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Background: Cancer-associated fibroblasts (CAFs) promote tumor progression
through extracellular matrix (ECM) remodeling and extensive communication with
other cells in tumor microenvironment. However, most CAF-targeting strategies
failed in clinical trials due to the heterogeneity of CAFs. Hence, we aimed to identify
the cluster of tumor-promoting CAFs, elucidate their function and determine their
specific membrane markers to ensure precise targeting.

Methods: We integrated multiple single-cell RNA sequencing (scRNA-seq) datasets
across different tumors and adjacent normal tissues to identify the tumor-promoting
CAF cluster. We analyzed the origin of these CAFs by pseudotime analysis, and tried
to elucidate the function of these CAFs by gene regulatory network analysis and cell-
cell communication analysis. We also performed cell-type deconvolution analysis to
examine the association between the proportion of these CAFs and patients’
prognosis in TCGA cancer cohorts, and validated that through IHC staining in
clinical tumor tissues. In addition, we analyzed the membrane molecules in
different fibroblast clusters, trying to identify the membrane molecules that were
specifically expressed on these CAFs.

Results: We found that COL11A1+ fibroblasts specifically exist in tumor tissues but
not in normal tissues and named them cancer-specific fibroblasts (CSFs). We
revealed that these CSFs were transformed from normal fibroblasts. CSFs
represented a more activated CAF cluster and may promote tumor progression
through the regulation on ECM remodeling and antitumor immune responses. High
CSF proportion was associated with poor prognosis in bladder cancer (BCa) and lung
adenocarcinoma (LUAD), and IHC staining of COL11A1 confirmed their specific
expression in tumor stroma in clinical BCa samples. We also identified that CSFs
specifically express the membrane molecules LRRC15, ITGA11, SPHK1 and FAP,
which could distinguish CSFs from other fibroblasts.

Conclusion: We identified that CSFs is a tumor specific cluster of fibroblasts, which
are in active state, may promote tumor progression through the regulation on ECM
remodeling and antitumor immune responses. Membrane molecules LRRC15,
ITGA11, SPHK1 and FAP could be used as therapeutic targets for CSF-targeting
cancer treatment.
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1 Introduction

Cancer-associated fibroblasts (CAFs) promote tumor invasion,
metastasis and drug resistance via extracellular matrix (ECM)
remodeling, cytokine secretion, and crosstalk with different cells in
tumor microenvironment (TME), such as cancer cells, immune cells
and stromal cells (Sahai et al., 2020; Biffi and Tuveson, 2021). CAFs are
considered attractive targets for cancer treatment (Chen et al., 2021a).
However, multiple CAF-targeting strategies failed in clinical trials and
in some cases even accelerated tumor progression. For example,
chemotherapy combined with CAF-targeting drugs, such as the
Hedgehog pathway inhibitor hyaluronidase to decompose
hyaluronic acid (hyaluronan, HA) or matrix metalloproteinase 9
(MMP9) inhibitors, did not show synergistic effects, and some
combinations even increased adverse effects, such as
gastrointestinal (GI) toxicity and thromboembolic (TE) events, in
patients with different cancers, including metastatic pancreatic cancer
(mPC), colorectal cancer (CRC), ovarian cancers (OVC) and gastric
cancer (Kaye et al., 2012; Berlin et al., 2013; Catenacci et al., 2015; De
Jesus-Acosta et al., 2020; Van Cutsem et al., 2020; Shah et al., 2021).

CAFs are composed of distinct clusters with different or even
opposite functions, the heterogeneity of CAFs may account for the
failure of these CAF-targeting treatment in clinical trials (Chen et al.,
2021a; Galbo et al., 2021; Hutton et al., 2021). In addition, currently
used CAF-targeting molecules are expressed in other cell types or even
normal tissues, which may also explain the severe adverse effects of
CAF-targeting therapeutic strategies. For example, hyaluronic acid
(HA), an ECM component, also commonly exists in various human
tissues, which may account for the severe adverse events of
hyaluronidase (Garantziotis and Savani, 2019). The diverse origins
of CAFs are an important reason for their heterogeneity, and several
cell types have been proposed to be the precursors of CAFs, such as
normal fibroblasts, mesenchymal stem cells (MSCs), endothelial cells,
pericytes, myeloid cells and epithelial cells (Zeisberg et al., 2007;
Hosaka et al., 2016; Biffi and Tuveson, 2021; Butti et al., 2021;
Tang et al., 2022). In-depth analysis of the differences between
these precursor cells and CAFs may provide evidence regarding the
origin of CAFs and the mechanism of cell transition.

Single-cell RNA sequencing (scRNA-seq) is an effective way to
analyze the heterogeneity of CAFs and the differences between
different clusters of CAFs (Qian et al., 2020; Zhang et al., 2020;
Olbrecht et al., 2021). The classification of CAFs is based on their
different functions, by which, CAFs are commonly divided into matrix
CAFs or myo-CAFs (mCAFs), inflammatory CAFs (iCAFs), antigen-
presenting CAFs (apCAFs), EMT-like CAFs (eCAFs) and vascular
CAFs (vCAFs) (Chen et al., 2020; Zhang et al., 2020). However, these
classifications cannot distinguish the fibroblasts that specifically exist
in tumor tissues from fibroblasts in normal tissues. Decoding the
differences between them could not only elucidate the mechanisms
how these fibroblasts promote tumor progression but also provide new
therapeutic targets for cancer treatment.

In this study, by analyzing scRNA-seq datasets of multiple cancer
types, we compared the differences between fibroblasts that specifically
exist in tumor tissues and fibroblasts in normal tissues (Ma et al., 2019;
Qian et al., 2020; Steele et al., 2020; Zhang et al., 2020; Affo et al., 2021;
Chen et al., 2021b; Olbrecht et al., 2021). We identified that the
COL11A1+ fibroblasts only exist in various tumor tissues but not in
normal tissues, thus we named them cancer-specific fibroblasts
(CSFs). We revealed that CSFs might transform from normal

fibroblasts and may promote tumor progression through the
regulation on ECM remodeling and antitumor immune responses.
We also found that membrane molecules, such as leucine-rich repeat-
containing protein (LRRC15), integrin alpha-11 (ITGA11),
sphingosine kinase 1 (SPHK1) and fibroblast activation protein
(FAP) were specifically expressed in CSFs, which could be used as
therapeutic targets in CSF-targeting cancer treatment.

2 Materials and methods

2.1 Datasets of single-cell RNA-sequencing
(scRNA-seq)

ScRNA-seq datasets containing tumor tissues (ten datasets across
eight tumor types) and adjacent normal tissues (six datasets from five
types of normal tissues) were downloaded from the Gene Expression
Omnibus (GEO, RRID:SCR_005012) and https://lambrechtslab.sites.
vib.be/en/data-access, as shown in Supplementary Table S1.

2.2 Integrated analysis of scRNA-seq datasets

Analysis of scRNA-seq datasets was performed primarily using
the Seurat package (v4.0.5) in R (v4.1.0) (Hao et al., 2021). First, we
used Seurat package to create individual Seurat Objects from gene
expression matrices separately. Genes expressed in fewer than three
cells were removed in this process. Second, strict quality control
procedures were performed in Seurat. Seurat Objects were filtered to
exclude the cells that expressed fewer than 200 genes, more than
6000 or 8000 genes, greater than 20%mitochondrial genes, and more
than 0.1% or 1% hemoglobin genes. Third, all Seurat Objects were
merged to generate a combined Seurat Object, and the merged Seurat
Object was normalized and scaled separately using the
NormalizeData and ScaleData functions. The Find Variable
Features function was applied to identify the variable genes.
Fourth, principal component analysis (PCA) was conducted with
the RunPCA function based on the variable genes. After the PCA, we
applied Harmony package (v0.1.0) to integrate the merged Seurat
Objects and correct batch effects from different samples (Korsunsky
et al., 2019). Finally, clustering was conducted using the Find
Neighbors and the Find Clusters functions at a resolution = 3 for
tumor tissue cells or a resolution = 0.8 for normal tissue cells.
Visualization was implemented via uniform manifold
approximation and projection (UMAP) or t-distributed stochastic
neighbor embedding (tSNE).

Marker genes of cell clusters were identified using the Find All
Markers function viaWilcoxon rank-sum tests. Then, each cell cluster
was renamed to the specific cell type according to classical marker
genes as follows: B cells (marked with CD79A and MS4A1), plasma
cells (marked with CD79A, IGKC and IGLC2), CD4+ T cells (marked
with CD3D, CD4 and IL7R), CD8+ T cells (marked with CD3D, CD8A
and GZMB), dendritic cells (DCs, marked with CD1C and CD1E),
endothelial cells (marked with PECAM1 and vWF), epithelial cells
(marked with EPCAM and KRT18), fibroblasts (FBs, marked with
COL1A1 and DCN), macrophages (marked with CD68 and CD163),
mast cells (marked with CPA3 and KIT), monocytes (marked with
CD14 and S100A8), natural killer cells (NK cells, marked with
NKG7 and GNLY), and pericytes (marked with CSPG4 and RGS5).
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2.3 Construction of the fibroblast atlas

The fibroblast data were extracted from integrated multi-tumor
and multi-tissue scRNA-seq datasets. ScRNA-seq data of CAFs and
normal fibroblasts were integrated via the Harmony package. Merged
fibroblasts were divided into six distinct clusters. UMAP was applied
to visualize the fibroblast atlas.

2.4 Gene set variation analysis

Gene set variation analysis (GSVA) was performed using the
GSVA package (v1.40.1) (Hanzelmann et al., 2013). Specifically,
single-sample gene set enrichment analysis (ssGSEA) was used to
evaluate the pathway activations of the 50 hallmark gene sets from the
Molecular Signatures Database (MSigDB) for each cell.

2.5 Gene regulatory network analysis

To identify the gene regulatory network of each fibroblast cluster,
single-cell regulatory network inference and clustering (SCENIC) was
performed using pySCENIC (v0.11.2), a Python implementation of
the SCENIC pipeline (Van de Sande et al., 2020). First, gene expression
matrix was extracted from the Seurat Object of fibroblasts using the
Seurat package. Second, co-expression modules were inferred using
the method of GRNBoost2 based on gene expression matrix. Third,
regulons (i.e., transcription factors and their target genes) were refined
from these co-expression modules using cis-regulatory motif
discovery (cisTarget). Fourth, the activity of these regulons was
quantified in each individual cell via AUCell. Finally, the
differentially activated regulons of each fibroblast subcluster were
identified by using the Wilcoxon rank sum test.

2.6 Pseudotime analysis

Pseudotime analysis was conducted using the Monocle3 package
(v1.0.0) (Cao et al., 2019). Single-cell trajectories were calculated using
the functions “learn_graph” and “order_cells” based on fibroblast
clusters from Seurat. The result of pseudotime analysis was visualized
through the UMAP method.

2.7 Cell–cell communication analysis

Cell–cell communication analysis was inferred based on the
expression of known ligand–receptor pairs in different cell types
via the CellChat package (v1.1.3) (Jin et al., 2021). The official
workflow was used for further analysis. “Secreted Signaling”
pathways were set to the reference database of ligand–receptor
pairs. The essential functions “identifyOverExpressedGenes,”
“identifyOverExpressedInteractions,” “projectData,”
“computeCommunProb,” “computeCommunProbPathway,” and
“aggregateNet” were applied using standard parameters to conduct
the primary analysis. The function “netVisualbubble” was used to
visualize the result of cell–cell interactions.

2.8 Cell composition deconvolution

We applied CIBERSORTx to perform cell composition
deconvolution for TCGA bulk RNA-seq data of tumor tissues
and adjacent normal tissues (Newman et al., 2019). Firstly,
CIBERSORTx was used to construct a signature gene expression
matrix based on the multi-cancer scRNA-seq dataset. Secondly,
fragments per kilobase of transcript per million mapped reads
(FPKM) values of TCGA bulk RNA-seq data were transformed into
transcripts per million reads (TPM) values. Finally, cell
proportions of tumor tissues and adjacent normal tissues were
evaluated via CIBERSORTx based on the TCGA bulk RNA-seq
data. The cell types included CSFs, CLDN1+ FBs, CXCL14+ FBs,
BAMBI+ FBs, DPT+ FBs, RGS5+ FBs, B cells, CD4+ T cells, CD8+

T cells, endothelial cells, epithelial cells, macrophages, mast cells,
monocytes and pericytes.

2.9 Immunohistochemistry (IHC) staining

IHC staining of bladder cancer tissue microarray (HBlaU079Su01,
Shanghai Outdo Biotech Company) was performed with
COL11A1 polyclonal antibody (1:200, ABP53753, Abbkine)
according to standard protocols. Intensity of IHC staining of
COL11A1 in tumor tissue was scored by two independent
pathologists according to semi-quantitative immunoreactivity
scoring (IRS) system. The staining intensity was scored as 0
(negative), 1 (weak), 2 (moderate), and 3 (strong), and the staining
extent was quantified as: 0 (negative), 1 (1%–10%), 2 (11%–50%), 3
(51%–80%), and 4 (81%–100%). The staining intensity and extent
values were multiplied to get the IHC score (Cheng et al., 2021). The
baseline characteristics of enrolled bladder cancer patients showed in
Supplementary Table S9.

2.10 Survival analysis

Survival analysis of distinct fibroblast clusters was conducted
using the R packages survival (v3.2.13) and survminer (v0.4.9).
Patients were divided into CSF-high and CSF-low groups in each
cancer type of the TCGA cohort based on the median value of the
CSF proportions. The “survfit” function was applied to generate
Kaplan–Meier survival plots in different cancer types. In addition,
univariable Cox proportional hazards regression analysis was
performed via the “coxph” function. Survival analysis based on
gene expression was performed via the Gene Expression Profiling
Interactive Analysis (GEPIA, RRID:SCR_018294) platform (Tang
et al., 2019).

2.11 Statistical analysis

Statistical analysis was conducted using R (v4.1.0). The Wilcoxon
rank-rum test was performed to test the significance for most cases.
Statistical significance was defined as a p-value <0.05 (*p < 0.05, **p <
0.01, ***p < 0.001; ns, not significant). Overall survival analysis was
performed using the log-rank test.
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2.12 Data and code availability

The scRNA-seq data analyzed in this study were obtained from
https://lambrechtslab.sites.vib.be/en/data-access and the GEO
(GSE141445, GSE155698, GSE125449, GSE138709, GSE142784,
and GSE154170). TCGA bulk RNA-seq datasets with FPKM values
and clinical data were obtained from the UCSC Xena platform
(Goldman et al., 2020).

All R packages used are available online. Customized code for data
analysis and plotting are available on GitHub (https://github.com/
jiayu2022/pancancer_caf).

3 Results

3.1 COL11A1+ fibroblasts specifically exist in
different tumor tissues

The graphic flowchart summarized the main procedures of
present study (Figure 1). To construct a multi-tumor fibroblast
atlas, we integrated ten scRNA-seq datasets across eight tumor
types, including colorectal cancer (CRC), ovarian cancer (OVC),

prostate adenocarcinoma (PRAD), breast cancer (BC), pancreatic
ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC),
lung cancer (LC) and intrahepatic cholangiocarcinoma (ICC) (Ma
et al., 2019; Qian et al., 2020; Steele et al., 2020; Zhang et al., 2020; Affo
et al., 2021; Chen et al., 2021b; Olbrecht et al., 2021). The multi-tumor
cell atlas included 215,871 high-quality cells from 127 tumor samples
of 94 patients, and the batch effects across samples were corrected
(Supplementary Figure S1A; Supplementary Tables S1, S2). These cells
were divided into 13 distinct cell types using classification markers:
B cells, plasma cells, CD4+ T cells, CD8+ T cells, DCs, endothelial cells,
epithelial cells, fibroblasts, macrophages, mast cells, monocytes, NK
cells and pericytes (Figure 2A; Supplementary Figures S1B, C;
Supplementary Table S3). Similarly, six scRNA-seq datasets from
five types of adjacent normal tissues were also integrated, including
lung, ovary, colorectum, pancreas and intrahepatic bile duct. We
obtained 65, 807 high-quality cells from 26 normal tissues, and
removed the batch effects across samples (Supplementary Figure
S1D; Supplementary Tables S1, S2). These cells were also divided
into 13 cell types indicated above (Figure 2B; Supplementary Figure
S1E, F; Supplementary Table S4).

Then, fibroblast clusters were extracted from the multi-tumor cell
atlas and multi-tissue cell atlas separately, re-embedded and re-

FIGURE 1
Workflow of this study.
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clustered to construct the multi-cancer fibroblast atlas, and the bias
induced by the cell cycle states was removed (Figures 2C, D;
Supplementary Figures S2A, B). In this atlas, 24,662 fibroblasts
were divided into six clusters: COL11A1+ fibroblasts (FBs),
CLDN1+ FBs, CXCL14+ FBs, BAMBI+ FBs, DPT+ FBs and RGS5+

FBs (Figures 2C, E; Supplementary Figures S2C, D; Supplementary
Table S5). Among these clusters, CXCL14+ FBs mainly existed in CRC

and normal colorectal tissues, indicating that they were tissue-specific
fibroblasts. Notably, COL11A1+ FBs only existed in various tumor
tissues but not normal tissues, thus, we named them cancer-specific
fibroblasts (CSFs), while other clusters existed in both tumor tissues
and normal tissues (Figures 2F, G). According to these results, we
speculate that COL11A1+ FBs are CSFs that specifically exist across
different cancer types.

FIGURE 2
COL11A1+ fibroblasts specifically exist in tumor tissues. (A), UMAP visualization of the cell populations in tumor tissues from ten scRNA-seq datasets
across eight tumor types. (B), UMAP visualization of the cell populations from six scRNA-seq datasets of five types of normal tissues. (C), UMAP visualization of
fibroblast clusters across normal tissues and tumor tissues. Different fibroblast clusters are color-coded. (D), UMAP to depict the tissue origins of the fibroblast
clusters. (E), Heatmap to show the top DEGs (Wilcoxon test) in each fibroblast cluster. (F), UMAP to depict the tissue types (tumor or normal tissue) of
different fibroblast clusters. (G), Bar plots to show the proportion of different fibroblast clusters in each tissue. DEGs, differentially expressed genes.
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3.2 CSFs represent an activated cluster of
CAFs that may enhance ECM remodeling and
inhibit antitumor immune response

Next, we investigated the differences between CSFs and other
fibroblast clusters. Pathway analysis revealed that CSFs had higher

enrichment scores than other fibroblasts in TGF-β signaling and
protein secretion pathways. Notch signaling, Hedgehog signaling
and Wnt/β-catenin signaling, which have shown to be associated
with the maintenance of cell stemness were highly activated in CSFs
compared with other fibroblasts except the RGS5+ FBs (Figure 3A)
(Briscoe and Therond, 2013; Liu et al., 2022; Zhou et al., 2022).

FIGURE 3
CSFs represent a more activated CAFs cluster that may enhance ECM remodeling and inhibit antitumor immune response. (A), Activity of Hallmark
pathways (scored per cell by GSVA) in six fibroblast clusters. (B), Heatmap to show the differentially expressed ECM associated genes in six fibroblast clusters.
(C), Heatmap to show the differentially expressed growth factors in six fibroblast clusters. (D–F), Interaction analysis to show the enriched receptor-ligand
pairs between CSFs and other cell types in OVC (D), CRC (E) and ICC (F).
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Furthermore, ECM-associated genes, such as multiple collagens,
MMPs, tissue inhibitors of metalloproteinases (TIMPs), fibronectin
1 (FN1) and periostin (POSTN), were all highly expressed in CSFs
(Figure 3B). In addition, CSFs had high expression of TGF-β and TGF-
β receptor type 1 (TGFR-1), indicating the existence of a positive
feedback loop in CSFs to maintain their activation state. Similarly, the

high expression of insulin-like growth factor 2 (IGF-2) and IGFR-2
indicated that IGF-2 may also promote the proliferation of CSFs in an
autocrine manner (Figure 3C). These results indicate that CSFs existed
in a more active state than other fibroblasts.

Then, we analyzed the potential communication between CSFs
and other cell types using cell-cell communication analysis, and found

FIGURE 4
CSFs mainly transform from normal fibroblasts. (A), UMAP of fibroblasts to show the projection of Pseudotime trajectory. Pseudotime values code the
cell color. (B), Heatmap to show the t-value for the area under the curve score of expression regulation by transcription factors, as estimated by pySCENIC.
(C–H), Interaction analysis to show the enriched receptor-ligand pairs between fibroblasts and other cell types in CRC (C), normal colorectal tissues (D), ICC
(E), intrahepatic bile ducts (F), OVC (G) and normal ovarian tissues (H).
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that CSFs might interact with T cells and macrophages through the
secretion of chemokines such as CXCL12 in OVC, LC, and PDAC
(Figure 3D; Supplementary Figures S3A, B). Since CXCL12 may exert
immunosuppressive function through inhibiting the infiltration of
CD8+ T cells and promoting recruitment of regulatory T cells (Treg),
myeloid-derived suppressor cells (MDSC) and macrophages (Garg
et al., 2018; Givel et al., 2018; Yu et al., 2019), our findings indicated
that CSFs may promote the formation of immunosuppressive
microenvironment through the secretion of CXCL12. We also
found that the MIF-CD74 pair was highly enriched between CSFs
and immune cells, including B cells, CD4+ T cells, CD8+ T cells,
macrophages and monocytes, in OVC, CRC and ICC (Figures 3D–F;
Supplementary Figures S3A, B). As shown in other studies, the MIF-
CD74 pair can suppress the T cell mediated antitumor effect by
directly inhibiting T cell activation, or promoting the recruitment
of tumor-associated macrophages (TAMs), thus accelerate tumor
progression (Balogh et al., 2018; Klemke et al., 2021). Hence, CSFs
may inhibit antitumor immune response via MIF-CD74 axis.
Altogether, CSFs represent an activated cluster of CAFs, which
may enhance ECM remodeling and inhibit antitumor immune
response.

3.3 CSFs mainly transform from normal
fibroblasts

To explore whether CSFs originate from other fibroblast clusters,
we conducted pseudotime analysis and found that both DPT+ FBs and
RGS5+ FBs could transform into CSFs. Since DPT+ FBs and RGS5+ FBs
also exist in normal tissues, we speculated that CSFs transform from
normal fibroblasts (Figure 4A). We also analyzed the transition of
CSFs in separate cancer types, and found that in BC, CRC and OVC,
CSFs were mainly transformed from DPT+

fibroblasts, while in ICC,
CSFs were mainly transformed from RGS5+ FBs (Supplementary
Figures S4A–D). Then, we analyzed the gene regulatory network to
decode the changes in transcription factor (TF) activity during the
transition. CSFs showed high activity of CREB3L1, FOSL2, IRF7 and
HOXB7 (Figure 4B), among which CREB3L1, FOSL2 and IRF7 had
been shown to be strongly involved in fibroblast activation, and
HOXB7 could promote the transition of normal fibroblasts to
MSCs (Steens et al., 2020; Tabib et al., 2021). These results indicate
that CREB3L1, FOSL2, IRF7 and HOXB7 may facilitate the transition
of normal fibroblasts to CSFs.

Then, we compared the differences in secreted proteins between
tumor tissues and normal tissues to identify the factors that might be
responsible for the activation and transition of CSFs. We found that the
osteopontin (OPN, encoded by SPP1)-CD44 pair was significantly
enriched between macrophages and fibroblasts in different tumor
types but was absent in most normal tissues (Figures 4C–H;
Supplementary Figures S5A–D). As reported in other studies, OPN/
SPP1 could indeed induce the transition of normal fibroblasts into
tumor-promoting CAFs (Sharon et al., 2015; Butti et al., 2021).
However, in contrast to other reports that showed OPN/SPP1 was
highly expressed in tumor cells, our data indicated that OPN/SPP1 was
mainly expressed in macrophages (Supplementary Figure S5E). Since it
has been well recognized that macrophages are critical for the transition
of normal fibroblasts into CAFs (Costa-Silva et al., 2015; Nielsen et al.,
2016), our results indicate thatmacrophagesmay promote the transition
of normal fibroblasts to CSFs through OPN/SPP1-CD44 axis.

3.4 High CSF proportion is associated with
poor prognosis in bladder cancer and lung
adenocarcinoma

After confirming the existence of CSFs in different tumors, we
explored the association between CSF proportion and patients’
prognosis. For this purpose, we assessed cell proportions of tumor
tissues and adjacent normal tissues in multiple cancer cohorts from
TCGA database. CIBERSORTx was used for cell composition
deconvolution analysis, with the scRNA-seq dataset of multi-cancer
as a reference panel (Supplementary Table S8). Results showed that the
proportions of total fibroblasts in most tumor types were similar to or
even lower than adjacent normal tissues, which might be caused by the
increased proportions of epithelial cells in tumor tissues (Figure 5A).
However, the proportions of CSFs were significantly higher in most
types of tumor tissues (12 out of 17) than adjacent normal tissues,
indicating that CSFs mainly exist in tumor tissues (Figure 5B).
Consistently, the expression of COL11A1 in various tumor tissues
was significantly higher than adjacent normal tissues (Supplementary
Figure S6).

Then, we examined the association between CSF proportion and
patients’ prognosis, in which patients with different cancer types were
divided into two groups based on the proportion of CSFs (high or low)
for survival analysis (Supplementary Figure S7). As a control, we also
examined whether total fibroblast proportion was associated with
patients’ prognosis. Results showed that high CSFs proportion was
associated with poor prognosis in bladder cancer (BCa) and lung
adenocarcinoma (LUAD), while total fibroblast proportion was not
associated with clinical outcomes, indicating that CSFs may promote
tumor progression in BCa and LUAD (Figures 5C–F).

3.5 Highly expressed ECM-associated genes
in CSFs are also associated with patients’
prognosis

As previously shown in Figure 3B, compared with other clusters of
fibroblasts, CSFs express higher levels of multiple collagens, MMPs,
TIMPs, FN1 and POSTN, indicating that CSFs might be involved in
ECM remodeling. To evaluate whether CSFs promote tumor
progression through ECM remodeling, we studied the association
between the highly expressed ECM associated genes in CSFs and
patients’ prognosis in BCa and LUAD cohorts from TCGA database.
Results showed that ECM associated genes, such as POSTN,
COL11A1 and COL5A2, were also associated with poor prognosis
in BCa and LUAD patients (Figures 6A–F). Furthermore, we
performed IHC staining to examine the expression of COL11A1 in
clinical BCa samples and verified the specific COL11A1 expression in
tumor stroma. We validated that patients with high
COL11A1 expression tended to have poor prognosis in our BCa
cohort (Figures 6G, H). We also confirmed that these ECM
associated genes were mainly expressed in fibroblasts, especially
CSFs (Supplementary Figure S8). Our data was consistent with
other studies which also showed that POSTN and COL11A1 were
more highly expressed in tumor tissues than normal tissues (Raglow
and Thomas, 2015; Yu et al., 2018), POSTN could promote cancer
stemness in ovarian cancer and head and neck squamous cell
carcinoma (HNSCC) (Malanchi et al., 2011; Yu et al., 2018), and
COL11A1 could facilitate fibroblast activation throughmodulating the

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2023.1121586

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121586


TGF-β pathway and contribute to metastasis and poor clinical
outcomes in ovarian cancer (Cheon et al., 2014; Wu et al., 2021).
Altogether, these results further confirmed that CSFs may promote
tumor progression through enhancing ECM remodeling.

3.6 CSFs specifically express membrane
proteins FAP, LRRC15, ITGA11 and SPHK1

Because of the tumor-promoting function, CSFs can be potential
targets for cancer treatment. Therefore, identifying the membrane
molecules that are specifically expressed on CSFs is critical for CSFs
specific targeting. We first examined the expression of classical
fibroblast marker genes in different fibroblast clusters. Platelet-
derived growth factor receptor alpha (PDGFR-α, encoded by
PDGFRA) was specifically expressed in fibroblasts but not in other
cell types, but since it was expressed in fibroblasts of both normal
tissues and tumor tissues, thus it could be used as a pan-fibroblast
marker (Figures 7A, B). We found that, α-smooth muscle actin (α-

SMA, encoded by ACTA2), a commonly used marker for CAFs, was
not a specific marker for CAFs since it was also highly expressed in
pericytes, which was consistent with other previously reported studies
(Schadler et al., 2010; Dubrac et al., 2018). In contrast, we found that
FAP and PDPN were specifically expressed in fibroblasts in tumor
tissues but almost absent in normal tissues, indicating that they could
be used as CAFs specific markers in various cancer types (Figures 7A,
B). In addition, we found that FAP was mainly expressed in CSFs, very
few in other clusters, indicating that it could be an attractive CSFs
specific target (Figure 7C).

To find out more CSFs specific membrane molecules for targeting,
we also screened the membrane molecules in different fibroblast
clusters. We found that LRRC15, ITGA11 and SPHK1 were also
specifically expressed on CSFs, but not in other clusters of
fibroblasts, indicating that they could also be attractive CSFs
specific targets for cancer treatment (Figures 7D, E). Thus, we
proposed that FAP, LRRC15, ITGA11 and SPHK1 could be used
as markers for CSFs targeting, especially LRRC15 and ITGA11 due to
their more specific expression.

FIGURE 5
HighCSFs proportion is associatedwith poor prognosis in bladder cancer and lung adenocarcinoma. (A), The fractions of total fibroblasts in tumor tissues
and normal tissues in 17 TCGA cancer types. (B), The fractions of CSFs in tumor tissues and normal tissues in 17 TCGA cancer types. (C, D), Kaplan-Meier plots
to depict the survival of patients with high CSFs or low CSFs in BLCA (C) and LUAD (D). (E, F), Kaplan-Meier plots to depict the survival of patients with high or
low fibroblasts in BLCA (E) and LUAD (F). HR, hazard ratio.
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Based on all the results, we proposed a working model how CSFs
promote tumor progression, that is, CSFs secrete plenty of TGF-β to
maintain their activation state and enhance ECM remodeling; CSFs
also highly express MIF to inhibit T cell-mediated antitumor immune
response; MIF may also induce macrophage to secrete OPN/SPP1,
thus further enhance the transition of normal fibroblasts to CSFs
(Figure 7F).

4 Discussion

CAFs have long been considered attractive targets for cancer
treatment since they can promote tumor progression through ECM
remodeling and extensive interactions with other cell types (Sahai
et al., 2020; Yang et al., 2020; Chen et al., 2021a; Biffi and Tuveson,
2021). However, clinical trials targeting CAFs have not met the
expectations, which might be caused by the heterogeneity of CAFs,
since they are composed of distinct clusters that have different even

opposite functions (Kim et al., 2014; Yang et al., 2020; Chen et al.,
2021a; Biffi and Tuveson, 2021; Chen et al., 2021c; Hutton et al., 2021).
Thus, to improve the antitumor efficacy of CAFs targeting strategies, it
is of vital important to identify the tumor-promoting CAF clusters and
elucidate their function in tumor progression.

ScRNA-seq provides an effective way to study the heterogeneity of
CAFs and decode the differences between different CAF clusters
(Zhang et al., 2020; Galbo et al., 2021; Olbrecht et al., 2021).
Currently, based on scRNA-seq data, CAFs are commonly divided
into mCAFs, iCAFs, apCAFs, vCAFs and eCAFs (Chen et al., 2020;
Zhang et al., 2020). In addition, some new markers have been
identified to classify CAFs into other clusters. For example, Hutton
et al. found that in pancreatic cancer, CD105+ and CD105‾ fibroblasts
had opposite functions; CD105+ fibroblasts could promote tumor
progression, while CD105‾ fibroblasts inhibited tumor growth by
enhancing the antitumor immune response. Thus, in their study,
CAFs were divided into tumor-promoting CAFs and tumor-
suppressing CAFs. In a study of non-small-cell lung cancer

FIGURE 6
ECM associated genes are highly expressed in CSFs and associatedwith patients’ prognosis. (A–C), Overall survival of patients with different expression of
the three highly expressed genes in CSFs, including POSTN (A), COL11A1 (B) and COL5A2 (C) in TCGA BLCA cohort. (D–F), Overall survival of patients with
different expression of the three highly expressed genes in CSFs, including POSTN (D), COL11A1 (E) and COL5A2 (F) in TCGA LUAD cohort. (G), IHC analysis of
COL11A1 expression in BCa tissues. Scale bar, 50 μm. (H), Overall survival of patients with different COL11A1 expression in BCa cohort (IHC score ≤1, low
expression of COL11A1; IHC score >1, high expression of COL11A1).
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(NSCLC), based on their response to tyrosine kinase inhibitors (TKIs),
Hu et al. divided CAFs into three clusters with distinctive function (Hu
et al., 2021). Although these studies proposed different mechanisms
how CAFs promote tumor progression, they did not clarify the
differences between fibroblasts that specifically exist in tumor
tissues (we called CSFs) and normal fibroblasts. Therefore, it was
still difficult to identify therapeutic targets for CSFs. In addition,
current studies were mainly performed in mouse models, however,
CAF clusters are more complex in human tumors than mouse models.
Thus, it’s still urgently needed to identify the CSF cluster in human
sample.

In this study, by using scRNA-seq data frommultiple cancer types,
we compared the differences between fibroblasts specifically exist in
tumor tissues and normal tissues. We constructed a multi-cancer

fibroblast atlas, in which fibroblasts were classified into six clusters:
BAMBI+ FBs, CLDN1+ FBs, COL11A1+ FBs, CXCL14+ FBs, DPT+ FBs
and RGS5+ FBs. Among these clusters, BAMBI+ FBs have high
expression of genes that are related to Wnt signaling pathway, such
as BAMBI, SOX4, DKK1 and MDK. CLDN1+ FBs highly express
keratins such as KRT8, KRT18 and KRT19, indicating that they are
epithelial-to-mesenchymal transition (EMT)-like fibroblasts.
CXCL14+ FBs have high expression of chemokines, including
CCL8, CCL11, CCL13, CXCL1 and CXCL14, indicating that they
are inflammatory fibroblasts. DPT+ FBs have high expression of
APOD, DPT, CFD, GSN and MGP, indicating that they are
associated with lipid metabolism. RGS5+ FBs have high expression
of genes related with vascular development, including RGS5,
MYH11 and NOTCH3. Notably, COL11A1+ FBs only existed in

FIGURE 7
CSFs specifically express membrane proteins LRRC15, ITGA11, SPHK1 and FAP. (A, B), Violin plots to show the expression levels of classical fibroblast
markers in different cell types of normal tissues (A) and tumor tissues (B). (C), Violin plots to show the expression levels of classical fibroblast markers in
different fibroblast clusters. (D, E), Violin plots to show the highly expressed surfacemolecules of CSFs in different fibroblast clusters (D) and different cell types
(E). (F), Schematic illustration of the proposed mechanism how CSFs promote tumor progression.
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various tumor tissues but not in normal tissues, while other fibroblast
clusters existed in both tumor tissues and normal tissues. Thus, we
mainly focused on the COL11A1+ FBs and named them CSFs.

Interestingly, one previous study has shown that coordinated
overexpression of COL11A1, THBS2 and INHBA in a subset of
CAFs was related to high-stage cancers, and this signature only
occurred when cancers reached certain stages, for example stage IIIc
in ovarian cancer and stage II in colorectal cancer. This subset of CAFs
was named metastasis associated fibroblasts (MAFs) (Kim et al., 2010).
Then by comparing the gene expression profile at single cell level, the
same group further reported that these COL11A1-expressing CAFs
were transformed from a particular type of adipose derived stromal/
stem cells (ASCs) that also naturally present in the stromal vascular
fraction of normal adipose tissue (Zhu et al., 2021). Since ASCs are also
kind of normal fibroblasts, since they express fibroblast marker genes,
our findings are consistent that CSFs originate from normal fibroblasts.
It’s more interesting that when analyzing the origin of CSFs in separate
cancer types, we found that CSFs were mainly transformed from DPT+

FBs in BC, CRC and OVC, while mainly from RGS5+ FBs in ICC. These
results indicated that CSFs may originate from different normal
fibroblast clusters in different cancer types.

Some other studies reported that COL11A1 was also involved in
the CAF-cancer cell interaction and promote tumor progression
through different mechanisms. For example, one study analyzed
three large microarray datasets in serous ovarian cancer, and
reported a 10-gene signature that are associated with poor OS,
which included COL11A1 and could be regulated by TGF-
signaling. They also found that COL11A1 expression increased
during ovarian cancer progression, and downregulation of
COL11A1 in ovarian cancer cells could significantly inhibit tumor
growth in vivo (Cheon et al., 2014). The same group also found that
COL11A1 could be used as a specific marker for activated CAFs, and
COL11A1 expression was correlated with tumor stage, tumor grade
and patients’ outcome in 13 types of carcinomas (Jia et al., 2016). In
addition, another study reported that COL11A1 could induce the
expression and secretion of TGF-β3 in ovarian cancer cells through
NFκB/IGFBP2 axis, which then promote the transformation of
ovarian fibroblasts into CAFs, at the same time, COL11A1 could
also induce CAFs to secrete IL-6, thus to promote ovarian cancer cell
growth and invasion (Wu et al., 2021). Based on these findings that
COL11A1 could promote tumor progression, COL11A1 has been
considered as a potential therapeutic target for cancer treatment (Liu
et al., 2021). Althoughmost studies showed that COL11A1 was mainly
expressed in CAFs, yet COL11A1 was also found to be expressed in
certain kind of tumor cells, such as the tumor cells of salivary gland
cancer (SGC) with intercalated duct origin. This finding indicated that
COL11A1-targeted therapy might have particularly high potential in
SGC, or could help to categorize tumors in the setting of possible
future COL11A1-related therapies (Arolt et al., 2022).

In our study, we aimed to identify the fibroblasts that specifically
exist in tumor tissues. Our results showed that COL11A1+ FBs
specifically exist in tumor tissues, thus could be considered as CSFs.
Then we further analyzed their origin and the potential mechanisms
how CSFs promote tumor progression. By using pseudotime analysis,
we revealed that these CSFsmight transformed from normal fibroblasts.
By using pathway analysis, gene regulatory network analysis and cell-
cell communication analysis, we found that CSFs exhibited a higher
activation state than other fibroblast clusters. The high expression of
ECM-associated genes, and TGF-β, TGFR-1, IGF-2 and IGFR-2 in CSFs

all indicated that they may control the activation state of CSFs and
regulate ECM remodeling. Our data also found that CSFs may be
involved in the regulation of antitumor immune response through the
secretion of CXCL12 and the interaction between CSFs and immune
cells through MIF-CD74 pair. In addition, we found that high
proportions of CSFs were associated with poor prognosis in BCa
and LUAD, while total fibroblast proportions did not show
significant association. Thus, we proposed that CSFs could be
effective targets for cancer treatment.

To ensure specific targeting of CSFs, we also tried to identify the
membrane molecules that were specifically expressed in CSFs. We
found that FAP, LRRC15, ITGA11 and SPHK1 were specifically
expressed in CSFs, especially LRRC15 and ITGA11 due to their
more specific expression in CSFs. Current studies have shown that
some of these molecules have been extensively applied in both
preclinical and clinical studies. For example, FAP-targeted PET/CT
or PET/MRI has shown diagnostic value in multiple cancers, such as
lung cancer, breast cancer, HNSCC and gastric cancer (Backhaus et al.,
2022; Kumar et al., 2022; Promteangtrong et al., 2022; Wang et al.,
2022). In preclinical studies, the LRRC15-targeting antibody-drug
conjugate ABBV-085 showed antitumor effect in breast cancer and
ovarian cancer (Purcell et al., 2018; Ray et al., 2022). We believe that
strategies targeting ITGA11 and SPHK1 could also have diagnostic and
therapeutic value. Besides these membranemolecules, the cytokines that
inhibit antitumor immune response or promote the transition of normal
fibroblasts to CSFs, such asMIF, SPP1/OPN, could also be considered as
therapeutic targets for cancer treatment (as proposed in Figure 7F).

This study also had limitations. First, we only analyzed limited
scRNA-seq datasets, including ten datasets across eight tumor types and
six datasets from five types of adjacent normal tissues. It is for sure that
analysis of more scRNA-seq datasets will obtain more accurate results.
Second, the data in this study only came from integrated analysis of
scRNA-seq datasets, and the proposed features and functions of CSFs
still need to be validated by experimental methods, such as mass
cytometry, single-cell proteomics and multiplex staining techniques.

In summary, through comparison between fibroblasts in tumor
tissues and normal tissues at single-cell level, we identified that
COL11A1+ FBs specifically exist in tumor tissues, but not normal
tissues, thus we named them CSFs. We further revealed that CSFs
originate from normal fibroblasts. CSFs are in a more active state than
other fibroblasts and may promote tumor progression through
enhancing ECM remodeling and inhibiting antitumor immune
response. We demonstrated that CSFs could be potential targets for
cancer treatment, and membrane molecules FAP, LRRC15,
ITGA11 and SPHK1 could be used as CSFs specific targets.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Ethics statement

Written informed consent was obtained from the individual(s) for
the publication of any potentially identifiable images or data included
in this article.

Frontiers in Pharmacology frontiersin.org12

Zhang et al. 10.3389/fphar.2023.1121586

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121586


Author contributions

JZ, SL, and TL: data collection, data analysis and writing the
original draft. JZ, DH, and KZ: methodology. LG, XW, and YL: data
interpretation. XZ and ZL: creating figures. YS and SH: literature
research and IHC analysis. WQ, WW, and FY: conceptualization and
manuscript revision. All authors read and approved the final
manuscript.

Funding

This study was supported by the National Natural Science
Foundation of China (No. 82173204; 81772734), the Innovation
Capability Support Program of Shaanxi (2020PT-021; 2021TD-39),
the Natural Science Basic Research Program of Shaanxi (2022JZ-62),
and the Fundamental Research Funds for the Central Universities
(G2021KY05102).

Acknowledgments

We thank Chao Xu and Shaojie Liu (Department of Urology,
Xijing Hospital, Fourth Military Medical University, China) for
assistance with data interpretation. We thank Jianming Zeng
(Faculty of Health Sciences, University of Macau, China) and all

the members of his bioinformatics team, biotrainee, for generously
sharing their experience and codes.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121586/
full#supplementary-material

References

Affo, S., Nair, A., Brundu, F., Ravichandra, A., Bhattacharjee, S., Matsuda, M., et al.
(2021). Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast
subpopulations. Cancer Cell 39 (6), 866–882.e11. doi:10.1016/j.ccell.2021.03.012

Arolt, C., Hoffmann, F., Nachtsheim, L., Wolber, P., Guntinas-Lichius, O., Buettner, R.,
et al. (2022). Mutually exclusive expression of Col11a1 by cafs and tumour cells in a large
pancancer and a salivary gland carcinoma cohort. Head. Neck Pathol. 16 (2), 394–406.
doi:10.1007/s12105-021-01370-0

Backhaus, P., Burg, M. C., Roll, W., Buther, F., Breyholz, H. J., Weigel, S., et al. (2022).
Simultaneous fapi pet/mri targeting the fibroblast-activation protein for breast cancer.
Radiology 302 (1), 39–47. doi:10.1148/radiol.2021204677

Balogh, K. N., Templeton, D. J., and Cross, J. V. (2018). Macrophage migration
inhibitory factor protects cancer cells from immunogenic cell death and impairs anti-
tumor immune responses. PLoS One 13 (6), e0197702. doi:10.1371/journal.pone.0197702

Berlin, J., Bendell, J. C., Hart, L. L., Firdaus, I., Gore, I., Hermann, R. C., et al. (2013). A
randomized phase ii trial of vismodegib versus placebo with folfox or folfiri and
bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin.
Cancer Res. 19 (1), 258–267. doi:10.1158/1078-0432.Ccr-12-1800

Biffi, G., and Tuveson, D. A. (2021). Diversity and biology of cancer-associated
fibroblasts. Physiol. Rev. 101 (1), 147–176. doi:10.1152/physrev.00048.2019

Briscoe, J., and Therond, P. P. (2013). The mechanisms of Hedgehog signalling and its
roles in development and disease. Nat. Rev. Mol. Cell Biol. 14 (7), 416–429. doi:10.1038/
nrm3598

Butti, R., Nimma, R., Kundu, G., Bulbule, A., Kumar, T. V. S., Gunasekaran, V. P., et al.
(2021). Tumor-derived osteopontin drives the resident fibroblast to myofibroblast
differentiation through Twist1 to promote breast cancer progression. Oncogene 40
(11), 2002–2017. doi:10.1038/s41388-021-01663-2

Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., et al. (2019). The
single-cell transcriptional landscape of mammalian organogenesis. Nature 566 (7745),
496–502. doi:10.1038/s41586-019-0969-x

Catenacci, D. V., Junttila, M. R., Karrison, T., Bahary, N., Horiba, M. N., Nattam, S. R.,
et al. (2015). Randomized phase ib/ii study of gemcitabine plus placebo or vismodegib, a
Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol.
33 (36), 4284–4292. doi:10.1200/JCO.2015.62.8719

Chen, S., Zhu, G., Yang, Y., Wang, F., Xiao, Y. T., Zhang, N., et al. (2021). Single-cell
analysis reveals transcriptomic remodellings in distinct cell types that contribute to human
prostate cancer progression.Nat. Cell Biol. 23 (1), 87–98. doi:10.1038/s41556-020-00613-6

Chen, Y., Kim, J., Yang, S., Wang, H., Wu, C. J., Sugimoto, H., et al. (2021). Type I
collagen deletion in αSMA+myofibroblasts augments immune suppression and accelerates

progression of pancreatic cancer. Cancer Cell 39 (4), 548–565.e6. doi:10.1016/j.ccell.2021.
02.007

Chen, Y., McAndrews, K. M., and Kalluri, R. (2021). Clinical and therapeutic relevance
of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18 (12), 792–804. doi:10.1038/
s41571-021-00546-5

Chen, Z., Zhou, L., Liu, L., Hou, Y., Xiong, M., Yang, Y., et al. (2020). Single-cell rna
sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder
urothelial carcinoma. Nat. Commun. 11 (1), 5077. doi:10.1038/s41467-020-18916-5

Cheng, Y., Mo, F., Li, Q., Han, X., Shi, H., Chen, S., et al. (2021). Targeting Cxcr2 inhibits
the progression of lung cancer and promotes therapeutic effect of cisplatin.Mol. Cancer 20
(1), 62. doi:10.1186/s12943-021-01355-1

Cheon, D. J., Tong, Y., Sim, M. S., Dering, J., Berel, D., Cui, X., et al. (2014). A collagen-
remodeling gene signature regulated by tgf-beta signaling is associated with metastasis and
poor survival in serous ovarian cancer. Clin. Cancer Res. 20 (3), 711–723. doi:10.1158/
1078-0432.CCR-13-1256

Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., et al.
(2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.
Nat. Cell Biol. 17 (6), 816–826. doi:10.1038/ncb3169

De Jesus-Acosta, A., Sugar, E. A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D.,
Rasheed, Z., et al. (2020). Phase 2 study of vismodegib, a Hedgehog inhibitor, combined
with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic
adenocarcinoma. Br. J. Cancer 122 (4), 498–505. doi:10.1038/s41416-019-0683-3

Dubrac, A., Kunzel, S. E., Kunzel, S. H., Li, J., Chandran, R. R., Martin, K., et al. (2018).
Nck-dependent pericyte migration promotes pathological neovascularization in ischemic
retinopathy. Nat. Commun. 9 (1), 3463. doi:10.1038/s41467-018-05926-7

Galbo, P. M., Zang, X., and Zheng, D. (2021). Molecular features of cancer-associated
fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and
immunotherapy resistance. Clin. Cancer Res. 27 (9), 2636–2647. doi:10.1158/1078-
0432.Ccr-20-4226

Garantziotis, S., and Savani, R. C. (2019). Hyaluronan biology: A complex balancing act
of structure, function, location and context. Matrix Biol. 78-79, 781–7910. doi:10.1016/j.
matbio.2019.02.002

Garg, B., Giri, B., Modi, S., Sethi, V., Castro, I., Umland, O., et al. (2018). NFκB in
pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of
cancer cells, via up-regulation of CXCL12.Gastroenterology 155 (3), 880–891. doi:10.1053/
j.gastro.2018.05.051

Givel, A. M., Kieffer, Y., Scholer-Dahirel, A., Sirven, P., Cardon, M., Pelon, F., et al.
(2018). Mir200-Regulated Cxcl12β promotes fibroblast heterogeneity and

Frontiers in Pharmacology frontiersin.org13

Zhang et al. 10.3389/fphar.2023.1121586

https://www.frontiersin.org/articles/10.3389/fphar.2023.1121586/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121586/full#supplementary-material
https://doi.org/10.1016/j.ccell.2021.03.012
https://doi.org/10.1007/s12105-021-01370-0
https://doi.org/10.1148/radiol.2021204677
https://doi.org/10.1371/journal.pone.0197702
https://doi.org/10.1158/1078-0432.Ccr-12-1800
https://doi.org/10.1152/physrev.00048.2019
https://doi.org/10.1038/nrm3598
https://doi.org/10.1038/nrm3598
https://doi.org/10.1038/s41388-021-01663-2
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1200/JCO.2015.62.8719
https://doi.org/10.1038/s41556-020-00613-6
https://doi.org/10.1016/j.ccell.2021.02.007
https://doi.org/10.1016/j.ccell.2021.02.007
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1038/s41467-020-18916-5
https://doi.org/10.1186/s12943-021-01355-1
https://doi.org/10.1158/1078-0432.CCR-13-1256
https://doi.org/10.1158/1078-0432.CCR-13-1256
https://doi.org/10.1038/ncb3169
https://doi.org/10.1038/s41416-019-0683-3
https://doi.org/10.1038/s41467-018-05926-7
https://doi.org/10.1158/1078-0432.Ccr-20-4226
https://doi.org/10.1158/1078-0432.Ccr-20-4226
https://doi.org/10.1016/j.matbio.2019.02.002
https://doi.org/10.1016/j.matbio.2019.02.002
https://doi.org/10.1053/j.gastro.2018.05.051
https://doi.org/10.1053/j.gastro.2018.05.051
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121586


immunosuppression in ovarian cancers. Nat. Commun. 9 (1), 1056. doi:10.1038/s41467-
018-03348-z

Goldman, M. J., Craft, B., Hastie, M., Repecka, K., McDade, F., Kamath, A., et al. (2020).
Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol.
38 (6), 675–678. doi:10.1038/s41587-020-0546-8

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis for
microarray and rna-seq data. BMC Bioinforma. 14 (1), 7. doi:10.1186/1471-2105-14-7

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., 3rd, Zheng, S., Butler, A., et al.
(2021). Integrated analysis of multimodal single-cell data. Cell 184 (13), 3573–3587.e29.
doi:10.1016/j.cell.2021.04.048

Hosaka, K., Yang, Y., Seki, T., Fischer, C., Dubey, O., Fredlund, E., et al. (2016). Pericyte-
fibroblast transition promotes tumor growth and metastasis. Proc. Natl. Acad. Sci. U. S. A.
113 (38), E5618–E5627. doi:10.1073/pnas.1608384113

Hu, H., Piotrowska, Z., Hare, P. J., Chen, H., Mulvey, H. E., Mayfield, A., et al. (2021).
Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer
Cell 39 (11), 1531–1547.e10. doi:10.1016/j.ccell.2021.09.003

Hutton, C., Heider, F., Blanco-Gomez, A., Banyard, A., Kononov, A., Zhang, X., et al.
(2021). Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor
immunity. Cancer Cell 39 (9), 1227–1244.e20. doi:10.1016/j.ccell.2021.06.017

Jia, D., Liu, Z., Deng, N., Tan, T. Z., Huang, R. Y., Taylor-Harding, B., et al. (2016). A
col11a1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization
of therapeutic targets. Cancer Lett. 382 (2), 203–214. doi:10.1016/j.canlet.2016.09.001

Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C. H., et al. (2021).
Inference and analysis of cell-cell communication using cellchat. Nat. Commun. 12 (1),
1088. doi:10.1038/s41467-021-21246-9

Kaye, S. B., Fehrenbacher, L., Holloway, R., Amit, A., Karlan, B., Slomovitz, B., et al.
(2012). A phase ii, randomized, placebo-controlled study of vismodegib as maintenance
therapy in patients with ovarian cancer in second or third complete remission. Clin.
Cancer Res. 18 (23), 6509–6518. doi:10.1158/1078-0432.Ccr-12-1796

Kim, E. J., Sahai, V., Abel, E. V., Griffith, K. A., Greenson, J. K., Takebe, N., et al. (2014).
Pilot clinical trial of Hedgehog pathway inhibitor gdc-0449 (vismodegib) in combination
with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Cancer Res.
20 (23), 5937–5945. doi:10.1158/1078-0432.CCR-14-1269

Kim, H.,Watkinson, J., Varadan, V., and Anastassiou, D. (2010). Multi-cancer computational
analysis reveals invasion-associated variant of desmoplastic reaction involving inhba, Thbs2 and
Col11a1. BMC Med. Genomics 3, 51. doi:10.1186/1755-8794-3-51

Klemke, L., De Oliveira, T., Witt, D., Winkler, N., Bohnenberger, H., Bucala, R., et al.
(2021). Hsp90-Stabilized mif supports tumor progression via macrophage recruitment
and angiogenesis in colorectal cancer. Cell Death Dis. 12 (2), 155. doi:10.1038/s41419-021-
03426-z

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., et al. (2019). Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16 (12),
1289–1296. doi:10.1038/s41592-019-0619-0

Kumar, V., Ramnarayanan, K., Sundar, R., Padmanabhan, N., Srivastava, S., Koiwa, M.,
et al. (2022). Single-cell atlas of lineage states, tumor microenvironment, and subtype-
specific expression programs in gastric cancer. Cancer Discov. 12 (3), 670–691. doi:10.
1158/2159-8290.CD-21-0683

Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022). Wnt/β-catenin signalling:
Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target
Ther. 7 (1), 3. doi:10.1038/s41392-021-00762-6

Liu, Z., Lai, J., Jiang, H., Ma, C., and Huang, H. (2021). Collagen xi alpha 1 chain, a
potential therapeutic target for cancer. FASEB J. 35 (6), e21603. doi:10.1096/fj.
202100054RR

Ma, L., Hernandez, M. O., Zhao, Y., Mehta, M., Tran, B., Kelly, M., et al. (2019). Tumor
cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36
(4), 418–430. doi:10.1016/j.ccell.2019.08.007

Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F.,
et al. (2011). Interactions between cancer stem cells and their niche govern metastatic
colonization. Nature 481 (7379), 85–89. doi:10.1038/nature10694

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., et al.
(2019). Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat. Biotechnol. 37 (7), 773–782. doi:10.1038/s41587-019-0114-2

Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., et al. (2016).
Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver
fibrosis. Nat. Cell Biol. 18 (5), 549–560. doi:10.1038/ncb3340

Olbrecht, S., Busschaert, P., Qian, J., Vanderstichele, A., Loverix, L., Van Gorp, T., et al.
(2021). High-grade serous tubo-ovarian cancer refined with single-cell rna sequencing:
Specific cell subtypes influence survival and determine molecular subtype classification.
Genome Med. 13 (1), 111. doi:10.1186/s13073-021-00922-x

Promteangtrong, C., Siripongsatian, D., Jantarato, A., Kunawudhi, A., Kiatkittikul, P.,
Yaset, S., et al. (2022). Head-to-Head comparison of (68)Ga-Fapi-46 and (18)F-fdg pet/ct
for evaluation of head and neck squamous cell carcinoma: A single-center exploratory
study. J. Nucl. Med. 63 (8), 1155–1161. doi:10.2967/jnumed.121.262831

Purcell, J. W., Tanlimco, S. G., Hickson, J., Fox, M., Sho, M., Durkin, L., et al. (2018).
Lrrc15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates.
Cancer Res. 78 (14), 4059–4072. doi:10.1158/0008-5472.CAN-18-0327

Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., et al. (2020). A pan-
cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell
profiling. Cell Res. 30 (9), 745–762. doi:10.1038/s41422-020-0355-0

Raglow, Z., and Thomas, S. M. (2015). Tumor matrix protein collagen XIα1 in cancer.
Cancer Lett. 357 (2), 448–453. doi:10.1016/j.canlet.2014.12.011

Ray, U., Jung, D. B., Jin, L., Xiao, Y., Dasari, S., Sarkar Bhattacharya, S., et al. (2022).
Targeting Lrrc15 inhibits metastatic dissemination of ovarian cancer. Cancer Res. 82 (6),
1038–1054. doi:10.1158/0008-5472.CAN-21-0622

Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D. G., Egeblad, M., Evans, R. M., et al.
(2020). A framework for advancing our understanding of cancer-associated fibroblasts.
Nat. Rev. Cancer 20 (3), 174–186. doi:10.1038/s41568-019-0238-1

Schadler, K. L., Zweidler-McKay, P. A., Guan, H., and Kleinerman, E. S. (2010). Delta-
like ligand 4 plays a critical role in pericyte/vascular smooth muscle cell formation during
vasculogenesis and tumor vessel expansion in ewing’s sarcoma. Clin. Cancer Res. 16 (3),
848–856. doi:10.1158/1078-0432.Ccr-09-1299

Shah, M. A., Bodoky, G., Starodub, A., Cunningham, D., Yip, D., Wainberg, Z. A., et al.
(2021). Phase iii study to evaluate efficacy and safety of andecaliximab with Mfolfox6 as
first-line treatment in patients with advanced gastric or gej adenocarcinoma (Gamma-1).
J. Clin. Oncol. 39 (9), 990–1000. doi:10.1200/jco.20.02755

Sharon, Y., Raz, Y., Cohen, N., Ben-Shmuel, A., Schwartz, H., Geiger, T., et al. (2015).
Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote
inflammation and tumor growth in breast cancer. Cancer Res. 75 (6), 963–973. doi:10.
1158/0008-5472.Can-14-1990

Steele, N. G., Carpenter, E. S., Kemp, S. B., Sirihorachai, V. R., The, S., Delrosario, L., et al.
(2020). Multimodal mapping of the tumor and peripheral blood immune landscape in
human pancreatic cancer. Nat. Cancer 1 (11), 1097–1112. doi:10.1038/s43018-020-00121-4

Steens, J., Unger, K., Klar, L., Neureiter, A.,Wieber, K., Hess, J., et al. (2020). Direct conversion
of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells.
Cell Mol. Life Sci. 77 (17), 3401–3422. doi:10.1007/s00018-019-03358-0

Tabib, T., Huang, M., Morse, N., Papazoglou, A., Behera, R., Jia, M., et al. (2021).
Myofibroblast transcriptome indicates Sfrp2hi fibroblast progenitors in systemic sclerosis
skin. Nat. Commun. 12 (1), 4384. doi:10.1038/s41467-021-24607-6

Tang, P. C., Chung, J. Y., Xue, V. W., Xiao, J., Meng, X. M., Huang, X. R., et al. (2022).
Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast
transition. Adv. Sci. 9 (1), e2101235. doi:10.1002/advs.202101235

Tang, Z., Kang, B., Li, C., Chen, T., and Zhang, Z. (2019). Gepia2: An enhanced web
server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47
(W1), W556–W60. doi:10.1093/nar/gkz430

Van Cutsem, E., Tempero, M. A., Sigal, D., Oh, D. Y., Fazio, N., Macarulla, T., et al.
(2020). Randomized phase iii trial of pegvorhyaluronidase alfa with nab-paclitaxel plus
gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma.
J. Clin. Oncol. 38 (27), 3185–3194. doi:10.1200/JCO.20.00590

Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G., Aibar, S.,
et al. (2020). A scalable scenic workflow for single-cell gene regulatory network analysis.
Nat. Protoc. 15 (7), 2247–2276. doi:10.1038/s41596-020-0336-2

Wang, L., Tang, G., Hu, K., Liu, X., Zhou, W., Li, H., et al. (2022). Comparison of 68ga-
fapi and 18f-fdg pet/ct in the evaluation of advanced lung cancer. Radiology 303 (1),
191–199. doi:10.1148/radiol.211424

Wu, Y. H., Huang, Y. F., Chang, T. H., Chen, C. C., Wu, P. Y., Huang, S. C., et al. (2021).
COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-
κB/IGFBP2 axis in ovarian cancer cells.Oncogene 40 (26), 4503–4519. doi:10.1038/s41388-
021-01865-8

Yang, F., Wei, Y., Han, D., Li, Y., Shi, S., Jiao, D., et al. (2020). Interaction with Cd68 and
regulation of Gas6 expression by endosialin in fibroblasts drives recruitment and
polarization of macrophages in hepatocellular carcinoma. Cancer Res. 80 (18),
3892–3905. doi:10.1158/0008-5472.CAN-19-2691

Yu, B.,Wu, K.,Wang, X., Zhang, J., Wang, L., Jiang, Y., et al. (2018). Periostin secreted by
cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by
activating protein tyrosine kinase 7. Cell Death Dis. 9 (11), 1082. doi:10.1038/s41419-
018-1116-6

Yu, X., Wang, D., Wang, X., Sun, S., Zhang, Y., Wang, S., et al. (2019). Cxcl12/
Cxcr4 promotes inflammation-driven colorectal cancer progression through activation of
rhoa signaling by sponging mir-133a-3p. J. Exp. Clin. Cancer Res. 38 (1), 32. doi:10.1186/
s13046-018-1014-x

Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M., and Kalluri, R. (2007). Discovery of
endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts.
Cancer Res. 67 (21), 10123–10128. doi:10.1158/0008-5472.Can-07-3127

Zhang, M., Yang, H., Wan, L., Wang, Z., Wang, H., Ge, C., et al. (2020). Single-cell
transcriptomic architecture and intercellular crosstalk of human intrahepatic
cholangiocarcinoma. J. Hepatology 73 (5), 1118–1130. doi:10.1016/j.jhep.2020.05.039

Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., et al. (2022). Notch signaling
pathway: Architecture, disease, and therapeutics. Signal Transduct. Target Ther. 7 (1), 95.
doi:10.1038/s41392-022-00934-y

Zhu, K., Cai, L., Cui, C., de Los Toyos, J. R., and Anastassiou, D. (2021). Single-cell
analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived
stromal cells into col11a1-expressing cancer-associated fibroblasts. PLoS Comput. Biol.
17 (7), e1009228. doi:10.1371/journal.pcbi.1009228

Frontiers in Pharmacology frontiersin.org14

Zhang et al. 10.3389/fphar.2023.1121586

https://doi.org/10.1038/s41467-018-03348-z
https://doi.org/10.1038/s41467-018-03348-z
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1073/pnas.1608384113
https://doi.org/10.1016/j.ccell.2021.09.003
https://doi.org/10.1016/j.ccell.2021.06.017
https://doi.org/10.1016/j.canlet.2016.09.001
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1158/1078-0432.Ccr-12-1796
https://doi.org/10.1158/1078-0432.CCR-14-1269
https://doi.org/10.1186/1755-8794-3-51
https://doi.org/10.1038/s41419-021-03426-z
https://doi.org/10.1038/s41419-021-03426-z
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1158/2159-8290.CD-21-0683
https://doi.org/10.1158/2159-8290.CD-21-0683
https://doi.org/10.1038/s41392-021-00762-6
https://doi.org/10.1096/fj.202100054RR
https://doi.org/10.1096/fj.202100054RR
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.1038/nature10694
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/ncb3340
https://doi.org/10.1186/s13073-021-00922-x
https://doi.org/10.2967/jnumed.121.262831
https://doi.org/10.1158/0008-5472.CAN-18-0327
https://doi.org/10.1038/s41422-020-0355-0
https://doi.org/10.1016/j.canlet.2014.12.011
https://doi.org/10.1158/0008-5472.CAN-21-0622
https://doi.org/10.1038/s41568-019-0238-1
https://doi.org/10.1158/1078-0432.Ccr-09-1299
https://doi.org/10.1200/jco.20.02755
https://doi.org/10.1158/0008-5472.Can-14-1990
https://doi.org/10.1158/0008-5472.Can-14-1990
https://doi.org/10.1038/s43018-020-00121-4
https://doi.org/10.1007/s00018-019-03358-0
https://doi.org/10.1038/s41467-021-24607-6
https://doi.org/10.1002/advs.202101235
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1200/JCO.20.00590
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1148/radiol.211424
https://doi.org/10.1038/s41388-021-01865-8
https://doi.org/10.1038/s41388-021-01865-8
https://doi.org/10.1158/0008-5472.CAN-19-2691
https://doi.org/10.1038/s41419-018-1116-6
https://doi.org/10.1038/s41419-018-1116-6
https://doi.org/10.1186/s13046-018-1014-x
https://doi.org/10.1186/s13046-018-1014-x
https://doi.org/10.1158/0008-5472.Can-07-3127
https://doi.org/10.1016/j.jhep.2020.05.039
https://doi.org/10.1038/s41392-022-00934-y
https://doi.org/10.1371/journal.pcbi.1009228
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121586

	Single-cell analysis reveals the COL11A1+ fibroblasts are cancer-specific fibroblasts that promote tumor progression
	1 Introduction
	2 Materials and methods
	2.1 Datasets of single-cell RNA-sequencing (scRNA-seq)
	2.2 Integrated analysis of scRNA-seq datasets
	2.3 Construction of the fibroblast atlas
	2.4 Gene set variation analysis
	2.5 Gene regulatory network analysis
	2.6 Pseudotime analysis
	2.7 Cell–cell communication analysis
	2.8 Cell composition deconvolution
	2.9 Immunohistochemistry (IHC) staining
	2.10 Survival analysis
	2.11 Statistical analysis
	2.12 Data and code availability

	3 Results
	3.1 COL11A1+ fibroblasts specifically exist in different tumor tissues
	3.2 CSFs represent an activated cluster of CAFs that may enhance ECM remodeling and inhibit antitumor immune response
	3.3 CSFs mainly transform from normal fibroblasts
	3.4 High CSF proportion is associated with poor prognosis in bladder cancer and lung adenocarcinoma
	3.5 Highly expressed ECM-associated genes in CSFs are also associated with patients’ prognosis
	3.6 CSFs specifically express membrane proteins FAP, LRRC15, ITGA11 and SPHK1

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


