual framework for Bayesian model-guided pharmacotherapy.
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serious infections caused by methicillin-resistant Staphylococcus
aureus (MRSA). Dose individualization, traditionally done using
simplified PK equations, is needed to overcome significant inter-
patient variability and ensure that exposures remain within the
therapeutic window. The most recent vancomycin guidelines
recommend that 24-h steady-state area under the concentration-
time curve (AUC24) be used as the exposure metric and that
effective killing is achieved by maintaining values between
400 and 600 mg h/L (minimum inhibitory concentration, MIC,
1 μg/mL). However, many institutions still rely on the older
recommendation of maintaining steady-state trough
concentrations (Ctr,ss) between 10 and 20 mg/L despite its well-
documented limitations (Rybak et al., 2020).

As with most serious infections, the first 48-h of vancomycin
therapy are critical because rapid target attainment has been shown
to improve patient outcomes. This makes the choice of
individualized starting dose, and by extension the method of
deriving that dose, incredibly important.

This case study is based on a real patient that was chosen at
random from a dataset of ~1,100 patients (neonates to adults)
that was used to develop a Bayesian vancomycin model as
described by Jarugula et al. All patients in the dataset

received intravenous vancomycin for at least 48 h with one or
more levels collected for the purpose of TDM. The collaborating
hospital uses traditional dosing via an EHR-integrated PK
module that relies on first-order (“simplified”) PK equations
(e.g., Eq. 1) to guide vancomycin dosing along with trough-
based monitoring.

Our goal was to compare the initial dosing regimen ordered and
administered by the hospital to the recommendation that would
have been provided by a Bayesian CDS platform and to determine
which was most appropriate. While there are multiple software
packages capable of performing Bayesian forecasting (Turner et al.,
2018), our analysis was performed using Lyv (Pumas-AI, Inc.,
Centreville, VA). In our analysis we first evaluated Lyv’s
predictive performance by using it to predict the observed
concentration collected for this patient and comparing the two
values. This was done to build confidence in Lyv’s ability to
accurately predict concentrations after a given dose which
directly relates to its ability to recommend a dose capable of
achieving a given target concentration. We then used the
underlying Bayesian model to predict Ctr,ss for both the hospital-
administered and Lyv-recommended doses to determine which was
most appropriate.

FIGURE 3
Comparison of predicted Ctrough (steady-state) with (orange) and without (green) Bayesian model-guided algorithm to guide vancomycin
pharmacotherapy.
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4.2.1 Traditional dosing
Consider a 16-year-old female patient. Upon admission, the

patient was 170 cm tall, weighed 86 kg, and had a serum creatinine
(SCr) of 0.71 mg/dL. The patient’s estimated creatinine clearance
(CrCL) was 148 mL/min using the Cockcroft-Gault equation
without weight adjustment; however, CrCL was capped at
120 mL/min for all dose-related calculations per hospital policy.

The hospital-administered dosing regimen was designed using
simple PK equations to achieve a Ctr,ss of 17.5 mg/L (therapeutic
range: 15–20 mg/L; indication unknown). The initial maintenance
dose was calculated by rearranging Eq. 1 where the dose (D) needed
to achieve a given steady-state concentration (Css) any time (t) after
dosing can be identified using infusion time (T), volume of
distribution (Vd), elimination rate constant (ke), and the dosing
interval (τ).

Css,t � D/T

Vdke

1 − e−keT( ) e−ke t−T( )( )

1 − e−keτ( ) (1)

Using population estimates of Vd (55.9 L; 0.65 L/kg) and ke
(0.104 h−1; 000083 * CrCL + 0.0044), the initial regimen was set at
1,250 mg every 8 h (q8 h) infused over 90 min. The patient received
their first dose (1250 mg) at time zero followed by a second dose
roughly 6.5 h later. A vancomycin level was collected approximately
8 h after the second dose and the result was 7.6 mg/L.

4.2.2 Bayesian dosing
To facilitate an unbiased regimen comparison, no drug-specific

patient information (i.e., level data) was included to enhance the
accuracy of Lyv’s initial recommendation. The patient’s information
(age, height, weight, SCr) was entered into Lyv which provided an
initial dosing recommendation of 738 mg q8h infused over 60 min.
We chose to use this unmodified recommendation as the basis for
our comparisons because procedures for rounding vancomycin
doses in older pediatric patients vary by institution.

The Lyv-recommended dose was 37% lower than the actual dose
of 1250 mg q8h (Table 1) and likely resulted from two key
differences between these methodologies. First, Lyv prioritizes
achieving an AUC24 value between 400 and 600 mg h/L over
achieving a Ctr,ss between 10 and 20 mg/L. Lyv’s focus on
AUC24, and the fact therapeutic AUC24 values often correspond
to lower Ctr,ss values means that Lyv’s dose recommendations are
lower overall when compared to methods that target Ctr,ss. Second,
Lyv’s recommendation is based on Bayesian forecasting which,
when coupled with a robust prior, does a much better job of
accurately predicting individual characteristics from population
level data.

Lyv’s predictive performance was assessed by updating the
patient’s PK parameter estimates using the level obtained after
the second hospital-administered dose. Lyv predicted a value of
10.3 mg/L which was roughly 36% higher than the observed value of
7.6 mg/L. This departure was considered reasonable since the PK
parameter update was informed by single data point. We then used
Lyv to predict Ctr,ss for the hospital dose and found that it would be
supratherapeutic at 25.2 mg/L compared to a predicted therapeutic
Ctr,ss of 15.8 mg/L for the Lyv dose.

Based on our findings, we concluded that the Lyv-
recommended dose was more appropriate despite being 37%
lower than the hospital-administered dose. While we
acknowledge that by overestimating the observed level, Lyv
could have also overestimated the supratherapeutic Ctr,ss we
stand by our conclusion. Modest imprecision, like that
observed here, is unlikely to impact real-world patient care.
The precision around individual PK parameter estimates
improves dramatically as more levels are collected and, with
Bayesian models, sample collection is not restricted to steady-
state conditions. In practical terms, a second level (scheduled or
opportunistic) could be collected any time after the first infusion
to increase confidence in the patient’s PK parameter estimates
and allow for early course correction if needed. Flexibility and
rapid course correction are hallmarks of Bayesian forecasting and
key factors supporting its use.

5 Benefits of bayesian algorithms

5.1 Benefits for patients

Bayesian modeling draws strength from diverse designs and,
unlike the ML approach, allows scientists to reconcile design
differences between studies. Researchers can utilize Bayesian
models to plan, design and analyze new clinical studies then
incorporate their findings into the model for future use. The more
the model is used, the more informative it becomes. As more
information is generated, the prior becomes more certain which
mirrors the philosophy of clinical practice. Each patient’s
pharmacotherapy is informed by prior experiences of similar
patients. Clinical decisions are made based on probabilities,
which reflect the inclusion of uncertainty which itself is
recognized as inevitable. As more data becomes available for
each patient via TDM, the posterior improves. The precision of
the posterior provides the probability of therapeutic success
which can be used in clinical decision making.

For vancomycin, the probability of achieving a daily
AUC24 between 400 and 600 mg h/L and a Ctr,ss <20 mg/L
can be calculated after the first dose using this approach. This
allows for early dose adjustment if necessary and decreases the
risk of vancomycin associated nephrotoxicity (VAN). To further
illustrate the potential advantages of the Bayesian model-guided
approach, we refer to an unpublished external validation
exercise that was performed for the Bayesian vancomycin
model implemented in Lyv. As part of that exercise,
simulations were performed based on real patient data
(neonates to adults) to assess how often initial dosing
recommendations for each method resulted in a therapeutic

TABLE 1 Comparison of hospital measured vancomycin concentration with Lyv
predicted concentration for actual and Lyv-recommended dosing.

Hospital data Lyv results

Dose Frequency Level Dose Level Hospital
Ctr,ss

Lyv
Ctr,ss

1,250 q8 h 7.6 783 10.27 25.2 15.8

Abbreviations: Ctr, ss, trough concentration at steady-state, q8 h, every 8 h.

Dose (mg), Level and Ctr,ss (mg/L).
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Ctr,ss when the recommendations differed by more than 25%
(Figure 3). We observed that the collaborating institution’s
traditional dosing strategy (as described above) resulted in 7%
of patients having Ctr,ss values within the previously
recommended therapeutic range of 10–20 mg/L compared to
91% with Lyv. Inspecting the outliers, almost all of which are
from the hospital’s dosing, there is a very low likelihood of
achieving therapeutic Ctr,ss and a heavy weighting toward
supratherapeutic concentrations and toxicity.
Supratherapeutic trough concentrations are associated with an
increased risk VAN, which has a strong negative impact on
patient outcomes (health and economic) and could provide
strong economic support for Bayesian model-guided algorithms.

5.2 Benefits for clinicians

Clinical pharmacists play a key role in a hospital setting by
providing clinical context to dosing calculations and
individualized dosing regimen design. Individualized
pharmacotherapy improves patient outcomes and decreases the
risk for harmful and costly toxicity. The primary barriers to
adoption of individualized dosing are lack of data and
personnel time needed for implementation. Bayesian-model
guided strategies help ameliorate the former while well-designed
CDS platforms address the latter. Clinical pharmacists are in a
unique position to negotiate with other clinicians on the merits of
Bayesian approaches and the efficiency, consistency, and ease of
onboarding that comes with CDS.

Through a unique combination of clinical knowledge and PK
expertise, clinical pharmacists can revolutionize pharmacotherapy
by becoming champions of model-based individualized dosing and
continuous quality improvement.

6 Conclusion

In this manuscript we have attempted to provide a simple,
intuitive outline of the concepts, applications, and benefits of
Bayesian forecasting as they apply to precision pharmacotherapy.
Our hope is that this information can be used to open a dialogue
with the many stakeholders needed to make this technology
available to all patients. These techniques are the future of
pharmacotherapy, and their widespread adoption is long overdue.
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