
Advances in the mechanisms and
applications of inhibitory
oligodeoxynucleotides against
immune-mediated inflammatory
diseases

Hongrui Wang1, Yingying Su2, Duoduo Chen1, Qi Li1, Shuyou Shi1,
Xin Huang1, Mingli Fang1* and Ming Yang1*
1Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin,
China, 2Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China

Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which
capable of folding into complex structures, enabling them to bind to a large
variety of targets. With appropriate modifications, the inhibitory
oligodeoxynucleotides exhibited many features of long half-life time, simple
production, low toxicity and immunogenicity. In recent years, inhibitory
oligodeoxynucleotides have received considerable attention for their potential
therapeutic applications in immune-mediated inflammatory diseases (IMIDs).
Inhibitory oligodeoxynucleotides could be divided into three categories according
to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers
and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with
immunomodulatory activity, it can target RNAs or proteins in a specific way,
resulting in the reduction, increase or recovery of protein expression, and then
regulate the state of immune activation. More importantly, inhibitory
oligodeoxynucleotides have been used to treat immune-mediated inflammatory
diseases, including inflammatory disorders and autoimmune diseases. Several
inhibitory oligodeoxynucleotide drugs have been developed and approved on the
market already. These drugs vary in their chemical structures, action mechanisms
and cellular targets, but all of them could be capable of inhibiting excessive
inflammatory responses. This review summarized their chemical modifications,
action mechanisms and applications of the three kinds of inhibitory
oligodeoxynucleotidesin the precise treatment of immune-mediated
inflammatory diseases.
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1 Introduction

Nucleic acids derived from microorganisms can trigger powerful immune responses
through a variety of signaling sensors, including Toll-like receptors (TLRs), cyclic GMP-
AMP Synthase (c-GAS), melanoma differentiation-associated protein 5 (MDA5), retinoid-
induced gene-1 (RIG-I) and oligomerization domain (NOD)-like receptors (NLRs) (Chen et al.,
2019; Natarajan and Ranganathan 2020; Tarigan et al., 2020). Unmethylated cytosine-guanine
dinucleotide-containing oligodeoxynucleotide (CpG ODN), which mimics bacterial DNA
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binding to TLR9 and leads to activate the innate and adaptive immune
response in many immune cells (Yagci et al., 2010; Scheiermann and
Klinman 2014; Lai C. Y et al., 2019). In contrast, some DNA
oligodeoxynucleotides (ODNs) have been evaluated for their ability
to inhibit immune activation, which are called inhibitory ODNs.
Generally, inhibitory ODNs are short synthetic single-stranded
DNA molecules that have dozens of deoxynucleotides in length
and specific sequences with negative regulation of immune
signaling (Hammond et al., 2021).

In the past few decades, inhibitoryODNs have attracted great attention
because their potential therapeutic applications in immune-mediated
inflammatory diseases (IMIDs) (Lai C. Y et al., 2019; Wan et al., 2021).
A bunch of preclinical studies suggest that inhibitory ODNs could prevent
IMIDs, including inflammatory disorders and autoimmune diseases
(Crooke et al., 2017). For example, a sequence with repetitive
TTAGGG motifs derived from mammalian telomere DNA significantly
downregulated the production of pro-inflammatory cytokines induced by
CpG ODNs or cellular damage-related molecular patterns (DAMPs)
released from injury cells (Gursel et al., 2003). Moreover, some ODN
drugs have been approved for marketing. For instance, Fomivirsen, an
antisense oligodeoxynucleotide (AS-ODN) was developed for the
treatment of patients with cytomegalovirus (CMV) retinitis, which
became the first ODN drug to be approved by the Food and Drug
Administration (FDA) in 1998 (Roehr 1998). With the innovation of
genomics and various new nucleotide synthesis technologies, synthetic
inhibitory ODNs have shown rapid development in the application of
translational and precision medicine since their regulation in specific
cellular processes (Hammond et al., 2021). In this review, we define
three classifications of inhibitory ODNs based on their mechanisms of
action and targets, and then discuss the relationship of chemical modified
characteristics with the function of ODNs. Furthermore, we summarized
their potential therapeutic applications against IMIDs as well.

2 Main classifications of inhibitory ODNs

2.1 Antisense oligodeoxynucleotides

Antisense oligodeoxynucleotides (AS-ODNs) are short, synthetic,
single-stranded oligodeoxynucleotides that are complementary to
specific sequences of target RNA (Gheibi-Hayat and Jamialahmadi
2021). They alter the target RNA and protein expression by interfering
with RNA transport, splicing or translation (Kim et al., 2019). Therefore,
AS-ODNs have been evaluated as candidate therapeutic agents to silence
target genes in viral infections, autoimmune disease, cancer and genetic
disorder related diseases due to their high degree of selectivity and low
toxicities (Bennett 2019). Moreover, it was also shown to be a powerful
tool for gene function analysis in themedical sciences (Dzialo et al., 2017).

2.2 DNA aptamers

DNA aptamers are oligodeoxynucleotide compounds synthesized
from single-stranded DNA molecules, usually consisting of
15–100 nucleotides, with the ability to form secondary and tertiary
structures that bind specifically to target molecules (Keijzer et al.,
2021; Chen et al., 2022). Aptamers are a new class of ligands that can
bind to targets in the range of picomoles and are often compared with
antibodies (Morita et al., 2018). Both aptamers and antibodies are

biomolecules that bind targets with high affinity and can be used to
modulate target functions for diagnosis and treatment of diseases.
Compared to antibodies, DNA aptamers exhibit significant advantages
including small size, mature and rapid screening process, easy synthesis
and chemical modification, as well as low immunogenicity (Table 1).
These advantages make aptamers as a promising alternative to antibodies
(Dehghani et al., 2018; Ahmadyousefi et al., 2019). DNA aptamers can be
specifically used to bind with corresponding proteins, peptides, small
molecules and other targets, inhibiting their biological functions, affecting
their activity, and achieving the purpose of diseases diagnosis and
treatment (Chen et al., 2017).

2.3 Immunosuppressive oligodeoxynucleotides

Immunosuppressive oligodeoxynucleotide (iSup ODN) refers to a
class of artificially synthesized single-stranded DNA molecules with a
length of tens of nucleotide sequence to function the negative
regulation of immune response (Yamada et al., 2004). Compared to
CpG ODNs derived from exogenous microorganisms, iSup ODN
sequences are mostly derived from mammal genomes. For
example, the DNA fragments from calf-thymus and human
placenta were shown to inhibit bacterial DNA-induced production
of interleukin-12 (IL-12) in murine macrophages (Pisetsky 2000).
Mammalian telomere derived TTAGGG repeats were found to inhibit
CpG ODN induced production of interleukin-6 (IL-6), IL-12, and
interferon-α (IFN-α) in mouse spleen cells (Gursel et al., 2003).
Similarly, human telomere derived ACCCCTCT repeats were also
found to inhibit CpG ODN induced proliferation of human peripheral
blood monocytes and type I IFN production (Yang and Yang 2010).
These findings suggest that some iSup ODNs may have some self-
regulatory mechanism, which can inhibit over-activated immune
response in the body by means of protective negative feedback
regulation. Thereby, the iSup ODNs have potential applications in
the treatment of immune-mediated inflammatory diseases, but many
biological functions of iSup ODNs remain to be developed. Further
exploration and discussion of iSup ODN can lay a theoretical
foundation for the development of a new and effective iSup ODN
drug for treating immune-related diseases in the future.

3 Chemical modifications of inhibitory
ODNs

Single-stranded ODNs face several challenges that complicate
drug development. The unfavorable properties of ODNs include: 1)
degradation by nucleases when introduced into biological systems, 2)
poor uptake through cell membranes, 3) unfavorable biodistribution
and pharmacokinetic properties and 4) suboptimal binding affinity for
complementary sequences (Crooke et al., 2017; Shi et al., 2021).
Thereby, inhibitory ODNs are usually chemically modified in
several ways to ensure them with properties such as increased the
resistance to nucleases and improved the target binding affinity
(Honcharenko et al., 2022). Different modifications confer the
ODNs with diverse properties, and modify the ODNs in ways that
complicate their synthesis or interfere with the mechanisms by which
they exert their effect (Table 2).

First-generation chemistries include the widely used phosphate
backbone modifications, e.g., phosphorothioate (PS). PS modification,
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replacement of a non-bridging phosphodiester oxygen by sulfur, is the
most widely used single alteration in nucleic acid drug development
(Eckstein 2014). PS linkages serve two purposes. First, PS modification
could increase the ODN stability toward digestion to nucleases. The
modification transforms DNA sequences with half-lives of minutes to
half-lives of days. Second, it can increase the binding to proteins,
especially serum proteins. Increased binding to serum proteins
preserves ODNs in circulation, and slows removal by the liver and
kidney to prolong the time available for uptake into target tissues
(Dowdy 2017). However, this modification often reduces the affinity to
the targets. By contrast, DNA modifications with second-generation
chemistries exhibit the increase of binding affinity to RNA and further
improve the nuclease resistance (Kajino and Ueno 2021). Generally,
the main second-generation chemistries include ribose modifications
at the 2ʹ-position of RNA and 2ʹ-position of DNA, of which the 2ʹ-O-
methyl (2ʹ-O-Me) and 2ʹ-O-methoxyethyl (2ʹ-O-MOE) modifications
are the most commonly used types (Quemener et al., 2022).

In addition, other types of chemical modifications have been
developed, such AS locked nucleic acid (LNA), peptide nucleic acid
(PNA), and phosphorodiamidate morpholino oligonucleotides
(PMO) (Hagedorn et al., 2018). PNA can regulate gene expression
or induce mutations by invading chromosomal double-stranded
DNA. LNA can freely bind to DNA to form chimeric interspace
molecules, promoting affinity and nuclease resistance to Ribonuclease
H (RNase H) (Urban and Noe 2003). The novel chemical modification
can resist the degradation of nuclease and peptidase, improving the

nuclease stability, target affinity and pharmacokinetic characteristics
of inhibitory ODNs (Araie et al., 2021). Chemical modifications
carried out over the past decades have given inhibitory ODNs
greater specificity and the ability to function more stably, reliably
and safely (Fang et al., 2020).

4 Action mechanisms and cellular
endocytosis of inhibitory ODNs

AS-ODNs prevent protein translation of certain mRNA strands
by binding to them, in a process called hybridization. By contrast,
DNA aptamers can directly bind to specific target molecules
especially proteins with high affinity and specificity. Unlike the
above mentioned inhibitory ODNs, iSup ODNs play their role
mainly by competitively binding receptors or inhibiting signal
transduction of important factors in inflammatory pathways.
Relatively, the mechanism of AS-ODN is clearer due to its widely
used in basic research and clinical application.

4.1 Target cleavage mechanisms of AS-ODNs

4.1.1 Activation of ribonuclease
RNase H is responsible for the degradation of RNA-DNA hybrids

synthesized along the chain in the nucleus. RNase H is also present in

TABLE 1 Main advantages of aptamers compared to antibodies.

Features Aptamers Antibodies

Size Small Large

Stability Temperature resistant Temperature sensitive and easily denatured

Chemical modification Modifications can enhance structural and functional properties Modifications often lead to reduced activity

Storage condition Normal temperature preservation Frozen preservation

Synthesis cycle 2–8 weeks More than 6 months

Economic cost Cheap Laborious and expensive

Batch variance No Yes

TABLE 2 Chemical modifications of inhibitory oligonucleotides.

Name Mechanism Properties References

Phosphorothioate (PS) RNase H1 cleavage Enzymatic stability Shen and Corey
(2018)

2′-O-methyl (2′-O-Me) Steric hindrance/splice
modulation

Higher binding affinity, enzymatic stability, reduced immune
stimulation

Odeh et al. (2019)

2′-O-methoxyethyl (2′-O-MOE) Steric hindrance/splice
modulation

Higher binding affinity, enzymatic stability, reduced immune
stimulation

Locked nucleic acid (LNA) Steric hindrance/RNase
H1 cleavage

Higher binding affinity, enzymatic stability Quemener et al.
(2022)

Peptide nucleic acid (PNA) Steric hindrance/splice
modulation

Enzymatic stability, higher binding affinity, no immune
activation

Phosphorodiamidate morpholino
oligonucleotides (PMO)

Steric hindrance/splice
modulation

Improved aqueous solubility, higher binding affinity
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the cytoplasm and degrades mature mRNA (Vickers and Crooke 2015).
The DNA-RNA hybrid formed by the combination of the partial DNA
sequence from AS-ODN and the target mRNA will attract RNase H to
the site to cut and degrade the target mRNA, thereby reducing the
expression of the target gene product (Lennox and Behlke 2016). Some
results also showed that the important role of AS-ODN is related to the
cleavage of target mRNA by RNase H in the cytoplasm, but this role is
more efficient in the nucleus (Kielpinski et al., 2019) (Figure 1). In
addition, some scholars believed that AS-ODN “Gapmer” contains
chemically modified RNA bases located on both sides of the central
8–10 base DNA “Gap” (Monia et al., 1993). RNA bases can enhance
affinity with complementary sequences and DNA bases can act as
substrates of RNase H. RNase H enhances the effect of AS-ODNs by
inducing cleavage of target mRNA, which is an important feature of
therapeutic oligodeoxynucleotides that inhibit translation (Smolka et al.,
2021).

4.1.2 Splice correction for pre-mRNA
AS-ODNs can block the binding of some functional groups to the

functional sequences involved in gene splicing in pre-mRNA, regulate or
change the gene-splicing mode of the pre-mRNA, and induce the
production of new functional protein heteroform (Blum et al., 2015)
(Figure 1). During exon hopping therapy, AS-ODNs bind to the pre-
mRNA transcript to correct the damaged reading frame and produce a

brief but functional protein (Havens et al., 2013). In exon retention
therapy, AS-ODNs bind to the pre-mRNA site and prevents the
spliceosome and splice factors from accessing the transcription site
(Bauman et al., 2009).

4.1.3 Formation of the DNA triple helix structure
Triple helix-forming oligonucleotides could bind to the major

groove of double-stranded purine-rich chain to form Triple-
stranded DNA through Hoogsteen or reverse Hoogsteen
hydrogen bonds (Casey and Glazer 2001). Thus, they can be
used in anti-gene strategies as an alternative to antisense
technology. Similarly, AS-ODNs can be inserted into the
structural groove of the DNA double helix, leading to the
formation of the triple helix structure in the nucleus, especially
in the high-value region of purine-pyrimidine pairing, resulting
in cleavage of the target DNA and thus impeding the transcription
process (Ricciardi et al., 2014) (Figure 1).

4.2 Cellular endocytosis of DNA aptamers

DNA aptamers are developed for cell surface receptors that
bind to protein target sites through three-dimensional
electrostatic interactions and bag-like structures for targeted

FIGURE 1
Action mechanism of AS-ODNs (By Figdraw). AS-ODNs can be designed to prevent the 5′-mRNA cap formation (1), bind to intron/exon junctions to
modulate splicing processes (2), or bind to 3′ UTR to modulate polyadenylation (3). Also, AS-ODNs can be designed to activate RNase H1 and induces the
cleavage of the mRNA (4). Moreover, the direct skipping of the mRNA by AS-ODNs inhibit the physical assembly of the ribosome subunits on the mRNA
sequence (5).
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delivery. Therefore, cellular internalization of DNA aptamers is
an important way to develop targeted drug delivery systems in
vivo (Wan et al., 2019). Studies have shown that endocytosis is the
main pathway of cell internalization of different aptamers,
including phagocytosis, pinocytosis, clathrin-mediated
endocytosis (CME) and alveolar protein-mediated endocytosis
(Kaksonen and Roux 2018; Wan et al., 2019). The process by
which aptamers are taken into cells depends on their targets but is
typically clathrin-mediated endocytosis or macropinocytosis. The
clathrin-mediated endocytosis depends on actin and dynamin
function, whereas macropinocytosis does not (Li et al., 2017; Wan
et al., 2022). Depending on the target or cell type, the main
internalization mechanism of aptamers is clathrin-dependent
(Figure 2). The binding of the aptamer and receptor initiate
formation of the clathrin-coated pit, followed by clathrin-
coated vesicle budding. Once detached from the membrane,
the clathrin coat is disassembled. Clathrin-dependent
endocytosis ends in fusion with endosomes and lysosomes.
Typical adaptations for demonstrated clathrin-dependent
internalization are Burkett lymphoma cell-specific DNA
aptamer and anti-protein tyrosine kinase 7 aptamer (Opazo
et al., 2015; Wang et al., 2016). So far, there are relatively few
studies on the internalization mechanism of aptamers. Therefore,
strategies can be adopted to further explore the relevant
mechanisms, screen suitable ligands and use them as targeted
delivery tools for corresponding cells.

4.3 Immunosuppressive mechanisms of iSup
ODNs

iSup ODNs can be divided into two categories based on sequence and
functional characteristics (Figure 3) (Fehér 2019). The first type is the
guanine (G)-rich ODNs. Usually, G-rich iSup ODN can inhibit the
activation of TLR9, especially inhibit the immune responses induced by
CpG ODNs, such as B cell proliferation, the production of IL-6, IL-12,
IFN-γ, and IFN-α (Stunz et al., 2002; Barrat et al., 2005). Moreover, the
increasing of poly-G enhances its immunosuppressive activity (Stunz et al.,
2002). As a typical inhibitory ODNwith poly G, A151 with tandem repeat
sequence “TTAGGG” derived from the telomeres of mammalian
chromosomes was well investigated (Khan et al., 2022). It has been
reported that A151-pretreated dendritic cells and macrophages have
reduced their ability to produce type I IFN and tumor necrosis factor α
(TNF-α) when activated by cytoplasmic dsDNA.Moreover, A151 blocked
IFN-γ, IL-12, IL-6, and other signaling pathways by inhibiting the
phosphorylation of signal transducer and activator of transcription 1
(STAT1), STAT3 and STAT4, thereby downregulating immune
activation (Peter et al., 2008). To clarify the mechanism of iSup ODNs
blocking STAT phosphorylation, it was found that A151 was highly
specific for intracellular binding to STAT1, STAT3, and STAT4, but
did not bind to nuclear factor kappa B (NF-κB) or other molecules in the
signaling cascade. Also, A151 inhibited macrophage and dendritic cells
from producing mature IL-1β and IL-18 by binding to the
AIM2 inflammasome in competition with the irritating ODN

FIGURE 2
Mechanisms of clathrin-dependent endocytosis of aptamers. The binding of the aptamers and receptors initiate the formation of clathrin-coated pit,
followed by clathrin-coated vesicle budding. Once detached from themembrane, the clathrin coat is disassembled. The aptamers can bind to the proteins in
the nuclear inflammatory signaling pathway, such as the NF-κB signaling pathway, and can also bind to inflammatory cytokines such as TNF-α, IFN-γ, and IL-6
in the cytoplasm to play an inhibitory role. Meanwhile, some aptamers are degraded due to clathrin-dependent endocytosis and eventual fusion with
endosomes and lysosomes.
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(Kaminski et al., 2013). Notably, A151 ODN requires G-tetramer
formation to maintain its broad immunosuppressive activity (Klinman
et al., 2003).

Some non-G-rich ODN also can inhibit the activation of immune
response. For example, SAT05f was designed by our laboratory, which can
selectively inhibit the activation of TLR7/9 signaling pathway,
subsequently downregulate the production of IFN-α production.
Moreover, the inhibition of TLR9 activation is closely related with the
blockade of endoplasmic reticulum transmembrane protein
Unc93B1 intracellular transport induced by SAT05f (Zhang et al.,
2014). MT01, another iSup ODN designed in our lab, can inhibit the
proliferation of human peripheral blood mononuclear cells (PBMCs)
induced by CpG ODN, and can inhibit the production of type I IFN and
B cell activation induced by TLR agonists (Zheng et al., 2020). Similarly, it
was showed that MT01 activated Runx2 phosphorylation through
MAPKs signaling pathway, delayed the aging rate of dental pulp stem
cells (DPSCs), and inhibited the development of pulpitis (Shen et al.,
2012). However, the mechanism of iSup ODN is not yet fully understood
and needs to be further explored and clarified by researchers.

5 Therapeutic applications of inhibitory
ODNs in immune-mediated
inflammatory diseases

Inflammation should be precisely controlled in quantitative,
qualitative and temporal terms, improper control could compound
the disease processes or cause severe IMIDs (Salazar et al., 2017;
Tanaka et al., 2018; Jang et al., 2021). In fact, immune-mediated
inflammatory diseases comprise a common, clinically diverse group
of conditions for which there are no current cures. In the past few
decades, the use of synthetic ODNs has made breakthroughs,
providing new support for the treatment of IMIDs by
improving the chemical modifications in these molecules to
make them more stable and specific. Several AS-ODNs and
DNA aptamers have entered different stages of clinical
trials, and some have been approved by the FDA
(Table 3). Likewise, the immunosuppressive activity of many
iSup ODNs has been fully demonstrated in preclinical studies
(Table 3).

FIGURE 3
Actionmechanism of iSup-ODNs (By Figdraw). (1) MS19 inhibits the expression and nuclear translocation of IRF5 and phosphorylation of p65 NF-κB, thus
extensively inhibiting the expression of inflammatory cytokines IL-6 and TNF-α. (2) A151 inhibits the activation of TLR7/9, inhibits the phosphorylation of
STAT1, STAT3, and STAT4, and downregulates the expression of inflammatory cytokines such as IFN-γ, IL-12, IL-6, and IL-18. (3) MT01 activates
Runx2 phosphorylation through MAPKs signaling pathway, delays the aging rate of DPSCs, and then inhibits the development of pulpitis. (4) YW002 can
induce the downregulation of TLR9 and TNF-α. (5) SAT05f can downregulate IFN-α production by inhibiting TLR7/9 signaling pathway.
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5.1 AS-ODNs

AS-ODN is of great significance for the treatment of
inflammatory diseases, and its mediated intervention has become
an important therapeutic method for targeting gene expression
operations (Zamecnik and Stephenson 1978; Keating 2014; Crooke
et al., 2017). Some recent studies have displayed LNA modified AS-
ODNs have considerable therapeutic effects for spinal cord injury,
pulmonary fibrosis (Liu et al., 2010) and osteoarthritis (Nakamura
et al., 2019). Some AS-ODNs also have therapeutic effects in the
field of inflammatory bowel disease (IBD). As we known, IBD is a

chronic, recurrent, inflammatory gastrointestinal disease (Seyedian
et al., 2019). ISIS 2302 (Alicaforsen) is an RNase H-dependent 20-
base-long antisense thiophosphoric oligonucleotide that
inhibits human intercellular adhesion molecule-1 (ICAM-1), and
it also was the first AS-ODN to be used for the treatment of IBD
(Glover et al., 1997). Moreover, a specific AS-ODN targeting
Smad7 has been reported to restore smad2/3 phosphorylation,
leading to a reduction in inflammatory cytokines in IBD
mucosal cells (Monteleone et al., 2001).

In addition, AS-ODN directly acts on viral genomic RNA or
transcripts and can be rationally designed for the treatment of human

TABLE 3 Current synthetic inhibitory oligonucleotides in clinical and preclinical trials.

ODN type Drug name Disease Status Reference

AS-ODN Vitravene CMV retinitis FDA approved Roehr (1998)

AS-ODN Inotersen Hereditary transtherthyretin-mediated amyloidosis FDA approved Keam (2018)

AS-ODN ISIS 2922 CMV-induced retinitis in AIDS Phase III Cinatl et al. (2000)

AS-ODN ISIS 2302 Ulcerative colitis, Rheumatoid arthritis Phase III Scarozza et al. (2019)

AS-ODN ISIS 104838 Rheumatoid arthritis Phase III Narayanan et al. (2018)

AS-ODN EPI-2010 Asthma Phase II Ball et al. (2004)

AS-ODN TPI ASM8 Allergic inflammation Phase II Gauvreau et al., 2011; Imaoka et al., 2011

AS-ODN Gem92 HIV Phase I Zheng (1999)

AS-ODN AR 177 HIV Phase I Smart (1996)

AS-ODN LNA-AS-ODN Osteoarthritis Pre-clinical Nakamura et al. (2019)

Aptamer Pegaptanib Neovascular AMD FDA approved Chapman and Beckey (2006)

Aptamer Macugen Age-Related Macular Degeneration FDA approved Vavvas and D’Amico (2006)

Aptamer ARC1905 Age-Related Macular Degeneration Phase I Leung and Landa (2013)

Aptamer Fovista Age-Related Macular Degeneration Phase III Tolentino et al. (2015)

Aptamer Zimura Geographic Atrophy Macular Degeneration Phase II Jaffe et al. (2021)

Aptamer AS1411 Acute Myeloid Leukemia Phase II Yazdian-Robati et al. (2020)

Aptamer NOX-E36 Chronic Inflammatory Diseases Phase I Baeck et al. (2012)

Aptamer GP-120 HIV Pre-clinical Wang et al. (2019)

Aptamer TLR4 brain damage after cerebral hemorrhage Pre-clinical Fernández et al. (2018)

Aptamer IL-23 brain inflammation Pre-clinical Shahdadi Sardou et al. (2020)

Aptamer RA10-6 Synovial inflammation in mice with osteoarthritis Pre-clinical Chen et al. (2011)

Aptamer Apt-TNF-α ALI, ALF Pre-clinical Lai W. Y et al. (2019)

iSup-ODN STA05F SLE, SIRS Pre-clinical Dong et al. (2005); Yazar et al. (2020)

iSup-ODN A151 SLE, Atherosclerosis Pre-clinical Cheng et al. (2008)

iSup-ODN ODN1411 RA Pre-clinical Sacre et al. (2016)

iSup-ODN MT01 Periodontitis Pre-clinical Shen et al. (2012)

iSup-ODN MS19 Sepsis Pre-clinical Gao et al. (2017)

iSup-ODN rODN M1 IAV-induced acute ALI Pre-clinical Meng et al. (2017)

iSup-ODN YW002 Alcoholic hepatitis Pre-clinical Wang et al. (2012)

iSup-ODN ODN IRS954 SLE Pre-clinical Barrat et al. (2005)
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immunodeficiency virus (HIV), hepatitis B and C viruses (HBV and
HCV), herpes viruses or any new virus (Panda et al., 2021). Fomivirsen
(Vitravene), an anti-cytomegalovirus (CMV) agent, is the first AS-
ODN to be approved by the FDA as an antiviral therapy.
Fomivirsen is an oligonucleotide complementary to the major
immediate early region 2 (IE2) of CMV mRNA. In the treatment
of CMV retinitis in immunodeficient HIV patients, Fomivirsen can be
used to help patients who are resistant to other treatments for CMV
(Stein and Castanotto 2017). Thus, AS-ODN can be used as an
antiviral agent against acute and chronic inflammation caused by
virus infections.

Allergic asthma is also as typical IMIDs. Adenosine A1 receptor
has been proposed as a therapeutic intervention target for asthma
(Haskó et al., 2008; Bhalla et al., 2020). EPI-2010 is a 21-mer PS-
modified respiratory AS-ODN developed by Epigenesis
Pharmaceuticals, which reduces airway inflammation and
bronchoconstriction by selectively reducing the expression of
adenosine A1 receptors in vivo, and increases the level of
surfactant in experimental models of allergic asthma (Ball et al.,
2004). As we known, granulocyte-macrophage colony-stimulating
factor (GM-CSF), IL-3, and IL-5 play a key role in allergic
inflammation. They mediate their effect via receptors with a
common beta subunit (betac) that transduces cell signaling. TPI
ASM8 is an AS-ODN targeting betac with PS modification. It has
been confirmed that TPI ASM8 downregulated the biologic
activities of GM-CSF, IL-3, and IL-5 simultaneously by
inhibiting betac mRNA expression with antisense technology.
Moreover, TPI ASM8 has been shown to be safe and well
tolerated in human trials (Gauvreau et al., 2011; Imaoka et al.,
2011). Although EPI-2010 and TPI ASM8 have not been associated
with any serious side effects, these AS-ODN safety studies need to
last longer because asthma, COPD, and fibrosis are chronic
conditions requiring long-term medication (Liao et al., 2017).

Importantly, the continued enrichment of human transcriptomic
and proteomic data could facilitate the identification of promising
nucleic acid targets for AS-ODNs. With the validation of new targets,
and the optimization of nucleic acid-based drug delivery and
modification strategies, AS-ODN has the potential to be a
promising therapeutic strategy for the treatment of inflammatory
diseases in clinical application.

5.2 DNA aptamers

DNA aptamers can change the distribution of intracellular
substances and inhibit biological functions by specifically binding
to corresponding proteins, peptides and small molecules, which
indicates their potential in the treatment of diseases (Dantsu et al.,
2021). DNA aptamers, especially those with targeting
inflammatory cytokines, have a therapeutic effect on
“hyperactive” immune diseases at the onset of the disease (Zhu
and Chen 2018). For example, IL-1α is an essential cytokine that
contributes to inflammatory responses, a naphthyl-modified
DNA aptamer specifically targeting IL-1α was developed to
inhibit the inflammatory signaling pathway (Ren et al., 2017).
Similarly, TNF-α is also one of the most important inflammatory
cytokines. The developed aptamer targeting TNF-α (Apt-TNF-α)

could eliminate acute lipopolysaccharide (LPS)-induced acute
lung injury (ALI) and associated acute liver failure (ALF) in
mice (Lai W. Y et al., 2019). IL-17A is a pro-inflammatory
factor produced by Th 17 cells, which acts as a chemical
inducer that recruits immune cells, including monocytes and
neutrophils, to inflammatory sites. It is reported that DNA
aptamer RA10-6, which binds to IL-17A receptor, can inhibit
IL-17A binding and reduce synovial inflammation in mice with
osteoarthritis (Chen et al., 2011). Meanwhile, studies have shown
that DNA aptamer IL-23 can detect and control brain
inflammation (Shahdadi Sardou et al., 2020). Ceria
nanoparticle gelatin hydrogel coated with aptamers targeting
IL-17 can significantly reduce the level of inflammation in
brain tissue by reducing the expression and serum
concentration of IL-17, IL-10 and IL-6 (Hekmatimoghaddam
et al., 2019).

Various receptors or angiogenesis are also involved in
controlling the process of inflammatory diseases. Activation of
the TLR4 pathways may cause inflammation, infection, and
chronic disease. Thus, the development of TLR4-specific DNA
aptamers has the potential for its neutralization as a therapeutic
intervention (Shirey et al., 2021). Moreover, the TLR4 aptamers
were highly effective in alleviating the brain damage after cerebral
hemorrhage (Fernández et al., 2018). Presence of CD4 receptor on
target cells is critical for productive HIV infection (Parrish et al.,
2012; Zhang et al., 2021). Blocking CD4 using synthetic
CD4 aptamer showed comparable cell-binding specificity as
standard CD4 antibody, resulting in inhibition of viral entry
and subsequent inflammatory response (Zhang et al., 2010;
Fellows et al., 2020). Angiogenesis is a widely observed process
in the progression of rheumatoid arthritis, IBD and neovascular
age-related macular degeneration (AMD) (Aguilar-Cazares et al.,
2019; Jeong et al., 2021). The increased expression of vascular
endothelial growth factor A (VEGF-A) in the eye choroid
promotes the formation of neovascularization by binding to its
homologous receptor VEGFR2 (Yang et al., 2016). Pegaptanib is a
selective anti-VEGFA aptamer that acts in the extracellular space
to inhibit the 165 isoform (VEGF165), was approved by the FDA
in 2004 for the treatment of all types of neovascular AMD (Xie
et al., 2019). With the development of aptamer screening
technology, it is believed that more and more new nucleic acid
aptamer drugs will be developed and eventually used to treat
diseases.

5.3 iSup ODNs

iSup ODN has been used in a bunch of experimental studies on
the treatment of IMIDs. In our previous study, an AAAG-rich ODN
designed based on the sequence of human microsatellite DNA,
named as MS19, could inhibit the production of inflammatory
factors in the lungs of mice caused by influenza virus or LPS, and
exhibiting its therapeutic role on acute lung injury (ALI) (Gao et al.,
2017; Zhang et al., 2022). Interestingly, MS19 significantly reduced
the expression of inducible nitric oxide synthase (iNOS) and
inflammatory cytokines not only via inhibiting the nuclear
translocation of interferon regulatory factor 5 (IRF5), but also
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associated with NF-κB signaling (Gao et al., 2017; Zhang et al., 2022).
In addition, MS19 was proved to alleviate the myocarditis induced by
coxsackievirus B3 (CVB3) infection in mice (Nie et al., 2019). A close
relationship was existed between the virus-induced ALI and the
level/activity of IRF7 in local infectious sites. Thus, IRF7-rODN
M1 was designed to alleviate influenza virus-induced ALI, and led to
decreased mRNA levels of IFN-α, reduced neutrophil infiltration in
the lungs and prolonged survival of mice (Yang et al., 2019). Another
iSup ODN MT01, based on the sequence of human mitochondrial
DNA, could inhibit the proliferation of PBMCs and production of
type I IFN induced by influenza virus, CpG DNA and herpes simplex
virus (HSV) (Yang et al., 2010). Meanwhile, MT01 could also induce
differentiation of bone marrow mesenchymal stem cells (BMSCs) to
osteoblasts and inhibit the alveolar bone absorption in rats with
periodontitis (Shen et al., 2012). In addition, other iSup ODNs also
have been screened to treat inflammatory diseases. ODN SAT05f is
an oligonucleotide with CCT repeats derived from human
microsatellite. It was suggested that SAT05f can recruit surface
TLR9+ (sTLR9) neutrophils to play a protective role in the
development of systemic inflammatory response syndrome (SIRS)
in locally inflammatory areas (Meng et al., 2017). YW002 could
alleviate the pathological changes of alcoholic hepatitis by
downregulating the inflammatory factors TNF-α, IL-1β, and IL-6
(Wang et al., 2012).

In addition to above inflammatory diseases, autoimmune
disease is another type of IMIDs. Systemic lupus erythematosus
(SLE) is an autoimmune disease with glomerulonephritis and
multifocal terminal organ damage caused by many pathogenic
autoantibodies and immune complexes (Mortezagholi et al.,
2017). The mammalian telomere-derived A151 can significantly
reduce glomerular and tubular injury, basement membrane
proliferative changes, monocyte infiltration, IgG deposition and
vascular lesions in SLE model mice. Also, A151 can delay the
production of proteinuria caused by glomerulonephritis, reduce
the grade of proteinuria and improve the survival rate of mice
(Dong et al., 2005; Yazar et al., 2020). Moreover, A151 can
significantly reduce the levels of two key inflammatory factors,
monocyte chemotactic protein 1 (MCP-1) and vascular cell
adhesion molecule 1 (VCAM-1), in the inflammatory process of
atherosclerosis (Cheng et al., 2008). Similarly, iSup ODN
IRS954 could reduce the level of serum nucleic acid specific
autoantibody and the grade of proteinuria, relieve the symptoms
of glomerulonephritis and increase the survival rate of SLE mice
(Barrat et al., 2007). Besides the inhibition of SIRS, SAT05F can also
effectively reduce the deposition of immune complexes and delay
the onset of lupus nephritis in mice with chronic graft-versus-host
disease (GVHD), and inhibit the activation of TLR7/9 pathway
in vitro (Zhang et al., 2014). Rheumatoid arthritis (RA) is an
autoimmune chronic inflammatory joint disease. It was found
that the PS modified ODN1411 could competitively inhibit the
signal transduction of TLR8 by interacting with TLR8, that is,
it inhibited the production of inflammatory factors in RA model
by inhibiting the phosphorylation of signal molecules and
the activation of NF-κB, which provided a possible new
therapy for the treatment of RA (Sacre et al., 2016). In
general, iSup-ODNs showed a good application prospect in
IMIDs, especially the diseases associated with over-activation of
immune response induced by TLR signal transduction (Li et al.,
2022).

6 Conclusion

In the past two decades, a great deal of research has been done on
the mechanism of inhibitory ODN in cells and its application in
therapy, and great progress has been made in this field, providing
potential therapeutic options for many medical problems that cannot
be solved at present, and it is the most promising tool for gene targeted
therapy at present. However, it is not difficult to find that there are still
some problems in the research and development of inhibitory ODN
drugs, such as easy to be degraded by ribozyme in the blood, and small
molecular weight leads to fast renal clearance. Of course, appropriate
modifications and efficient encapsulation are necessary for inhibitory
ODNs to enhance the transport across membranes. In addition, off-
target problem is also a non-negligible problem in drug development
of inhibitory ODNs. Sometimes, inhibitory ODNs cannot accurately
combine its corresponding target to achieve therapeutic effect due to
the potential poor specificity and low affinity with the target. To solve
the problem, it is necessary to modify inhibitory ODNs with longer
length and more stable three-dimensional structure to enhance its
binding specificity and affinity with the target.

Inhibitory ODN is a multi-faceted tool capable of delicate basic
research and discovery that can later be molded into a therapeutic
agent for clinical application. Reliability and reproducibility will be the
pillars of future inhibitory ODN research as they are critical to
successful clinical translation. With the increasing maturity of
molecular genetics, pharmacology and chemical synthesis, as well
as the rapid development of bioinformatics, we look forward to the
discovery of more new mechanisms of action and the application of
genomic information to ODN design, so further promote the
application of inhibitory ODNs in the treatment of immune-
mediated inflammatory diseases.
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