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Neurodegenerative diseases (NDs) are disorders characterized by degenerative
degeneration of neurons and loss of their function. NDs have a complicated
pathophysiology, of which neuroinflammation and neuronal death are significant
factors. The inflammatory process known as pyroptosis (“fiery death”) is caused by
a family of pore-forming proteins called Gasdermins (GSDMs), which appears
downstream from the activation of the inflammasome. Clear evidence of enhanced
pyroptosis-related proteins activity in common NDs has coincided with abnormal
aggregation of pathological proteins (such as Aβ, tau, α-synuclein et al.), making
pyroptosis an attractive direction for the recent study of NDs. The purpose of this
review is to provide an overview of the molecular mechanisms driving pyroptosis, the
mechanistic links between pyroptosis and NDs, and emerging therapeutic strategies in
Traditional Chinese Medicine (TCM) to inhibit pyroptosis for the treatment of NDs.
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Introduction

Currently, with the dramatic rise in the aging population, the growing incidence of
neurodegenerative diseases (NDs) is a ticking time bomb, which could become one of the
biggest healthcare economic challenges we face today (Eleftheriadou et al., 2020).
Neurodegeneration refers to the complex process of progressive degeneration or abnormal
death of neurons, resulting in a series of incurable and debilitating diseases (Heemels, 2016).
From a pathological perspective, neuronal loss associated with gliomas, protein misfolding and
deposition, resulting in abnormal filamentous deposits is the main symptom of NDs (Fang et al.,
2020; Ikram et al., 2020). There has been evidence that neuronal degeneration is related to
pyroptosis, a form of inflammatory programmed cell death (Moujalled et al., 2021). It is
believed that GSDMs are intracellular proteins involved in the process of pyroptosis. GSDMs
can be proteolyzed by certain proteases (caspase and granzyme) to form pore-forming domains
(GSDMs-N) and repressor domains (GSDMs-C), where release proinflammatory molecules as
GSDMs-N form pores on plasma membranes, which leads to osmotic cell lysis and increases
inflammation (Tsuchiya, 2021). Inflammasomes serve as the most important upstream signals
of pyroptosis pathway, and inhibition of inflammasome activation can reduce GSDMD
expression and pyroptosis in neurons, thereby playing a neuroprotective role (Tan et al.,
2014). For instance, NLRP3 deficiency improves spatial memory impairment in AD model by
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reducing the generation of caspase-1 and IL-1β, promoting the
clearance of Aβ (Heneka et al., 2013). Therefore, treatments that
target proteins associated with the pyroptosis process may deliver new
treatment options for NDs. Traditional Chinese medicine (TCM),
which has been used for more than 2000 years, has been shown to
improve neurodegenerative symptoms such as cognitive impairment,
disorientation, and loss of consciousness (Cai et al., 2018). Treatments
with TCM for neurodegenerative diseases have been found to have a
remarkable effect, and there are increasing studies on the effects of
TCM on pyroptosis in the treatment of NDs. Thus, it is vital for
pathological research, clinical prevention, and drug development to
investigate how TCM affects NDs-associated pyroptosis.

Pyroptosis

The brief introdution of pyroptosis

Researchers discovered that the death of mouse macrophages or
human monocytes brought on by Shigella flexneri or Salmonella
infection was not “apoptosis,” but rather a caspase-1 dependent
programmed necrosis, as early as the late 1990s (Zychlinsky et al.,
1992; Cookson and Brennan, 2001). In order to describe inflammatory
programmed necrosis, the term “pyroptosis” was created to characterise
inflammatory programmed necrosis by fusing the Greek terms “pyro”
and “ptosis,”which refer to fever and falling (Shi et al., 2015). Pyroptosis
was formerly thought to be monocyte death caused by caspase-1
(Bergsbaken et al., 2009). After some time, Shi et al. discovered that
pyroptosis may also result from the activation of caspase-4/5/11 to
cleavage GSDMD protein, which is composed of two domains
(GSDMD-C and GSDMD-N), with the GSDMD-N having an ability
to oligomerize, causing the cell membrane to rupture, releasing
inflammatory substances (Shi et al., 2014). Pyroptosis is therefore
defined as programmed necrosis occurring within the gasdermin.

Gasdermin, the executioner of pyroptosis

The family of proteins known as GSDMs has a wide range of
functional properties and is expressed in many cell types and tissues.
The paralogous genes for gasdermin A (GSDMA), gasdermin B
(GSDMB), gasdermin C (GSDMC), gasdermin D (GSDMD),
gasdermin E (GSDME, also known as DFNA5), and Pejvakin (PJVK,
also known as DFNB59) are found in human, while the paralogous
genes for GSDMA1-3, GSDMC1-4, GSDMD,DFNA5, andDFNB59 are
found in mice (He et al., 2015; Ding et al., 2016). As a structural feature,
all GSDM proteins, except for DFNB59, have pore-forming N-terminal
domains, autoinhibitory C-terminal domains, and loop domains
between N- and C-terminal (Kuang et al., 2017). When these two
domains are proteolytically cleaved, the intramolecular inhibitor of the
cytotoxic domain is released, which enables it to insert into cell
membranes and form large oligomeric pores that disrupt ionic
homeostasis and induce cell death (Aglietti and Dueber, 2017).

The characteristics of pyroptosis

In morphology, pyroptosis has both partial characteristics of
apoptosis, including Annexin V staining, DNA breakage,

condensation of chromatin and so on (Kurokawa and Kornbluth,
2009). However, pyroptosis is mediated by the activation of a family of
caspases by extracellular or intracellular stimuli (e.g., bacteria, viruses,
toxins, and chemotherapeutic drugs), which ultimately leads to the
release of inflammatory factors (like IL-1β and IL-18) to amplify the
inflammatory response. Early pyroptosis was attributed to caspase-1-
dependent death (Broz and Dixit, 2016). Later, it has been found that
caspases 4/5/11 activate GSDMD by proteolysis, leading to the
development of plasma membrane holes and pyroptosis (Kayagaki
et al., 2015; Shi et al., 2015). Additionally, caspase-3 (Wang et al., 2018)
and caspase-8 (Orning et al., 2018) both have the ability to trigger
pyroptosis by cleaving GSDME and GSDMD, respectively. It is
therefore clear that GSDMs, which go over to the plasma
membrane, where they oligomerize and build pores, are responsible
for the execution of pyroptosis (Shi et al., 2017). There is evidence that
pores created by GSDMs-N, such as GSDMD-N, have a larger inner
diameter and may facilitate the passage of IL-1β and IL-18 (Ding et al.,
2016), which are involved in a wide variety of cellular processes,
including inflammation, proliferation, and differentiation
(Rostovtseva and Bezrukov, 1998; Lim et al., 2014; Ding et al.,
2016). Adenosine triphosphate (ATP), high mobility group protein
1 (HMGB1), and lactate dehydrogenase (LDH) are among the
unmodified damage-associated molecular patterns (DAMPs)
released during plasma membrane rupture (McKenzie et al., 2020).
It is also possible to infiltrate Ca2+ from the extracellular environment
during pyroptosis when GSDMD holes are created in the plasma
membrane, which activates calcium citrate and forms the endosomal
sorting complex necessary for transport (ESCRT) (Ruhl et al., 2018;
Davis et al., 2019). By encouraging budding out and excision of
damaged membranes, the ESCRT machinery, in contrast, facilitates
plasma membrane healing (Ruhl et al., 2018). Therefore, the balance
between the amount of GSDMD pores and Ca2+-dependent regulatory
mechanisms may decide, at least in part, whether GSDMD pores trend
to pyroptosis or plasma membrane repair when it is triggered.

Canonical pathway and non-canonical
pathway

Pyroptotic death is typically mediated by inflammasome assembly
that is accompanied by GSDMD cleavage and IL-1β and IL-18 release
(Xia et al., 2019). PAMPs (pathogen associated molecular patterns) or
DAMPs (unaltered damage-associated molecular patterns) cause
multiprotein complexes called inflammasomes to form (Malik and
Kanneganti, 2017). As an initial step in the assembly of
inflammasomes, pattern recognition receptors (PRRs), also known
as inflammasome sensors, are located in the cytoplasm and are capable
of recognizing PAMPs and DAMPs (Liston andMasters, 2017). When
cells are stimulated by signalingmolecules such as bacteria and viruses,
PRR attaches to pro-caspase-1 and ASC to create inflammasomes. As a
result of stimulation by bacteria and viruses, PRR joins to pro-caspase-
1 and ASC to establish inflammasomes (Place and Kanneganti, 2018).
Currently, nucleotide-binding oligomerization domain-like receptors
(NLRs), such as NLRP1, NLRP3, and NLRC4, absent in melanoma 2
(AIM2), and pyrin are now the most prevalent PRRs that may
construct classical inflammasoms (Broz and Dixit, 2016). Generally,
most inflammasomesare are comprised of there main types: leucine
rich repeat containing proteins (NOD-like receptors (NLRs),
apoptosis associated speck-like protein containing a caspase-
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recruitment domain (ASCs) and pro-caspase-1 (Zheng et al., 2020).
Nucleotide-binding and oligomerization domains (NACHT)
characterized by carboxy-terminal leucine-rich repeats (LRRs) and
CARD or pyrin domains (PYD) are characteristic of these NLRs
(Lamkanfi, 2011; Zitvogel et al., 2012). Depending on whether they
have a PYD or CARD at the N-terminus, NLRs are either NLRPs or

NLRCs. The N-terminal region of NLRCs may include one or more
CARDs, while the N-terminal region of NLRPs includes PYD
(Lamkanfi and Dixit, 2012; Lamkanfi and Dixit, 2014). With
NLRP1, Anthrax lethal toxin, muramyl dipeptide, and Toxoplasma
gondii have been studied more extensively (Mitchell et al., 2019). It is
possible to activate NLRP3 by PAMPs (including bacteria, viruses, and

FIGURE 1
The canonical and non-canonical inflammasome pathways of the pyroptosis. In the canonical pathway, intracellular signaling molecules stimulate
PAMPs and DAMPs, which activates caspase-1 and causes it to cleave GSDMD into GSDMD-N. GSDMD-N generates holes resulting in cell swelling,
inflammatory mediators release, and pyroptosis. Inflammatory caspases are triggered in the non-canonical pathway by the caspase-4/5/11 binding to
intracellular lipopolysaccharide (LPS). GSDMD is broken down into GSDMD-N by activated caspases, which binds to lipids in the plasma membrane to
produce huge oligomeric holes that allow the discharge of cellular contents and cause cell death. Furthermore, GSDMD cleavage results in K+ efflux, which
eventually facilitates the NLRP3 inflammasome assembed, IL-1β and IL-18 cleavaged.
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fungi) or DAMPs (such as reactive oxygen species (ROS), ATP, and
endogenous damage signals) (Elliott and Sutterwala, 2015). The
NLRCC4 receptor recognizes flagellin from bacteria and type
3 secretion components (Zhao et al., 2011). Additionally,
AIM2 and pyrin can also form inflammasomes. The DNA-binding
HIN-200 domain and PYD domain of AIM2 detect double-stranded
DNA from bacteria or viruses (Hornung et al., 2009). There are three
domains in pyrin: two B-boxes, a PYD domain, and a SPRY/PRY
domain at the C-terminus. A major function of pyrin is to recognize
inactivating modulators that are mediated by bacteria’s toxins or
effectors in the inactivation of Rho guanosine triphosphatases
(Ratner et al., 2016). As a consequence of the activation of PRRs,
pro-caspase-1 is subsequently cleaved into caspase-1. On the one
hand, GSDMD is split into its C- and N-terminus by caspase-1, and
the GSDMD-N punctures the cell membrane quickly and repeatedly
to cause pyroptosis (Sborgi et al., 2016). On the other hand, caspase-1
is also responsible for cleaving pro-IL-1β/18, which ultimately brings
about the release of mature forms of IL-1β/18 via pores formed by
GSDMD and ultimately drives pyroptosis (He et al., 2015). The
diagram for this pathway can be found in Figure 1.

The activation of pro-caspase-11 in mice (pro-caspase-4/5 in
humans) is one way that the non-canonical inflammasome
pathway, which operates independently of the traditional
inflammasome complex, may be generated (Shi et al., 2017)
(Figure 1). Here, mice caspase-11 (human orthologs caspase-4/5) is
activated by binding of the N-terminal CARD to lipopolysaccharide
(LPS) identified in Gram negative bacteria (Chu et al., 2018). Upon
activation of caspase-4/5/11, GSDMD is then effectively cleaved into
GSDMD-N, and therefore pyroptosis is brought out (Aglietti et al.,
2016). A note of interest, pro-IL-1β and pro-IL-18 cannot be cleaved
by caspase-4/5/11. GSDMD, however, triggered K+ efflux and induced
NLRP3 inflammasome assembly, which promoted IL-1β and IL-18
maturation and secretion via the NLRP3/caspase-1 pathway after
being cleaved by caspase-4/5/11(Shi et al., 2017). In addition,
through the pannexin-1/ATP pathway, caspase-11 activates
P2X7 channels, causing damage to the membrane and pyroptosis
(Yang et al., 2015).

Other molecules mediated pathway

GSDMs may also be triggered by caspase-3/8, which results in cell
death, in addition to inflammatory caspase-1/4/5/11. There are several
recent studies have found that chemotherapy treatments cause
caspase-3 to become active. Once this caspase-3 is activated, at
Asp270, it breaks down GSDME to create GSDME-N, which
travels to the plasma membrane and promotes the formation of
pores (Wang et al., 2017; Rogers et al., 2017). In contrast,
pyroptosis is inactivated when GSDMD is cleaved at Asp87 by
caspase-3 (Taabazuing et al., 2017). In a murine macrophage
Yersinia infection study, caspase-8 was to activate GSDMD
downstream of transforming growth factor (TGF) β-activated
kinase-1 (TAK1) and thereby trigger pyroptosis (Sarhan et al.,
2018). Also, activated caspase-8 is capable of cleaving GSDMC,
initiating pyroptosis (Zhang et al., 2021). According to another
research, Granzyme A (GZMA) from cytotoxic T lymphocytes
cleaves GSDMB, releasing GSDMB-N-terminus to cause pores in
the membrane, and further promoting pyroptosis (Zhou et al.,
2020). Note that the cleavage of GSDME produces an N-terminal

fragment of GADME, which encourages the creation of membrane
pores, hence causing pyroptosis, following caspase-3 activation by
granzyme B (GZMB) generated from natural killer cells (Liu et al.,
2020). These pathways are shown in Figure 2.

Therapeutic strategies for the inhibition of
pyroptosis

Currently, the more widely studied in therapeutic strategies to
inhibit pyroptosis mainly include pro-inflammatory caspases
inhibitors, NLRP3 inflammasome inhibitors and GSDMD
inhibitors. The caspase-1 inhibitor Vx-765, which may pass the
blood-brain barrier and has no overt adverse effects, has been
extensively utilized in clinical investigations of epilepsy and
psoriasis (Flores et al., 2018; Mangan et al., 2018). Recently, cell-
permeable synthetic peptides based upon the cleavage site of GSDMD
(Ac-FLTD-CMK) was also created to prevent the caspase-1 family of
proteases from working (Yang et al., 2018). The most common
NLRP3 inhibitor, diarylsulfonylurea compound CP-456733 (CRID/
MCC950), has been shown to suppress NLRP3 inflammasome
activation brought on by ATP and other stimuli (Mangan et al.,
2018). GSDMD inhibitors are still in the developmental stages, and
the ones that have received the most attention from researchers
include necrosulfonamide (NSA), disulfiram (DSL) and an NF-κB
inhibitor (Bay 11-7082). NSA is not specific for GSDMD even though
it has been demonstrated to reduce pyroptosis in a sepsis model since
it can also prevent the creation of mixed lineage kinase domain-like
protein (MLKL) pore-related to necrosis (Sun et al., 2012). DSL and
Bay 11-7082may prevent pyroptosis caused by GSDMD. Additionally,
it has been shown that disulfirammay save mice with sepsis and anMS
mouse model from death (Li et al., 2019).

NDs and pyroptosis

The term “neurodegenerative disease” is used to describe a range
of disorders resulting frommyelin degeneration or loss of neurons.We
are experiencing a dramatic increase in NDs patients due to the rapid
aging of our society (Katsuno et al., 2018). Protein aggregation,
immunological dysregulation, and aberrant cell death are all
features of NDs, which eventually cause brain or peripheral
nervous system gradually loses neurons (Katsnelson et al., 2016).
Pyroptosis, an inflammatory programmed form of death, has been
linked to the emergence of NDs including AD, PD, HD, ALS, and MS,
according to research. Several pyroptotic inflammasome components,
including NLRP3, caspase-1, IL-1β and GSDMD have been reported
in NDs (Table 1). Figure 3 provides a schematic representation of the
relationship between neurodegenerative diseases and pyroptosis.

Pathological link between pyroptosis andNDs

Pathological features most common to NDs are protein misfolding
and abnormal aggregation in neurons (Hipp et al., 2014). Amyloid
beta (Aβ) and hyperphosphorylated tau protein-coated neurofibrillary
tangles, which are the hallmarks of AD, a chronic ND (O’Brien and
Wong, 2011). Caspase-1 could be activated by inflammasomes such
NLRP1, NLRP3, NLRC4, AIM2, and pyrin to cause pyroptosis (Man
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et al., 2017). It has been shown that Aβ aggregation might trigger the
NLRP1 inflammasome to cause pyroptosis mediated by caspase-1 and
the release of IL-1β via the P2X7-purinoctor/pannexin1 signaling
pathway (Yap et al., 2019). Aβ could directly produce neuronal
pyroptosis that is reliant on NLRP1 and caspase-1 in cultured
neurons of the cortical region. In contrast, suppressing NLRP1 in
APPswe/PS1dE9 mice brought out a significantly reduction in the
amount of neuronal pyroptosis as well as cognitive impairment (Tan
et al., 2014). It is interesting to note that during the progression of AD,
microglial pyroptosis encourages the formation of the ASC-Aβ
Complex, which not only exacerbate Aβ formation of oligomers
and aggregates, but also caused the formation of the
NLRP3 inflammasome, caspase-1 activation, IL-1β maturation and
GSDMD cleavage, and promoted pyroptosis in nearby microglia
(Heneka et al., 2018; Luciunaite et al., 2020). Similarly, Aβ1–42
induces pyroptosis in cortical neurons through NLRP3-caspase-1-

dependent pyroptosis as well (Han et al., 2020). Additionally,
NLRP3 inflammasomes may cause tau pathology in AD since they
act as upstream signals of tau (Ising et al., 2019). Li Y et al. found that
caspase-1 silencing could attenuate cognitive dysfunction and
neuronal damage in a mouse model of cerebral tau
hyperphosphorylation mimicked by intracerebroventricular
injection (forskolin, FSK and streptozotocin, STZ); Notably, lithium
chloride (LiCl) treatment not only inhibited tau hyperphosphorylation
but also decreased production of caspase-1, IL-1β, and IL-18 and
prevented pyroptosis (Li et al., 2020). Additionally, tau protein triggers
the NLRP3-ASC axis, which in turn causes inflammasome activation
and microglial pyroptosis (Stancu et al., 2019). The concepteal
platform of pyroptosis have promoted important efforts to identify
plasma-borne indicators of inflammasome markers. Specifically,
according to research by Rui et al., the pathophysiology of people
with amnestic mild cognitive impairment (aMCL) and Alzheimer’s

FIGURE 2
The apoptotic caspase and granzymes-mediated pyroptosis process. Caspase-3 and caspase-8 are activated in pyroptosis by chemotherapy drugs and
TNF, whereas caspase-3/GSDME, caspase-8/GSDMD, caspase-8/GSDMC, etc., are involved pathways. As well, in cytotoxic lymphocytes, GZMA or GZMB are
inserted via perforin, and GSDMB or GSDME are cleaved to cause pyroptosis.
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disease (AD) is strongly associated to the proinflammatory cytokine
IL-1β. Moreover, peripheral blood mononuclear cells (PBMCs) of
aMCL and AD patients showed canonical inflammasome signaling
and GSDMD-induced pyroptosis activation (Rui et al., 2021).

As a typical neurodegenerative disorder, PD caused by the
abnormal loss of dopamine (DA) neurons in the substantia nigra
area and the production of Lewy bodies (Braak et al., 2003). In
neurons, a-synuclein (α-syn) aggregates generate Lewy bodies,
impairing DA neuron function and eventually leading to neuronal

death (Serpell et al., 2000). Several early studies have shown that there
is a role for neuroinflammation in the pathogenesis of PD (Wang et al.,
2015). In this situation, a toll-like receptor on the cell membrane
recognizes aggregated α-syn and activates the NF-κB pathway, thereby
promoting the production of precursor proteins for IL-1β
(Bauernfeind et al., 2009). After that, α-syn aggregation has been
claimed to cause IL-1β (Codolo et al., 2013) and ASC (de Alba, 2019)
production via NLRP3 inflammasome activation in monocytes/
macrophages and microglia. Caspase-1 is recruited and activated by

TABLE 1 Evidence for different mechanisms of pyroptosis in neurodegeneration diseases.

Neurodegeneration
disease

Pathogebic
proteins

Mechanism The PMID of
references

AD Aβ Activating the expression of NLRP1, caspase-1, GSDMD 25144717; 31111399

AD Aβ NLRP3, caspase-1, and GSDMD are activated 32521573; 23254930

34435574; 32892233

AD Aβ Activated NLRP3, caspase-1 and IL-1β 23831373; 18604209

AD Aβ, ASC- Aβ ASC- Aβ complex activates NLRP3, caspase-1, GSDMD 32187546

AD tau NLRP3/IL-1β induced tau protein hyperphosphorylation 31748742;
33667787 31731189

AD tau Inhibition of caspase-1 inhibited tau hyperphosphorylation and pyroptosis 31731189

AD — Exhibiting more NLRP1, caspase-1, IL-1β, and GSDMD in AD brains 26939933; 17658666

33587329

PD α-syn Activating the expression of NLRP3, IL-1β 23383169; 31036561

32795556; 30594776

PD — NLRP3-caspase-1-GSDMD activation in PD animal model 35143076; 30381407

28247334; 34780806

PD — Exhibiting more NLRP3, caspase-1, ASC, and IL-18 in PD patients’ plasma,
PBMCs, and substantia nigra

30381407; 31915018

33398042

ALS SOD1, TDP-43 Caspase-1, IL-1, IL-18, and NLRP3/ASC activation 26200799; 28936769

27957680; 29575052

20616033; 31596526

35227277

ALS — Activating NLRP3 expression and GSDMD antibody reactivity 35227277; 35867112

34883532

HD HTT Activating NLRP3, caspase-1, and IL-1 expression in R6/2 mice 32821438; 33066292

35219323; 31375685

HD — The HD patients activated NLRP3, caspase-1, and IL-18 10353249; 18625748

26297319

MS MOG Inflammasomes (NLRP3, caspase-1, IL-1β) were activated in MS model 28583987; 31997770

27997058; 21106820

MS MOG Activatng GSDMD in EAE model of MS. 29895691; 31467036

MS — The MS patients’ NLRP3, caspase-1, IL-1β, and GSDMD levels increase 29895691; 15471361

19162335; 24657029

※Abbreviations: AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; HD, Huntington’s disease; MS, multiple sclerosis; Aβ, amyloid beta; α-syn: α-synuclein; SOD1,
Cu2+/Zn2+ superoxide dismutase; TDP-43, TAR DNA binding protein 43; HTT, huntingtin protein; MOG, myelin oligodendrocyte glycoprotein.
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NLRP3 inflammasome activation to enhance IL-1β maturation and
the triggering of pyroptosis, which in turn stimulates the release of IL-
1β, which further destroys dopamine neurons (Block et al., 2007).
Moreover, NLRP3 or caspase-1 deletion proved to result in reduced
microglial activation, prevented DA neuron loss, and motor deficits
were repaired in the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced PD model (Qiao et al., 2017; Lee et al., 2019).
Another study illustrated, α-synuclein activates NLRP3 in LPS and
α-synuclein-stimulated mouse microglia, leading to IL-1β and ASC
release but does not mediate pyrolysis (Gordon et al., 2018). It is
possible that synuclein concentrations may be quantified in future
studies to determine whether synuclein ultimately induces pyroptosis.
Of note, PD patients’ substantia nigra densa expressed a higher
abundance of activated inflammasomes and overexpressed ASC
(Gordon et al., 2018), as well as higher NLRP3 expression in
PBMCs and IL-18 levels in plasma compared with healthy controls
(Fan et al., 2020). Although these reports do not definitively
demonstate that α-syn ultimately induces pyroptosis, this may
correlate with α-syn concentration and metabolism. However,
another study demonstrated that pussian blue nanozyme (PBzyme)
inhibited neuroinflammation and reduced dopaminergic degeneration
by mediating microglial pyroptosis via ROS/NLRP3/caspase-1/
GSDMD pathway (Ma et al., 2022). These studies suggest that
inhibition of pyroptosis or pyroptosis related pathway proteins may
alleviate PD progression.

ASL is a persistent loss of spinal motor neurons with patients
experiencing progressive motor dysfunction as a ND (Swanton et al.,
2018). Protein aggregates containing Cu2+/Zn2+ superoxide dismutase
(SOD1) (Rosen et al., 1993) and TAR DNA binding protein 43 (TDP-
43) (Neumann et al., 2006) are the main pathologiccal features of ASL.

A recent work discovered that monocyte-derived cells from ASL
patients with TPD-43 inclusions were significantly more likely to
activate the NLRP3 inflammasome than cells from healthy controls
(Quek et al., 2022). Furthermore, patients with ALS who are affected
by the NLRP3 inflammasome are less resilient to non-motor
symptoms due to the assembly of this inflammasome (Banerjee
et al., 2022). Several other reports have also explained that NLRP3/
ASC oligomerization and IL-1β secretion have been attributed to
SOD1 and TDP-43 protein aggregation (Gordon et al., 2018; Voet
et al., 2019). The canonical NLRP3 inflammasome activates pyroptosis
of neurons in the ventral horn of the lumbar spinal cord in ALS mice,
amplifying neuroinflammation (Zhang et al., 2022). Inflammasomes
such NLRC4, AIM2, and caspase-1 have also been shown to be
elevated in the SOD1-G93A mouse model, in addition to NLRP3,
ASC, and IL-1β (Deora et al., 2020). Later studies have shown that in
SOD1 transgenic mice, the deletion of caspase-1 or IL-1β delayed the
onset of illness (Meissner et al., 2010). In a clinical study performed on
patients with ALS, GSDMD antibody reactivity was demonstrated in
the motor cortex and white matter, as well as increased
NLRP3 expression in microglia (Van Schoor et al., 2022). Although
these studies implicated pyroptosis as a driver of ALS, their
mechanisms are still unclear.

The pathogenic basis of HD is the aggregation of the huntingtin
protein (HTT), which results in the formation of inclusion bodies
(Ha and Fung, 2012). There are distinct neuroinflammatory
features at the sites of brain lesions in HD patients, according
to the current study (Bjorkqvist et al., 2008). Inflammasome
components of the NLRP3 are expressed in both the central and
peripheral nervous system according to clinical and preclinical
study, for example, HD patients’ PBMCs express higher levels of

TABLE 2 Treatments targeting pyroptosis in TCM for neurodegenerative diseases.

Interventions Experimental model Mechanism The PMID of
references

Jiedu-Yizhi formula Aβ25-35-induced AD rats Blocking the NLRP3-caspase-1-GSDMD and LPS-caspase-
1-GSDMD axis to prevent the progression of AD

35341145

Nobiletin LPS + Nigericin-treated microglia in vitro; APP/
PS1 mice in vivo

Decreasing the expression of HMGB-1 and pyroptosisi-
related proteins to mitigating AD

35267136

Astrageloside IV AβO-induced AD mice Increasing the expression of PPARγ to inhibiting
pyroptosis, neuroinflammation, and tau

hyperphosphorylation

34616501

Sodium houttuyfonate Aβ1-42-induced AD mice Inbibiting the NLRP3/GSDMD pathway to ameliorating
Aβ1-42-induced memory impairment

34188608

Schisandrin APP/PS1 mice Inhibiting of NLRP1 inflammasome-medicated neuronal
pyroptosis to inproving cognitive impairment

33542629

Bushen- Huoxue
Acupuncture

SAMP8 mice Inhibiting NLRP1 inflammasome-mediated pyroptosis to
attenuating the cognitive defect of AD mice

33574670

Salidroside Aβ1-42-induced AD mice; MPTP-induced PD mice Inhibiting NLRP3 inflammsome-mediated pyroptosis to
ameliorating AD or PD

35126093

32432571

Quercetin LPS-induced PD mice Ameliorating dopaminergic neuron loss by suppressing
NLRP3/IL-1β pathway

34082381

Baicalein MPTP-induced PD mice NLRP3/caspase-1/GSDMD pathway inhibition reduces
neuronal loss and motor dysfunction

32761175

Sinomenine EAE model mice Alleviating demyelination and axonal damage by
decreasing NLRP3, ASC, and caspase-1 expression

32812186
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NLRP3 than healthy controls (Glinsky, 2008). HD patients have
been shown in many studies to have elevated amounts of the IL-1β
in their plasma, as well as in the striatum and cerebral cortex
(Bjorkqvist et al., 2008; Politis et al., 2015). When compared with
wild-type mice, the expression of NLRP3 and active-caspase-1 was
higher in the striatum of transgenic R6/2 mutant mice (Paldino
et al., 2020). In the meanwhile, researchers have shown that HD
patients’ cerebral cortexes have greater amounts of mature IL-1β
than healthy control individuals’ do. As well as this, administration
of a caspase inhibitor (zVAD-fmk) in R6/2 mice has also been
shown to prevent the development of motor dysfunction (Ona
et al., 1999). These results provide credence to the idea that
NLRP3 inflammasome activation and the subsequent pyroptosis
play a role in HD (Paldino et al., 2020).

As prototypical neuroinflammatory disease, MS is triggered by an
immune response that damages the myelin sheath of neurons in the

central nervous system (CNS) (Frohman et al., 2006). A model of MS
based on the autoimmune encephalomyelitis (EAE) has demonstrated
that myelin oligodendrocyte glycoprotein (MOG) increases
NLRP3 mRNA levels (Gris et al., 2010). NLRP3 mediates capase-1-
activated cytokines, which in turn influence the pathological process of
EAE (Gris et al., 2010). Moreover, EAE mice also exhibited GSDMD
immunoreactivity and pyroptosis in myeloid cells in the CNS (Li et al.,
2019). Similarly, clinical studies also found that PBMCs isolated from
MS patients had increased caspase-1 and IL-18 levels (Huang et al.,
2004). Additionally, MS patients have higher levels of IL-1β in both
plasma and cerebrospinal fluid (CSF) (Dujmovic et al., 2009), and IL-
1β levels are directly correlated with the degree of demyelination in the
brain (Seppi et al., 2014). Among cadavers from MS patients with
frontal white matter, McKenzie et al. detected abundant GSDMD-
positive cells (McKenzie et al., 2018). The studies suggest that
pyroptosis and MS may be related.

FIGURE 3
Relationship between pyroptosis and NDs. Inflammasomes can be activated in several NDs, including AD, PD, ALS and HD, with protein misfolding and
abnormal aggregation (accumulation of amyloid Aβ, hyperphosphorylated tau protein and a-synuclein aggregates) and autoimmune mediated
neurodegenerative injury (MS). NLRP3 inflammasome cleavaged GSDMD and pro-IL-1β by caspase-1, causing pyroptosis and subsequent release of mature
cytokines, amplifying the neuroinflammatory response.
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Effects of traditional Chinese medicine
or extracts

Herbal medicines, including traditional Chinese medicine (TCM),
have been utilized for centuries to prevent, treat and cure various
diseases (including neurodegenerative diseases) (Yang et al., 2019).
With the increasing use of advanced technologies in analytical and
biological fields, the powerful and long-lasting therapeutic effects of
TCM have been confirmed (Liu et al., 2015). The function of
pyroptosis inflammasome pathway in neurodegenerational diseases
is being extensively studied. There is increasing evidence that TCMs
have neuroprotective effects, and recent studies suggest that the
mechanism of action is through inhibition of pyroptosis. In the
following sections, we summarized TCM formulas and extracts that
exert neuroprotective effects by inhibiting pyroptosis related proteins
in NDs (Table 2). As can be seen in Figure 4, the drugs mechanism of
action is also depicted in a diagram.

Pyroptosis in neurodegenerative diseases is primarily mediated
by the chassic pathway, which is mediated by the
NLRP3 inflammasome. NLRP3 signaling pathway molecules and
pyroptosis can be inhibited by TCM or extracts, decreasing the
development of NDs like AD, PD, and MS. Jiedu-Yizhi formula

(JDYZF) is a TCM formula invigorating kidney and invigorating
bone marrow, invigorating phlegm and activating blood flow, and
detoxifying blood, which has been invented by Ren Jixue, a master of
TCM. This formula has been used in the clinic for many years for the
treatment of AD with significant effect. It has been demonstrated
that oral administration of JDYZF reversed Aβ25–35-induced
cognitive impairment, reduced Aβ deposition, and improved
neuronal function by inhibiting the expression of NLRP3/caspase-
1/GSDMD and LPS/caspase-11/GSDMD axis (Wang et al., 2022).
According to Chai et al., nobiletin inhibited neuroinflammation by
reducing HMGB-1 and pyroptosis related protein (NLRP3/caspase-
1/GSDMD) expression in APP/PS1 mice (Chai et al., 2022). In use
for thousands of years, huttuynia cordata has many pharmacological
activities, such as anti-inflammatory and anti-viral (Pan et al., 2010).
In AD, sodium houttuyfonate (SH), one of the major extracts from
houttuynia cordata, has been shown to inhibit NLRP3/GSDMD, a
pathway responsible for memory impairment, inflammation, and
pyroptosis (Zhao et al., 2021). In addition, astragalus membranaceus,
as one of the most commonly used herbs in traditional Chinese
medicine, includes components such as polysaccharides, saponins,
flavonoids, amino acids and trace elements (Shao et al., 2004;
Ragupathi et al., 2008). Astrageloside IV (AS- IV), an active

FIGURE 4
Therapeutic strategies of TCMs for treating NDs by targeting pyroptosis. Baicalein, Sodium Houttuyfonate and Jiedu-Yizhi Formula attenuated neuronal
pyroptosis by inhibiting NLRP3/caspase-1/GSDMD pathway. By reducing the expression of HMGB-1, Nobbiletin suppresses NLRP3 and diminishes pyroptosis.
Salidroside inhibited either the TLR4/NF-κB pathway or the expression of TXNIP and downregulated the expression of NLRP3, caspase-1 and GSDMD, thus
inhibiting pyroptosis to restore neuronal function. Quercetin prevents the generation of NF-κB and ROS, which prevents NLRP3 from being activated.
The NLRP1/caspase-1/GSDMD pathway is blocked by Bushen-Houxue Acupuncture, which prevents pyroptosis from occurring. Schisandrin prevents
pyroptosis by blocking the NLRP1-caspase-1-IL-1β axis. Sinomenine and Astrageloside IV, however, inhibit the NLRP3-caspase-1-GSDMD axis.
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component of astragalus membranaceus, could ameliorate memory
impairment and neuronal loss by reducing tau
hyperphosphorylation, neuroinflammation and pyroptosis via
regulating PPARγ (Wang et al., 2021). What’s more, salidroside
(Sal), a pharmacologically active component isolated from rhodiola,
has also been demonstrated to treat AD (Cai et al., 2021) and PD
(Zhang et al., 2020) by preventing pyroptosis mediated by
NLRP3 inflammasome. In LPS-induced PD mice, quercetin (Qu)
pretreatment ameliorated dopaminergic neuron loss by suppressing
microglial activation via NLRP3/IL-1β-dependent pathway (Han
et al., 2021). Similarly, a flavonoid isolated from scutellaria
baicalensis georgi also inhibits NLRP3/caspase-1/GSDMD
pathway signaling in PD model, thereby attenuating
neuroinflammation, neuronal loss, and motor dysfunction (Rui
et al., 2020). Sinomenine, an alkaloid found in the roots of
sinomenine, may have potential pharmacological effects against
NDs, such as AD and PD, due to its anti-inflammatory and
immunosuppressive properties (Tang et al., 2018). A study by
Kiasalari and colleagues showed that sinomenine reduced NLRP3,
ASC, and caspase-1 levels in spinal cord specimens as well as
neuroinflammation, demyelination, and axonal damage (Kiasalari
et al., 2021). NLRP1 is also highly conserved in brain spinal neurons
and oligodendrocytes, along with NLRP3 (Tan et al., 2014). For
example, schisandrin (SCH), as a lignan representing Schisandra
chinensis, inhibits the action of the NLRP1 inflammasome on
neuronal pyroptosis in AD mice, thereby alleviating cognitive
impairment (Li et al., 2021). Additionally, acupuncture is an
important therapy of TCM that has been proven to enhance the
learning and memory functions of patients with Alzheimer’s (Jia
et al., 2017). In their study, Zhang et al. found that bushen huoxue
acupuncture prevented NLRP1-mediated pyroptosis and attenuated
cognitive decline (Zhang et al., 2021). Compared with AD and PD,
the research of TCM-related treatment by pyroptosis pathway in MS,
HD and ALS are very few. Further studies are needed.

Concluding remarks

In this review, we outlined the molecular the mechanisms of
pyroptosis. As seen in Figure 3, inflammasomes and pyroptosis can be
activated by several molecules that trigger NDs, and inflammatory
factors released during pyroptosis can also aggravate
neuroinflammation. From the connection between the pathological
mechanisms of NDs and pyroptosis, the GSDMDmediated pyroptosis
signaling pathway is relatively well defined. Moreover, the pyroptosis
pathways mediating neuronal injury in NDs mainly include NLRP3/
caspase-1/GSDMD mediated canonical pyroptosis pathway and LPS/
caspase-11/GSDMD mediated non-canonical pyroptosis pathway.
Insuffciently, the signaling pathways mediated by other proteins
from GSDM family are less studied. In fact, the injured
hippocampal tissue showed high levels of GSDME expression,
which can activate a cytokine storm by triggering an inflammatory
response. Here we did not review the reports indicating the
pathophysiology of NDs also involves the apoptosis caspases-
mediated pyroptosis pathway. What’s more, whether neurological

diseases also have molecular target in GZMs-mediated pathway.
The use of these targeted molecules for guiding clinical diagnosis
and prognosis is of great concern.

Developing drugs will be facilitated by a deeper understanding of
the link between pyroptosis and NDs pathogenesis. Numerous studies
have confirmed that TCM formulas, extracts, and acupuncture can all
improve symptoms of neurodegeneration by suppressing pyroptosis.
This creates a role model for the development of more selective TCM
medicines for the treatment of NDs. For NDs, these studies are
insufficient as they only target NLRP1 or NLRP3/caspase-1/
GSDMD canonical inflammasome pathways for suppressing
pyroptosis. Furthermore, these drugs inhibit pyroptosis by
inhibiting inflammatory factors upstream and downstream of
GSDMD, such as NLRP3, caspase-1, and IL-1β. Further research is
needed to determine whether GSDM-mediated pyroptosis leads to the
development and progression of NDs. These inadequacies make basic
research still challenging and we still have a long way to go in order to
finally achieve clinical translation.
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