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Background: Colon adenocarcinoma (COAD) is a heterogeneous tumor and
senescence is crucial in the occurrence of cancer. This study aimed to identify
senescence-based subtypes and construct a prognostic signature to predict the
prognosis and guide immunotherapy or chemotherapy decisions for COAD patients.

Methods: Based on the single-cell RNA sequencing (scRNA-seq) data of 13 samples
from theGene ExpressionOmnibus (GEO) database, we assessed cellular senescence
characteristics. Transcriptome data, copy number variations (CNVs) and single
nucleotide variations (SNVs) data were obtained from The Cancer Genome Atlas
(TCGA) database. GSE39582 and GSE17537 were used for validation. Senescence
subtypes were identified using unsupervised consensus clustering analysis, and a
prognostic signature was developed using univariate Cox analysis and least absolute
shrinkage and selection operator (LASSO). Response of risk groups to chemotherapy
was predicted using the half-maximal inhibitory concentration (IC50) values. We
further analyzed the relationship between risk gene expression andmethylation level.
The prediction performance was assessed by nomogram.

Results: Senescence-related pathways were highly enriched in malignant cells and
bulk RNA-seq verified cellular senescence. Three senescence subtypeswere identified,
inwhichpatients in clust3 hadpoorest prognosis andhigher T stage, accompaniedwith
higher tumormutation burden (TMB) andmutations, activated inflammatory response,
more immune cell infiltration, and higher immune escape tendency. A senescence-
based signature using 11 genes (MFNG, GPRC5B, TNNT1, CCL22, NOXA1, PABPC1L,
PCOLCE2,MID2, CPA3, HSPA1A, andCALB1) was established, and accurately predicted
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a lower prognosis in high risk patients. Its robustness was validated by external cohort.
Low risk patients were more sensitive to small molecule drugs including Erlotinib,
Sunitinib, MG-132, CGP-082996, AZ628, Sorafenib, VX-680, and Z-LLNle-CHO. Risk
score was an independent prognostic factor and nomogram confirmed its reliability.
Four risk genes (CALB1, CPA3, NOXA1, and TNNT1) had significant positive correlation
with theirmethylation level, while six genes (CCL22,GPRC5B,HSPA1A,MFNG, PABPC1L,
and PCOLCE2) were negatively correlated with their methylation level.

Conclusion: This studyprovidesnovel understandingofheterogeneity inCOADfromthe
perspective of senescence, and develops signatures for prognosis prediction in COAD.

KEYWORDS

colon adenocarcinoma, senescence, subtypes, prognosis, risk score, nomogram,
chemotherapy drugs

Introduction

Colorectal cancer (CRC), is the most common diagnosed
gastrointestinal malignant tumor, and ranks third in the morbidity
and second in the mortality with an estimated 3.2 million new
COAD cases in 2040 worldwide (Xi and Xu, 2021). The prevalence of
CRC is 0.56 million in 2020, and will increase to 0.91 million in 2040 in
China (Xi and Xu, 2021). Among these, colon adenocarcinoma (COAD)
accounts for 90% of cases (Munro et al., 2018). Patients with Stage 1-
2 have a 5-year survival rate of 82%–94%, while it reduces to 67% for
patients with stage 3 and advanced metastatic or stage 4 have a dismal 5-
year survival rate of only 11% (Sagaert et al., 2018). Various treatments
such as radical surgery followed by adjuvant chemotherapies can be used
for treatment of resectable COAD patients, and palliative chemo- or
radiotherapy is optimal for unresectable COAD patients to prolong their
life. It has been recognized that COAD is a malignancy with intertumor
and intratumor heterogeneity, which contribute to difference of prognosis
and therapy response (Punt et al., 2017). Hence, it is great of importance
to stratify patients with COAD and develop novel markers to accurately
predict prognosis and therapy response.

Over the past decades, high throughput sequencing technology has
been widely used in various fields of biology and medicine, greatly
promoting relevant research and clinical application (Lightbody et al.,
2019). The traditional RNA sequencing technology (bulk RNA-seq) is
applied to determine gene expression profiles, isoform expression,
alternative splicing and single-nucleotide polymorphisms on basis of
tissue samples, which contains various cell types (Kuksin et al., 2021).
On the contrast, single-cell RNA sequencing (scRNA-seq), a novel
technology can detect the gene expression patterns for each transcript
within single cell and distinguish cell subtypes (Lähnemann et al., 2020).
Recently, scRNA-seq has been employed widely used in different cell
type of various species, especially in human and mouse, to assess
biological variability (Papalexi and Satija, 2018).

Cellular senescence is a cell state of cell cycle arrest that can eliminate
damaged cells and promote tissue remodeling. Cellular senescence is
predominantly elicited in response to intrinsic and extrinsic stimulus,
such as oncogene activation, stress, DNA damage, CDKN2A locus
derepression, mitochondrial dysfunction (Hernandez-Segura et al.,
2018). Unfortunately, compelling evidence has suggested that cellular
senescence is implicated in pathological status, in which senescence-
associated secretory phenotype (SASP) affects the clearance of senescent
cells and further results the decline of tissue function (Muñoz-Espín and
Serrano, 2014), and secret pro-inflammatory cytokines including

interleukin (IL)-6 and IL-8, chemokines and growth factors, which
contributes to tumorigenesis in aged organisms (Herranz and Gil,
2018). Cellular senescence has been studied in various cancer types and
compelling evidences have revealed that cellular senescence is associated
with cancer prognosis (Dai et al., 2022a; Domen et al., 2022a; Domen et al.,
2022b). Development of senescence-related classification and
characterization of senescence-based signature have attracted much
attention in tumor research (Feng et al., 2022a; Hong et al., 2022).
However, the mechanisms of cellular senescence in COAD, as well as
the specific prognostic signatures are poorly understood. Therefore, this
study identified senescence-based subtypes based on scRNA-seq and shed
novel insights into potential roles of cellular senescence in COAD
heterogeneity. We further constructed a prognostic risk model in The
Cancer GenomeAtlas (TCGA)-COAD,which offered a novel approach to
predict clinical outcomes in patients with COAD.

Material and methods

Single-cell RNA sequencing (scRNA-seq)
data collection and pre-processing

The scRNA-seq expression profiles of 13 samples (GSE161277)
(Zheng et al., 2022) were downloaded from Gene-Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database. To
comprehensively understand the profile of cellular senescence-
related genes in COAD patients, we filtered scRNA-seq data by
setting each gene expressed in at least three cells, and each cell
expressing at least 250 genes. The percentage of mitochondria and
rRNA in each cell was calculated using the PercentageFeatureSet
function ensuring 100 < genes < 6,000 and mitochondrial
content <5% in each cell. Data of 13 samples were normalized
using log-normalization method, and the FindVariableFeatures
function was used to identify variable features based on variance
stabilization transformation (“vst”) and select highly variable genes.

Transcriptome data collection and pre-
processing

The gene expression profiles and clinical information of COAD
were obtained from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) project, including 432 tumor samples
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and 41 para-carcinoma tissue samples. The RNA-seq data
standardization method was TPM normalization. To process
TCGA-COAD data, samples lacking clinical follow-up information,
survival time, and survival status were eliminated from further analysis,
and all samples with survival time more than 0 days. Ensembl gene IDs
were further transformed into gene symbol IDs. Then, the gene with
multiple gene symbol IDs was normalized as median. We also
downloaded the gene expression profiles of 573 COAD samples in
GSE39582 (Marisa et al., 2013) and 55 COAD samples in GSE17537
(Xiao et al., 2022) from GEO database. Among these, clinical follow-up
information, survival time, and survival status were excluded from this
study. We converted ensembl gene IDs to gene symbol IDs. The probe
related to several genes was removed, and the gene withmultiple probes
was expressed as median.

Masked copy number segment data of COAD were collected from
TCGA and progressed by gistic2 software. Single nucleotide variations
(SNVs) data of COAD that was derived using mutect2 software were
obtained from TCGA cohort. Moreover, we obtained methylation data
from TCGA. Methylation data was processed with following steps: 1)
KNN function in “impute” R package was used to complete the NA
value. 2)We converted beta value toM value. 3)We removed the cross-
reactive CpG sites as previously reported (Chen et al., 2013). 4) We
removed the unstable genomic methylation sites, that was, removed the
CpG sites and single nucleotide sites on the sex chromosome. 5) Tumor
samples (solid tumors) were retained in this study.

Collection of senescence-related pathways

Senescence-related pathways were retrieved in the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/
index. jsp).

Screening for cell subpopulations and
marker genes

Subsequently, all genes were scaled through the ScaleData function,
and principal components analysis (PCA) was conducted to reduce the
dimensionality. The FindNeighbors and FindClusters functions were used
to cluster cells (Resolution = 0.1). Further, we reduced the t-distributed
stochastic neighbor embedding (TSNE) dimensionality using RunTSNE
founction and then annotated the cell subpopulations with some classic
markers of immune cells (Zheng et al., 2022). The FindAllMarkers
function was employed to identify marker genes with logFC = 0.5 and
Minpct = 0.5 under the statistical threshold of adjusted p < 0.05.
“clusterProfiler” package (Yu et al., 2012) was implemented for Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

Cellular senescence characteristics in tumor
microenvironment (TME) of single cell

The number of DNA copies was calculated by “copycat” package
(Gao et al., 2021) under the threshold of at least 5 genes in each
chromosome. We distinguished aneuploidy (malignant cells) and
diploid (non-malignant cells) with at least 25 genes selected for each
segment and KS. cut = 0.15.We downloaded the cellular senescence-

related pathways from gene set enrichment analysis (GSEA, http://
www.gsea-msigdb.org/gsea/index.jsp), and calculated single sample
GSEA (ssGSEA) scores of aneuploidy and diploid through “GSVA”
package (Hänzelmann et al., 2013). The distribution was compared
using the wilcox. test, and p < 0.05 was considered statistically
significant.

Verification of cellular senescence based on
bulk RNA-seq data

Furthermore, we used bulk RNA-seq data to analyze abnormal
cellular senescence in tumor and normal COAD samples. GSEA was
applied to performed pathway enrichment analysis, and ssGSEA
scores of cellular senescence-related pathways were calculated in
tumor and normal COAD samples. The distribution was compared
using the wilcox. test.

Identification of senescence subtypes

Based on the above analysis, genes in GOBP_REPLICATIVE_
SENESCENCE, REACTOME_CELLULAR_SENESCENCE, REACT
OME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESC
ENCE, and KEGG_P53_SIGNALING_PATHWAY were selected for
univariate Cox regression analysis using “survival” package (Therneau
and Lumley, 2015) in R. Candidates with p < 0.05 were considered as
prognosis-related genes. A consensus clustering analysis was performed
to categorize the 432 TCGA-COAD samples based on the expression
profiles of the 16 senescence-related genes using “Consensus ClusterPlus”
package (Wilkerson et al., 2013) with “Partitioning Around Medoids”
(PAM) algorithm (Kaufman and Rousseeuw, 1990) and Euclidean
distancing, in procedures with 500 bootstraps containing 80% COAD
patients. 2–10 clusters were tested. The cumulative distribution function
(CDF) and consensus matrix were performed identify the optimal
subtypes. Kaplan-Meier curves of identified subtypes were generated
in TCGA cohort and GSE39582 cohort.

Analysis of clinicopathologic characteristics
among senescence subtypes

We further compared the distributions of clinicopathologic
characteristics (gender, T stage, N stage, M stage, Stage, age, and
survival status) among three senescence subtypes in TCGA cohort
using Chi square test. Besides, the distributions of subtypes in T stage
and survival status (alive or dead) were also analyzed using Sankey
diagram.

Differences in mutation characteristics
among senescence subtypes

We integrated copy number variations (CNVs) of TCGA-
COAD patients through gistic2 software with a confidence level
of 0.9 and hg38 as the reference genome to analyze the differences of
CNVs among the three subtypes. “maftools” package (Mayakonda
et al., 2018) was employed to analyze SNVs data in TCGA cohort.
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Additionally, comparisons of TMB and the number of genetic
mutations were carried out using wilcox. test among three subtypes.

Relationship between senescence subtypes
and enriched pathway characteristics

To evaluate the relationship between senescence subtypes and
epithelial-to-mesenchymal transition (EMT), we calculated ssGSEA
scores of EMT in each TCGA-COAD sample on basis of 200 genes
of HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION in
MSigDB (Yu et al., 2021). We calculated hypoxia score of genes of
HALLMARK_HYPOXIA using ssGSEAmethod. Based on 24 genes as
previously reported (Masiero et al., 2013), we scored angiogenesis by
ssGSEA method. Differential analysis of these ssGSEA scores were
performed using wilcox. test. Meanwhile, 10 tumor-related pathways
were obtained (Sanchez-Vega et al., 2018) and the enrichment score was
calculated by ssGSEA, followed by kruskal. test for comparisons.

Relationship between senescence subtypes
and immune characteristics

We evaluated the immune cell infiltration in TCGA cohort by
ESTIMATE algorithm, and calculated the score of 28 kinds of
immune cells (Charoentong et al., 2017) by ssGSEA. Afterwards,

we downloaded the genes related to inflammation through GSEA
and calculated their ssGSEA scores. Comparisons were analyzed
using kruskal. test. The tumor immune dysfunction and
exclusion (TIDE) is a computational method that can
determine the signatures of T cell dysfunction by using gene
expression profiling in tumors interacts with the cytotoxic T
lymphocytes infiltration level to affect patient survival and
response to immunotherapy (Jiang et al., 2018). A high TIDE
score indicates a low response rate to immune checkpoint
inhibition (ICI) therapy. Thus, the TIDE algorithm (http://
tide.dfci.harvard.edu/) was employed to predict the potential
clinical effects of immunotherapy in subtypes.

Construction and validation of senescence-
based risk model

To identify the differential expressed genes (DEGs), “limma” package
(Ritchie et al., 2015) in R was applied to perform differential analysis when
clust1 vs. non-clust1, clust2 vs. non-clust2 and clust3 vs. non-clust3. Under
the threshold of p < 0.05 and |log2 (Fold Chage)| > log2 (1.5), 2,085 DEGs
were identified and selected for univariate Cox regression analysis using
coxph function embedded in “survival” package, and candidates with p <
0.005 were selected as genes that have greater impact on prognosis. To
reduce the number of genes, the LASSO Cox regression was performed
using “glmnet” package (Hastie et al., 2021) in R. Stepwise multivariate

FIGURE 1
Screening for cell subpopulations and marker genes. (A), TSNE diagrams of 5 samples. (B), TSNE diagrams of 17 cell subpopulations. (C), TSNE
diagrams of 8 subpopulations after annotation. (D), The number of cells of each subpopulation and its proportion in different samples. (E), Top 5 maker
genes in each subpopulation and the enrichment analysis.
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regression analysis with stepwise Akaike information criterion (AIC) was
used to determine genes for risk model construction.

The risk score formula related to the prognostic signature was as
follows: RiskScore = 0.417*MFNG + 0.424*GPRC5B +
0.137*TNNT1−0.389*CCL22 + 0.308*NOXA1 + 0.149*PABPC1L
+ 0.338*PCOLCE2 + 0.337*MID2−0.215*CPA3 + 0.261*HSPA1A +
0.161*CALB1. After calculating risk score in TCGA cohort,
“timeROC” package (Blanche, 2015) was employed to carry out
receiver operating characteristic (ROC) analysis with areas under
the ROC curve (AUCs) for 1, 3, and 5 years. Finally, risk score was
standardized as zscore, and TCGA-COAD samples were divided
into high-risk group (zscore >0) and low-risk group (zscore <0).
Kaplan-Meier curves were generated between high- and low-risk
groups.

Associations of senescence-based risk score with
clinicopathologic characteristics and biological characteristics.

To explore the relationship between RiskScore score and
clinical characteristics of COAD patients, we analyzed the
differences of risk score among clinicopathologic
characteristics including gender, age, T stage, N stage, M

stage, Stage, and clusters in TCGA-COAD cohort.
Additionally, we performed correlation analysis between
senescence-based risk score and biological characteristics
(hypoxia, angiogenesis, and metastasis) with rcorr function in
“Hmisc” package (Harrell and Harrell, 2019). Further, we used
“GSVA” package to score pathways in KEGG, and performed
correlation analysis between senescence-based risk score and
pathways with |cor| > 0.2 and p < 0.05. We compared the
scores of senescence-related pathways between high- and low
risk groups. Wilcox. test was applied for comparisons.

Prediction of responsiveness to
chemotherapy

To predict the responsiveness to traditional chemotherapy
drugs, the half-maximal inhibitory concentration (IC50) values
were evaluated using the “pRRophetic” package. Comparisons of
IC50 values between high- and low-risk groups were performed
using wilcox. tests.

FIGURE 2
Cellular senescence characteristics in single cell TME. (A), TSNE diagrams of malignant cells and non-malignant cells in single cell. (B), Cell
proportions of malignant cells and non-malignant cells in 13 samples. (C), Comparisons of senescence-related pathway scores between malignant cells
and non-malignant cells.
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Relationship between risk gene expression
and methylation

Based on the methylation data of the TCGA dataset, we
constructed the methylation level of the CpG sites in the risk
model and calculated the mean values of methylation level at
different CpG sites of the same gene. The relationship between
risk gene expression and the methylation level was analyzed using
Pearson correlation analysis.

Construction of nomogram

Furthermore, the univariate and multivariate Cox regression
analysis were utilized to determine whether senescence-based risk
score is an independent predictor of prognosis. To predict the
clinical outcomes of COAD patients, a nomogram based on risk
score and clinicopathological characteristics was constructed with
calibration curve. To evaluate the accuracy and reliability of this
model, decision curve analysis (DCA) was established.

Statistical analysis

Data was processed and analyzed using (version 3.6.0, https://
www.r-project.org/) and Seurat R package (Gribov et al., 2010)
(version 3.6.3, https://satijalab.org/seurat/). Wilcox. test or
kruskal. test was applied to determine the significant differences

and p < 0.05 was considered statistically significant. Log-rank test
was used to determine the statistically significant for Kaplan-Meier
curves.

Results

Single cell RNA-seq analysis and marker
gene recognition of COAD

Supplementary Figure S1A showed the cell number of
13 samples before and after filtering. As displayed in
Supplementary Figure S1B, 13 samples overlapped significantly
between the TSNE diagrams. After PCA for dimension reduction
(Supplementary Figure S1C, D), we select dim = 35 for further
analysis.

We clustered cells based on dim = 35 and obtained 17 cell
subpopulations. Figure 1A showed t-SNE-maps of adenoma,
blood, carcinoma, normal and para-cancer samples. Figure 1B
portrayed 17 cell subpopulations after clustering. Then, we
annotated the cell subpopulations with some classic markers
of immune cells. Supplementary Figure S2 provided TSNE
diagram of marker gene expression. Figure 1C showed the
clustering characteristics of annotated cell subpopulations.
Subpopulations 2, 3, 5, 7, 9, 11, and 12 were epithelial cells
expressing EPCAM; Subpopulations 0 and 6 were natural killer
(NK) T cells expressing CD3D, KLRD1, and CD8A.
Subpopulations 1 and 10 were follicular B cells expressing

FIGURE 3
Verification of cellular senescence based on bulk RNA-seq data. (A), The results of GSEA enrichment analysis in TCGA cohort. (B), Four key pathways
of GSEA analysis in TCGA cohort. (C), Heatmap of ssGSEA scores of senescence-related pathways between tumor and para-cancer tissues in TCGA
cohort. *p < 0.05, **p < 0.01, and ***p < 0.001.
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MS4A1; Subpopulation 8 was plasma B cells expressing MZB1;
Subpopulation 4 was monocyte derived macrophages (MDMD)
expressing CD68, CD14, and FCGR3A; Subpopulation 13 was
fibroblasts expressing DCN; Subpopulations 15 and 16 were mast
cells expressing KIT. Accordingly, we counted the number of
cells of each subpopulation and calculated its proportion in
different samples (Figure 1D). The subpopulations epithelial
and NK T had larger number of cells than others. Figure 1E
showed top 5 maker genes in each subpopulation and the
enrichment analysis showed that marker genes were closely
associated with human T-cell leukemia virus 1 infection,
Th17 cell differentiation, hematopoietic cell lineage, and
Th1 and Th2 cell differentiation.

Cellular senescence characteristics in TME

To characterize cellular senescence in TME of single cell, we
distinguished aneuploidy and diploid in cell subpopulations. The
results revealed that there were 12,362 aneuploid (malignant cells)
and 30,833 diploid (non-malignant cells), and their TNSE-maps were
shown in Figures 2A, B suggested that there are more malignant cells in

cancer tissues, but fewer malignant cells in para-cancer tissues. Further
we calculated the cellular senescence-related pathway scores using the
ssGSEA method in malignant cells and non-malignant cells. Higher
scores of senescence-related pathways were found in malignant cells
than that of non-malignant cells (p < 0.0001) (Figure 2C).

Cellular senescence was verified based on
bulk RNA-seq data

To further verify the cellular senescence characteristics, we
evaluated the senescence-related pathways in tumor and para-
cancer tissues based on bulk RNA-seq data. GOBP_
REPLICATIVE_SENESCENCE, REACTOME_CELLULAR_
SENESCENCE, REACTOME_DNA_DAMAGE_TELOMERE_
STRESS_INDUCED_SENESCENCE, and KEGG_P53_
SIGNALING_PATHWAY were significantly enriched in
tumor tissues in TCGA cohort (Figures 3A, B). Through
calculating senescence-related pathway scores using the
ssGSEA method, several pathways including RGOBP_
REPLICATIVE_SENESCENCE, REACTOME_CELLULAR_
SENESCENCE, REACT OME_DNA_DAMAGE_TELOMERE_

FIGURE 4
Three senescence subtypes were identified. (A), Univariate cox regression analysis of senescence-related genes. (B), Consensus CDF in TCGA
cohort. (C), Consensus matrix heatmap defining three clusters (k = 3). (D-E), Kaplan-Meier curves of three subtypes in TCGA cohort and in
GSE39582 cohort.
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STRESS_INDUCED_SENES CENCE, and KEGG_P53_SIGNALING_
PATHWAY had higher senescence scores in tumor tissues than that of
para-cancer tissues (p < 0.001) (Figure 3C).

Three senescence subtypes were identified

We performed univariate Cox regression analysis using genes from
these four enriched pathways above (Supplementary Table S1). A total of
16 genes associated with prognosis were identified (Figure 4A). To
further identify the subtypes, a consensus clustering analysis was
conducted to categorize the 432 TCGA-COAD samples based on the
expression profiles of the 16 senescence-related genes. From the results of
CDF Delta area, cluster = 3 had a relatively stable clustering effect

(Figure 4B). Considering that consensus matrix k = 3 is a preferable
choice, we divide the whole cohort into three subtypes (Figure 4C). Next,
Kaplan-Meier curves revealed significant variations among the three
subtypes, and clust3 had the lowest survival probability while clust1 had
the best prognosis inTCGA (p=0.0021) (Figure 4D). Similar results were
also observed in GSE39582 cohort (p = 0.0027) (Figure 4E).

Clust3 had poorest prognosis and higher T
stage

We subsequently compared the distribution of clinicopathologic
characteristics (gender, T stage, N stage,M stage, Stage, age, and survival
status) among three subtypes in TCGA cohort. The results found

FIGURE 5
Clust3 had poorest prognosis and higher T stage. (A), Distribution of clinicopathologic characteristics among three subtypes in TCGA cohort. (B),
Sankey diagram detailed the distribution of three subtypes in T stage and survival status.
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significant differences in T stage and survival status among the three
subtypes (Figure 5A). Additionally, Sankey diagram detailed the
distribution of three subtypes in T stage and survival status
(Figure 5B). The patients with clust3 had poorest prognosis and
higher T stage (predominantly in T3 and T4 stage).

Clust3 exhibited higher TMB and mutations

Furthermore, mutation characteristics were further evaluated
among senescence subtypes. The CNVs were remarkably changed
among three subtypes (Figure 6A). Meanwhile, the results from
SNVs showed APC (69%), TP53 (51%), TTIN (49%), and KRAS
(39%) exhibited higher mutation frequencies among top 15 mutated
genes (Figure 6B). Besides, TMB and the number ofmutated genes were
both increased in clust3 compared with that of clust1 (Figures 6C, D).

Senescence subtypes were associated with
EMT, hypoxia, angiogenesis and tumor-
related pathways

In tumors, cellular senescence promotes the extracellular matrix
cleavage resulting in growth factors release that can promote

epithelial-to-mesenchymal transition (EMT), which leads to tumor
metastasis. Hence, we clarified the relationship between senescence
subtypes and EMT score. EMT score was distinctly different
among senescence subtypes and clust3 has the highest EMT score
compared with that of clust1 and clust2 (Figure 7A). At the same
time, hypoxia and angiogenesis scores were higher in clust3 than
that of clust1 and clust2 (Figures 7B, C). Figure 7D found that
9 tumor-related pathways were significantly altered in the three
subtypes, including cell cycle, HIPPO, MYC, NOTCH, NRF1,
PI3K, TGF-beta, RAS, TP53 and WNT.

Relationship between senescence subtypes
and immune characteristics

Immune infiltration scores including StromalScore, ImmuneScore,
and ESTIMATEScore were remarkably different among three subtypes
(Figure 8A), and we found that clust3 had a higher degree of immune
infiltration. Significant changes in immune cells infiltration were found
among the three subtypes (Figure 8B). Clust3 also had higher scores of
several inflammation-related pathways such as JAK-STAT signaling
pathway, NF-Kappa B signaling pathway, Toll-like receptor signaling
pathway, B cell receptor signaling pathway, T cell receptor signaling
pathway, and inflammatory response (Figures 8C–H). Furthermore,

FIGURE 6
Clust3 exhibited higher TMB and mutations. (A), Peaks of CNVs, amplified (red) genes and deleted (blue) genes among three subtypes. (B), Top
15 mutated SNV genes among three subtypes. (C), TMB alterations among three subtypes. (D), The number of mutated genes among three subtypes. Ns
represents p > 0.05; *p < 0.05.
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TIDE score was higher in clust3 (Figure 8I), indicating more prone to
immune escape of clust3.

Construction and validation of senescence-
based risk model

Through differential analysis among the three subtypes,
2,085 DEGs were identified, which were used for univariate
Cox regression analysis. 194 genes that have greater impact on
prognosis were selected, including 180 risk genes and
14 protective genes (Figure 9A). To reduce the number of
genes, LASSO Cox regression was performed. With the
gradual increase of lambda, the number of independent
variable coefficients tending to zero increased gradually
(Figure 9B). 10-fold cross-validation was utilized and the
confidence interval under each lambda was shown in
(Figure 9C). When lambda = 0.0347, 25 genes were selected
for further analysis. Based on stepwise multivariate regression
analysis with AIC, 11 genes were finally identified (MFNG,
GPRC5B, TNNT1, CCL22, NOXA1, PABPC1L, PCOLCE2,
MID2, CPA3, HSPA1A, and CALB1). Subsequently, survival
analysis in TCGA cohort revealed that patients with high risk
had lower prognosis than that of patients with low risk (p <
0.0001) with 1 year AUC of 0.81, 3-year AUC of 0.77, and 5-year

AUC of 0.75 (Figure 9D). To validate its robustness, survival
analysis was performed in GSE39582 and GSE17537 cohort. High
risk patients had lower prognosis than that of low risk patients in
GSE39582 (p < 0.0001) and in GSE17537 (p = 0.006) with good
performance in prognosis prediction (Figures 9E, F).

Associations of risk score with
clinicopathologic characteristics and
biological characteristics

To further clarify the relationship between risk score and
clinicopathologic characteristics, we compared the differences of
risk score in clinicopathologic characteristics in TCGA cohort
and found that patients with higher clinical stage (T stage, N
stage, M stage and Stage) had higher risk scores (Figure 10).
Besides, patients with clust3 had higher risk score (Figure 10). To
evaluate the relationship between risk score and biological
characteristics, we performed the correlation analysis of risk
score with hypoxia, angiogenesis, and EMT scores. Figures
11A–C showed that hypoxia, angiogenesis, and EMT scores
were both positively correlated with risk score. Next, we
performed correlation analysis between senescence-based risk
score and underlying regulatory KEGG pathways to find risk
score-related pathways (Figure 11D) and further statistics

FIGURE 7
Association of senescence subtypes between EMT, hypoxia, angiogenesis and tumor-related pathways. (A), Box plots of EMT score among three
subtypes in TCGA cohort. (B), Box plots of hypoxia score among three subtypes in TCGA cohort. (C), Box plots of angiogenesis score among three
subtypes in TCGA cohort. (D), Box plots of 10 tumor-related pathways among three subtypes in TCGA cohort. Ns represents p > 0.05; *p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001.
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revealed that only some pathways were significant different
between high- and low-risk group (Figure 11E). Moreover, we
compared the scores of senescence-related pathways between
high- and low risk groups. The results showed that high risk
patients exhibited higher scores in GOBP_AGING, GOBP_
MUSCLE_ATROPHY, and GOBP_NEGATIVE_REGULA
TION_OF_CELL_AGING; while low risk patients had higher
scores in GOBP_STRESS_INDUCED_PREMATURE_SENESC
ENCE, KEGG_P53_SIGNALING_PATHWAY, and REACTO

ME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENE
SCENCE (Supplementary Figure S3).

Prediction of responsiveness to
chemotherapy

Furthermore, we assessed the responsiveness to traditional
chemotherapy drugs between high- and low-risk groups. As

FIGURE 8
Association of senescence subtypes with immune characteristics. (A), Box plots of immune infiltration scores among three subtypes. (B), Box plots of
immune infiltration cells among three subtypes. (C–H), Box plots of JAK-STAT signaling pathway, NF-kappa B signaling pathway score, toll-like receptor
signaling pathway, B cell receptor signaling pathway, T cell receptor signaling pathway and inflammatory response scores among three subtypes. (I),
Alteration of TIDE score among three subtypes. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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displayed in Figure 12, low risk patients exhibited significant
lower IC50 values of Erlotinib (p < 0.001), Sunitinib (p < 0.001),
MG-132 (p < 0.001), CGP-082996 (p < 0.01), AZ628 (p < 0.01),
Sorafenib (p < 0.001), VX-680 (p < 0.01), and Z-LLNle-CHO
(p < 0.01) than that of high risk patients, which indicated that
low risk patients were more sensitive to Erlotinib, Sunitinib,
MG-132, CGP-082996, AZ628, Sorafenib, VX-680, and
Z-LLNle-CHO.

Relationship between risk gene expression
and methylation level

Moreover, we analyzed the methylation level for 11 risk
genes in TCGA (Supplementary Figure S4) and performed
correlation analysis between risk gene expression and
methylation level. Figure 13 displayed that the expression of
CALB1, CPA3, NOXA1, and TNNT1 had significant positive

FIGURE 9
Construction and validation of senescence-based risk model. (A), A total of 2,085 promising candidates were identified among the DEGs. (B),
Independent variable coefficients changed with lambda increase. When lambda = 0.00347, 25 genes were identified. (C), 10-fold cross validation to
determine the confidence interval under each lambda. (D–F), Survival analysis with ROC curves and Kaplan-Meier curves in TCGA cohort,
GSE39582 cohort and GSE17537 cohort.

Frontiers in Pharmacology frontiersin.org12

Feng et al. 10.3389/fphar.2023.1121634

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121634


correlation with their methylation level; whereas the
expression of CCL22, GPRC5B, HSPA1A, MFNG, PABPC1L,
and PCOLCE2 had significant negative correlation with their
methylation level.

Construction of nomogram

On basis of univariate and multivariate Cox regression
analysis, the results showed that risk score was an
independent prognostic factor (Figure 14A). To better
quantify the risk assessment and survival probability of COAD
patients, we constructed a nomogram to estimate 1-, 3-, and 5-
year OS using the risk score and clinicopathological
characteristics. Figure 14B revealed that risk score had the
most impact on OS of COAD patients. The calibration curves
of this nomogram showed high consistency between the observed
and predicted values (Figure 14C). To evaluate the reliability of
this model, DCA analysis was conducted and confirmed that both
nomogram and risk score had the most powerful in predicting
prognosis (Figure 14D).

Discussion

Senescent cells are closely related to aging and pathological
status. Cellular senescent is crucial in tumorigenesis through

the SASPs and the heterogeneity of senescence-associated
genes promotes the progression of tumor and its escape
from anti-tumor therapy (Junaid et al., 2022). Thus, it is
believed that cellular senescence is involved in cancer
heterogeneity. A previous study has identified several
senescence-associated gene signatures using transcriptome
data from TCGA database, which can predict clinical
outcomes and responses to immunotherapy in patients with
head and neck squamous cell carcinoma (Wang et al., 2022).
Another study has developed the senescence-related subtypes,
established a prognostic risk model, and further revealed their
potential roles in TME in breast cancer only using
transcriptome data from GEO cohort (Zhou et al., 2022). In
the present study, we downloaded the scRNA-seq data of
13 COAD samples from GEO database and demonstrated
that senescence-related pathways were highly expressed in
malignant cells than that of non-malignant cells, indicating
that cellular senescence was largely associated with
heterogeneity of TME in COAD at single cell level.
Furthermore, we identified three senescence subtypes and
found clust3 had poorest prognosis, manifested with higher
T stage, elevated TMB, increased pathway scores (EMT,
hypoxia and angiogenesis), activated inflammatory response,
and immune cell infiltration as well as immune escape
tendency.

Immune cell infiltration serves as an indicator of the immune
microenvironment in tumor. Notably, we found that

FIGURE 10
Distribution of risk score in different clinicopathologic characteristics. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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clust3 patients with poor prognosis had extremely higher
expression levels of myeloid-derived suppressor cells (MDSCs)
and macrophages than that of other subtypes. It has been

reported that MDSCs are immature myeloid cells with
heterogeneity, and its accumulation suppress anti-tumor
immunity particular suppressing T cells in cancer patients

FIGURE 11
Associations of risk score with biological characteristics. (A–C), Correlation analysis of risk score with hypoxia, angiogenesis, and EMT scores. (D),
Scatter plots of correlation between risk score and underlying regulatory KEGG pathways. (E), Box plots of underlying regulatory KEGG pathway scores
between high- and low-risk group. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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FIGURE 12
Prediction of responsiveness to chemotherapy. Estimated IC50 values for traditional chemotherapy drugs including erlotinib, sunitinib, MG-132,
CGP-082996, AZ628, sorafenib, VX-680, and Z-LLNle-CHO. ***p < 0.001, and ****p < 0.0001.

FIGURE 13
Correlation analysis was performed between risk gene expression and methylation level.
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(Ma et al., 2019). Additionally, MDSCs also directly promote
tumor growth and metastasis. MDSCs exert these effects mainly
through inhibiting T cell proliferation and T cell migration,
triggering apoptosis of T cells and NK cells, suppressing
immune effector cell functions, and repressing anti-tumor T
cell-mediated reactivity by interaction with PD-1 receptor
(Umansky et al., 2016). Moreover, macrophage infiltration in
solid tumors accounts for poor outcomes and correlates with
chemotherapy resistance in most cancers, which contributes to

development and progression of cancer via provoking
angiogenesis, metastasis, and immunosuppression (Cassetta
and Pollard, 2018). In this study, highly expressed MDSCs
might exert inhibitory effects on T cells and NK cells,
inducing a decline of immune function in TME of COAD
patients. Besides, macrophage infiltration might induce the
suppression of immunity. We also found that patients with
poor prognosis had a high TIDE score that represented a low
response rate to ICI therapy. Collectively, MDSC infiltration,

FIGURE 14
Nomogram construction for predicting prognosis of COAD patients. (A), Univariate and multivariate Cox regression analysis of prognostic values of
risk score and clinicopathological characteristics. (B), Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients. (C), Calibration curves for
validating the established nomogram. (D), Decision curve analysis o of nomogram. *p < 0.05, **p < 0.01, and ***p < 0.001.
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macrophage infiltration and low response rate to ICI therapy
contribute to poor clinical outcome of COAD patients in clust3.
Synergistically, EMT, hypoxia, angiogenesis, and activated
inflammatory response were responsible for poor prognosis
of COAD patients.

Highly variant tumors are considered to have an increased
burden of new antigens that may lead to immunogenicity. It has
been recognized that TMB is a potential immune-response marker
predicting ICI therapy (Choucair et al., 2020). As a tumor
suppressor gene, APC is highly mutated in CRC (about 70%),
and its mutation is important in colorectal tumorigenesis (Zhang
and Shay, 2017). Recently, a study has analyzed the clinical
characterizes and gene mutations in APC-mutant type and
APC-wild-type Chinese CRC patients and confirms that APC
mutation can be used as a promising biomarker to predict the
immunotherapy responsiveness (Feng et al., 2022b). Another
tumor suppressor gene TP53, is thought to be a major driver
for CRC with approximately 50% mutation frequency (Timar and
Kashofer, 2020). It has been reported that TP53 mutation is closely
associated with rectum tumor, advanced stage and dismal
prognosis of CRC patients (Li, 2019). Additionally, RAS is the
most frequent mutated gene in human cancers. Interestingly,
KRAS and APC are very common co-mutated (about 80%) and
co-mutation of KRAS with TP53 is about 40% in CRC (Timar and
Kashofer, 2020). In this study, APC (69%), TP53 (51%), TTIN
(49%), and KRAS (39%) exhibited higher mutation frequencies
among top 15 mutated genes. The TMB and the number of
mutated genes were both increased in clust3 than that of clust1.
These results indicated that the higher TMB and large mutations
contributed to poor prognosis of COAD patients. Notably, we
found that TTIN (49%) was highly mutated except for the known
APC, TP53, and KRAS, implying that TTINmutation is a potential
genetic alteration of COAD heterogeneity.

Furthermore, 11-senescence-related gene-based prognostic
risk model was established and patients with high risk had
lower prognosis. MFNG is a kind of glycosyltransferases that
activates Notch signaling and plays an important role in breast
cancer, whereas inhibition of MFNG may attenuate the triple-
negative breast cancer (Mugisha et al., 2022). A whole
transcriptomics analysis has revealed that GPRC5B is elevated
in immuno-activated breast cancer cells, while apigenin induces a
94% reduction in GPRC5B expression (Bauer et al., 2019). A recent
research of RNA-seq has showed TNNT1 is a representative
prognostic mRNAs that is associated with the prognosis of CRC
patients (Deng et al., 2022). It has confirmed that high expression
of CCL22 is related to a better prognosis in patients with colon
cancer, and CCL22 as a prognostic DEG is used to construct a
cellular senescence-related risk model in colon cancer (Dai et al.,
2022b). NADPH oxidase 1 (NOX1), derived reactive oxygen
species and modulated by NOXA1, is crucial in the progression
of cancer (Attri et al., 2020). PABPC1L is a key gene in tumor
progression and postoperative prognosis, while inhibition of
PABPC1L suppresses CRC cell growth and metastasis (Wu
et al., 2019). Meanwhile, PABPC1 and FOXC2 bind to cis-
regulatory elements and inhibit cellular senescence through
downregulating p16INK4a in endothelial cells (Wu et al., 2022).
Similarly, PCOLCE2 is a novel senescence-related gene that is used
to establish a prognostic model in CRC (Yao et al., 2021). MID2, as

a promoter of STAT3, is interacted with protein MORC4, which
regulates DNA damage response and gene transcription in breast
cancer (Wang et al., 2021). CPA3 belongs to carboxypeptidase
family of zinc metalloproteases released by mast cells and has been
demonstrated to be involved in endogenous proteins
degradation as well as colon cancer prognosis (Fang et al.,
2021). The 70 kDa heat shock protein, called HSPA1A, is
considered as a potential biomarker for the initiation and
development breast cancer (de Freitas et al., 2022). The level
of HSPA1A is upregulated after heat stress response, but is
downregulated by senescence (Llewellyn et al., 2021). It has
been reported that CALB1 can promote the interaction
between p53 and MDM2, and alleviates ovarian cancer cell
senescence (Cao et al., 2019). Collectively, these results suggest
that the prognostic genes in senescence-based signatures may
be crucial in cellular senescence and prognosis of COAD.

There are some limitations in this study. Data from TCGA and
GEO are collected and used for bioinformatics analysis in this
study, and these retrospective data may have selection bias. Thus,
prospective studies with large samples are needed to validate these
results. Although the robustness of our prognostic risk model has
been validated by external GEO datasets, its reliability should be
iteratively improved with long-term clinical application. Besides,
the regulatory mechanism of MDSCs and macrophages on T cells
and NK cells should be further investigated in COAD patients with
poorer prognosis and better prognosis according to these
senescence-based subtypes.

Conclusion

In conclusion, we developed senescence-based subtypes that
could distinguish prognosis, T stage, mutation and immune
characteristics, which might guide further mechanism
investigation of heterogeneity of COAD. Additionally, we
constructed and validated a senescence-based signature and
provided a reliable tool for prognosis prediction in COAD patients.
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