
3D,2D-QSAR study and docking of
novel quinazolines as potential
target drugs for osteosarcoma

Zheng Lian1†, Chenglin Sang2†, Nianhu Li3, Honglin Zhai2 and
Wenzhe Bai3*
1School of Clinical Medicine, Weifang Medical University, Weifang, China, 2Department of Orthopedics,
The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China, 3The First Clinical Medical
School, Shandong University of Traditional Chinese Medicine, Jinan, China

Background: Quinazolines are an important class of benzopyrimidine
heterocyclic compounds with a promising antitumor activity that can be used
for the design and development of osteosarcoma target compounds.

Objective: To predict the compound activity of quinazoline compounds by
constructing 2D- and 3D-QSAR models, and to design new compounds
according to themain influencing factors of compound activity in the twomodels.

Methods: First, heuristic method and GEP (gene expression programming)
algorithm were used to construct linear and non-linear 2D-QSAR models.
Then a 3D-QSAR model was constructed using CoMSIA method in SYBYL
software package. Finally, new compounds were designed according to
molecular descriptors of 2D-QSAR model and contour maps of 3D-QSAR
model. Several compounds with optimal activity were used for docking
experiments with osteosarcoma related targets (FGFR4).

Results: The non-linearmodel constructed by GEP algorithmwasmore stable and
predictive than the linear model constructed by heuristic method. A 3D-QSAR
model with high Q2 (0.63) and R2 (0.987) values and low error values (0.05) was
obtained in this study. The success of themodel fully passed the external validation
formula, proving that the model is very stable and has strong predictive power.
200 quinazoline derivatives were designed according to molecular descriptors
and contour maps, and docking experiments were carried out for the most active
compounds. Compound 19g.10 has the best compound activity with good target
binding capability.

Conclusion: To sum up, the two novel QSAR models constructed were very
reliable. The combination of descriptors in 2D-QSAR with COMSIA contour maps
provides new design ideas for future compound design in osteosarcoma.
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1 Introduction

Osteosarcoma is a malignant tumor characterized by proliferating tumor cells directly
producing bone or osteoid tissue, also known as osteosarcoma, derived from mesenchymal
tissue (Ottaviani and Jaffe, 2009). Osteosarcoma is the most common primary malignant
bone tumor with a high degree of malignancy, rapid growth and early metastasis. Early
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diagnosis of the disease is difficult and the prognosis is poor with an
incidence of about 4–5/106 (Ottaviani and Jaffe, 2009; Moore and
Luu, 2014). The average median age of diagnosis was 15 years, and
the most common occurrence was between 15 and 20 years old, with
60% occurring below 25 years of age. Conventional osteosarcomas
(classic) originate from the bone marrow and account for
approximately 80% of all types of osteosarcomas, classified as
osteogenic (50%), chondrogenic (25%), and fibrogenic (25%).
Other rare osteosarcoma subtypes include capillary dilatation,
small cell, parabone, periosteal, highly malignant surface
osteosarcoma, low malignant central osteosarcoma, multi-center
osteosarcoma and secondary osteosarcoma (Paget’s disease), etc.
(Geller and Gorlick, 2010). Traditional osteosarcomas tend to occur
in the long bones of the extremities, most commonly around the
knee joint (distal femur, proximal tibia) (Sanerkin, 1980; Botter
et al., 2014), with approximately 91% occurring in the metaphysis
and 9% in the diaphysis. Atypical osteosarcoma can still invade non-
long bones (skull, pelvis, mandible, vertebrae), and its incidence
increases progressively with age. Common initial symptoms of
osteosarcoma are pain and swelling, localized painful masses and
inflammatory reactions, which may be followed by varying degrees
of joint motion limitation and pathologic fractures.

At present, the treatment mode for osteosarcoma is
preoperative neoadjuvant chemotherapy + surgical resection +
postoperative adjuvant chemotherapy (Bishop et al., 2016). The
main first-line chemotherapy compounds for osteosarcoma are
methotrexate (MTX), doxorubicin (ADM), cisplatin (DDP),
ifosfamide (IFO), vincritin (VCR), epirubicin (EPI), cyclo-
phosphamide (CTX) and etoposide (VP-16), etc., in which the
MTX, ADM, DDP and IFO are the most commonly used (Ta
et al., 2009). However, in the current clinical work on
osteosarcoma chemotherapy, these compounds were found to
have several serious side effects, such as kidney damage caused by
methotrexate and cisplatin, cardiac inhibition by doxorubicin,
and resistance to chemotherapy compounds. Therefore, there is
an urgent need to develop and design new and more effective
compounds for the treatment of osteosarcoma.

Fibroblast growth factor receptor 4 (FGFR4) is a tyrosine kinase
receptor that selectively binds to fibroblast growth factor 19
(FGF19). FGF19 binds to FGFR4 and its co-receptor b-Klotho,
leading to dimerization and autophosphorylation of FGFR4.
Activated FGFR4 interacts with fibroblast growth factor receptor
substrate 2 (FRS2), recruits growth factor receptor binding protein
(GRB2) and affects downstream proteins mediating osteosarcoma
cell proliferation (Vainikka et al., 1994; Ho et al., 2009; Wu et al.,
2011). Quinazoline derivatives exert an inhibitory effect on
osteosarcoma growth by inhibiting the phosphorylation and
signaling pathways of FGFR4 (Querolle et al., 2015; Nandi and
Bagchi, 2016; Voskoboynik et al., 2016).

QSAR (Quantitative structure-activity relationship) is a
compound research method that uses mathematical models to
describe the relationship between the structure of a molecule and
certain biological activities of the molecule. This method has been
widely used for compound activity prediction and the
development of new compounds (Dearden, 2017). Under the
guidance of this method, people have successfully designed
quinolones, such as norfloxacin. At present, the research
methods of QSAR are mainly divided into 2D-QSAR and 3D-

QSAR (Roy et al., 2015). Since 2D-QSAR research cannot
accurately describe the relationship between molecular 3D
structure and physiological activity, 3D-QSAR is more accepted
by the scientific community in later compound design research.
However, the effect of molecular descriptors in the 2D structure-
activity relationships on the production of new compounds is often
ignored when using a 3Dmethod to design new compounds, which
leads to unsatisfactory activity results of newly designed
compounds. The main objective of this experiment was our
desire to find a method that combines 2D-QSAR and 3D-QSAR
to design more reliable compounds targeting osteosarcoma
fibroblast growth factor receptor 4 (FGFR4).

2 Experiment

2.1 Data set

The data for this experiment included a total of 37 quinazoline
derivatives, and all compounds were obtained from the references
(Pan et al., 2021). The structures and activity values of all
compounds are shown in Table 1.

2.2 2D-QSAR research

2.2.1 2D-QSAR data processing
In machine learning, to evaluate the discrimination, stability,

robustness and other model effects of supervised algorithms, and
to avoid over-fitting of data, it is necessary to divide the data set
into a training set and a test set in the ratio of 4:1 (Mitchell et al.,
1990).

In this experiment, system time was used as a random seed to
split the dataset into a training set containing 29 compounds and a
training set containing 8 compounds in a ratio of 4:1. The training
set was used to train supervised models, fit models, adjust
parameters, select modal variables, and make other choices for
the algorithms. The test set is used to evaluate the effectiveness
of the training model without changing the parameters and effects of
the model. Usually, the decision to retrain the model or to choose
another algorithm is based on whether the validated model is
overfitted or underfitted.

2.2.2 Calculation of the descriptions
In 2D-QSAR models, compounds are typically represented by

molecular descriptors that can be statistically correlated with
biological or even physicochemical properties. The molecular
descriptors are calculated as follows: first, the molecular
structures of 37 compounds were drawn in ChemDraw software.
Then, to obtain stable molecular structures with the lowest energy,
the molecular structures were optimized in HyperChem 7.5 software
(Stewart, 1989) using successive MM + molecular mechanics force
fields and the semi-empirical PM3 method (Ivanciuc, 1996), and
then the optimized molecules were put into MOPAC6.0 software.
Finally, the results were imported into CODESSA software
(Katritzky et al., 2001) to calculate five classes of molecular
descriptors: constitutional, geometrical, topological, electrostatic
and quantum-chemical.
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TABLE 1 Structure and activity values of 37 compounds.

Structure R1 R2 R3 IC50(nM) Name

— — — 986 5a*

— — — 4011 5b*

— — -Me 91 5c*

— — -Et 268 5d

— — -Pro 316 5e

— — 5.5 8a

— — 10 8b*

— — 7.8 11a

— — 3.2 11b

(Continued on following page)
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TABLE 1 (Continued) Structure and activity values of 37 compounds.

Structure R1 R2 R3 IC50(nM) Name

— — 3.2 12a

— — 3.6 12b

— — 3.6 19a

— — 5.7 19c

— — 3.2 19d

— — 157 16a*

— — 1.8 16b

— — 5.5 17a

— — 14 17b
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TABLE 1 (Continued) Structure and activity values of 37 compounds.

Structure R1 R2 R3 IC50(nM) Name

— — 1.0 19e

— — 1.9 19f

— — 0.55 19g*

— — 1.1 19h

— — 1.7 19i

— — 2.6 19j

— — 2.0 19k

— — 1.0 19l

— — 8.6 19m*

(Continued on following page)
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TABLE 1 (Continued) Structure and activity values of 37 compounds.

Structure R1 R2 R3 IC50(nM) Name

-NO2 -H 3577 33f

-NH2 -H 516 33j

-H 30 34a

-CH3 10 34b

-H 33 34c

-CH3 13 34d

-H 50 34e

-CH3 11 34f*

-H 17 34g

-CH3 8.5 35a

Note: The underlined compound name in Table 1 represents the test set in the 2D-QSAR, experiment, and * represents the test set in the 3D-QSAR, experiment.
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2.2.3 Linear modeling (Cao and Lin, 2003)
Heuristic Method (HM) is the method of descriptor screening in

the CODESSA software, the greatest advantage of which is that it
allows a complete search for a large number of molecular descriptors
without checking all possible combinations of parameters.
Meanwhile, the method allows to build the best linear regression
equation. The steps of HM are as follows.

a. Selection of 1-parameter descriptor. The square of correlation
coefficient (R2), F-test and t-test are used as selection criteria, and
descriptors with low correlation with properties (activity) are
removed. The descriptors without significant changes and those
with high correlation are removed.

b. Selection of 2-Parameter Descriptor. R2 and F- tests are the
criteria for analysis and selection.

c. Selection of n-parameter descriptors. After obtaining the two-
parameter correlation coefficients with optimal statistical
characteristics, descriptors not used in the previous selection
process are added to establish a new correlation equation. The
new correlation coefficient is verified by R2, F-test and standard
deviation (S). Until the established correlation equation
contains the maximum number of parameters. The process
of adding descriptors starts with the correlation equation with

the maximum fit-ness function value, which is defined as
follows:

w � R2*F*n( )/ N*S2( )①

where R2 donates the square of the correlation coefficient, F is F-test
value; n represents the number of samples, N is the number of
descriptors and S is the standard deviation.

d. Output. Every time a descriptor is added, the optimal
10 correlation results are displayed, and every iteration starts
with the results with the best correlation. The correlation between
descriptors and the square of the cross-validation coefficient
(R2

CV) should be calculated during each cycle.

2.2.4 Establishment of non-linear model
GEP (Gene expression programming) is a new genetic algorithm

that combines the advantages of genetic programming and genetic
algorithm to solve complex problems with simple codes (Holland,
2005). According to the gene expression law of biological inheritance,
GEP adopts equal-length linear symbols as the genetic code, and the
individual phenotype as the expression tree. After a large number of

FIGURE 1
Flowchart of GEP algorithm.
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FIGURE 2
Compound 19g serves as a template for the alignment of all compounds. (A) Common alignment structures in compound 19g (shown in bold), and
(B) all compounds are aligned with 19g as a template.

FIGURE 3
The effects of different numbers of descriptors on R2, R2cv and S2.
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operations, the algorithm can find the optimal solution. The process of
GEP algorithm is described in detail as follows:

First, a certain number of chromosomes were randomly created as
the initial population and then all chromosomes were translated into
corresponding expression trees (ETs). Next, the fitness of each
chromosome was measured according to a predefined fitness
function to determine whether the fitness satisfies the termination
criterion (a solution of the desired quality was found or a certain
number of iterations had been completed). If the termination criteria
were not met, the appropriate individuals were retained by an elitist
roulette selection method. The selected individuals underwent genetic
manipulation to form new individuals based on a certain probability,
including variation, recombination and transposition. Finally, a new
generation was created. Moreover, the chromosome of an individual
consisted of one ormore genes, represented by a fixed-size linear symbol
string. The GEP gene consisted of two parts, which contain multiple
gene element bits. The values of the gene element bits were taken from
the set of terminal T and the set of function F (Teodorescu and
Sherwood, 2008; Gharagheizi et al., 2012; Pham and Karaboga, 2012;
Kaydani et al., 2014). Figure 1 summarizes the above operation process.

By comparing the linear model and non-linear model in 2D-
QSAR model, it is found that the non-linear model generated by
GEP algorithm is more reliable and has stronger prediction power
than the linear model generated by HM method. However, the 2D-
QSAR model cannot accurately describe the relationship between
molecular 3D structure and physiological activity, so it is necessary
to continue the 3D-QSAR experiment.

2.3 3D-QSAR research

2.3.1 Data processing and structure optimization
In 3D-QSAR experiments, the IC50 values of all compounds

need to be first converted to ′-log (IC50) +9′, which makes the data
more stable and reduces the error caused by the original values in the
experiment. Similar to 2D-QSAR experiment, the 3D-QSAR
experiment also required randomly dividing the 37 quinazoline
derivatives into training and test sets.

In the previous experiment, ChemDraw software was used to
construct all 37 compounds, and in the 3D-QSAR experiment, these

37 compounds were put into SYBYL software for optimization and
modeling. When processing data in SYBYL software, Tripos force
field and Powell gradient algorithm were used to minimize COMSIA
structure energy. Finally, the minimal structure was used as the
initial conformation (Yu et al., 2015).

2.3.2 Conformational sampling and alignment
In 3D-QSAR experiments, the structure alignment of compounds

will directly affect the establishment of subsequent 3D models, so it is
very important to select appropriate structure alignment methods for
compounds (Li et al., 2005; Patel et al., 2008; Ai et al., 2011). Ligand-
based alignment was used in this experiment (Figure 2) since compound
19gwas the compoundwith the best compound activity in the dataset, all
compounds were aligned with compound 19g as a template.

2.3.3 COMSIA study
In 1994, Klebe et al. H1 proposed the method of Comparative

Molecular Similarity Index Analysis (CoMSIA), an extension of
CoMFA. Both methods share the same principles and are based on
the following assumptions when the bond affinity of a molecule
changes, its corresponding molecular properties also change, which
are expressed in the form of molecular fields (Yu et al., 2015).

In CoMSIA, the use of a distance-dependent Gaussian functional
form for the calculation of various molecular fields effectively avoids
significant changes in potential energy and anomalous positions of
atoms at lattice points near the molecular surface. In addition, there is
no need to define cut-off values for the energy in CoMSIA. Compared
to CoMFA, CoMSIA corresponds to a significantly improved contour
map of the contribution of different molecular fields in space, which
allows a more intuitive interpretation of the effect of different
molecular fields on molecular activity (Yang et al., 2011a; Li et al.,
2012; Hadni and Elhallaoui, 2020).

For CoMSIA analysis, a grid with side lengths of 2 was first
generated in all the assembled regions of the superimposed molecules,
and the boundaries of 4Åwere used to determine the regions of all the
superimposedmolecules. The default probe provided by CoMSIAwas
used to calculate the steric field, electrostatic field, hydrophobic field
and hydrogen bond field (including hydrogen bond acceptor and
hydrogen bond donor) at each grid point. After obtaining the
molecular field for each grid, Partial Least Square (PLS) method
was used to establish the quantitative correlation model between
molecular field parameters and affinity. Finally, the Leave One Out
(LOO) method and Cross Validation (CV) method were used to test
the statistical significance of the model and determine the number of
principal components of the model. The number of principal
components determined by the optimal interaction verification
value was used to establish the 3D-QSAR model without
interaction verification. The affinity of the compounds in the test
set was predicted (Yan et al., 2020).

TABLE 2 Details of the three selected descriptors.

Symbol Physical-chemical meaning Coefficient t-test

Avg-ERC Avg electroph react index for a C atom 1.5952e+03 8.6342

HDSA-2/TMSA(QC) HA dependent HDSA-2/TMSA [Quantum-Chemical PC] −1.1630e+02 −4.6161

Min-NRO Min nucleoph react index for an O atom 2.5642e+04 3.4256

TABLE 3 Correlation coefficient between three descriptors.

Name Avg-ERC HDSA-2/TMSA(QC) Min-NRO

1 1.0000 0.0220 0.1367

2 0.0220 1.0000 −0.1066

3 0.1367 −0.1066 1.0000
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2.3.4 Validation of 3D-QSAR model
To demonstrate the stability of the QSAR model, the 3D-QSAR

model needs to be evaluated using internal or external validation
methods (Yan et al., 2020). In this experiment, external validation
was selected to verify the 3D-QSAR model. The verification formula is
as follows:

R2
ext � 1 − ∑ntest

i�1 yi − ~yi( )2

∑ntest
i�1 yi( − ~ytr)

2②

where ntest refers to the number of compounds in the test set, ~ytr refers
to the average value of compound activity in the training set, yi and ~yi,
refer to the experimental value and predicted value of compound
activity in the test set respectively. Generally, with R2

ext >0.5, the
established model is considered to be robust and has good
predictive ability in statistics (Yang et al., 2011b; Awasthi et al., 2018).

2.3.5 Molecular docking experiment
After introducing the compound molecules into the Sybyl

software, the molecular mechanics of the ligand small molecules
were optimized using the Cong-Grad gradient method. A Tripos
force field was used in the optimization process with energy
convergence to 0.01 kcal/(mol-Å) and a maximum number of
106 iterations. After the optimization of molecular mechanics,
the conformation with the lowest energy was selected for further
molecular docking studies. For the FGFR4 receptor (crystal
structure of the protein from the RCSB Protein Data Bank, PDB
ID:4xcu), crystal water molecules and hydrogenated atoms were
removed and the original ligands in the protein were extracted to
identify their binding sites for subsequent molecular docking.

Flexible docking between small molecule ligands and receptors
was performed using Sybyl software. The ligand binding sites were
used to generate target active pockets. Docking was subsequently

performed using the Sybyl-Dock standard model with a threshold
parameter of 0.5 and an expansion factor of 1. Molecular
conformational changes were retained by 20. Total-Score
function of the Sybyl-Dock module was used to score the
interaction between the small molecule and the target, taking
into account the effects of polarity, hydrophobicity and enthalpy.
The higher the value, the better the interaction between the
compound molecule and the protein crystal.

3 Results and discussion

3.1 HM

In this experiment, 593 descriptors for 37 compounds were
calculated using CODESSA software. Also, to obtain a set of
descriptors most relevant to the activity of osteosarcoma inhibitors,
eight linear regression QSAR models were developed using the HM
method with the number of molecular descriptors ranging from 1 to 8,
where the effects of different numbers of descriptors on R2, R2cv and S2

is shown in Figure 3. The results show that the number of descriptors is
proportional to the values of R2 and R2cv, and inversely proportional to
S2. The model with three descriptors was selected as the best linear

TABLE 4 All operation functions of GEP algorithm.

Parameter name Representation Values

Addition + 1

Subtraction - 1

Multiplication * 1

Division — 1

Cosine Cos(x) 1

FIGURE 5
Experimental and predicted values for non-linearmodels. All IC50

values are converted to log(IC50).

FIGURE 4
Plots of measured and calculated log(IC50) by HM.
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model for predicting the activity of osteosarcoma receptor inhibitors.
Table 2 shows the details of these descriptors. In addition, to ensure that
there is no multicollinearity between the molecular descriptors
calculated in this experiment, the correlation coefficients between
descriptors were calculated by CODESSA software, as shown in
Table 3. The correlation coefficient between any two descriptors is
less than 0.8, indicating that all descriptors are independent. Therefore,
the constructed linear model has strong statistical reliability. The HM
model is illustrated in Figure 4.

The linear model formula is as follows:

Log IC50( ) � 1.5952*103*Avg − ERC − 1.1630*102*HDSA

− 2/TMSA QC( ) + 2.5642*104* Min −NRO

− 7.5167*10 − 1

From the coefficients of the three descriptors in the above formula,
it can be seen that the absolute value of the coefficient of the descriptor
“Min-NRO” is the largest, so the descriptor “Min-NRO” has the
greatest influence on the linear model of this experiment.

3.2 GEP

The construction of non-linear model in this experiment is
mainly realized by the GEP algorithm in APS software. All the

functions used in the operation of GEP algorithm are shown in
Table 4. Finally, a satisfactory non-linear model was obtained when
GEP was used for 220 generations. The correlation coefficients of the
training and testing sets of the non-linear model were 0.89 and 0.86,
respectively, with average errors of 0.02 and 0.04.

In addition, the non-linear model equation obtained by GEP
algorithm (converted by C language) is as follows:

Log IC50( ) � 14y + 2x + 1 + cos y/3x − cos x( )( )
+ cos cos x*x/y/z* cos 2y( )( )( ) + y/3x − cos 1( )

where x, y and z represent the descriptors Avg-ERC, HDSA-2/
TMSA(QC) and Min-NRO, respectively.

In order to verify the predictive ability of the non-linear model,
the formula was used to predict the IC50 value of all compounds. The
specific results are shown in Figure 5, indicating that the predictive
ability of the non-linear model is extremely reliable.

3.3 COMSIA model results

In the 3D-QSAR experiments, eight groups of COMSIA models
were obtained by permuting and combining the steric field (S),
electrostatic field (E), hydrophobic (H), hydrogen bond donor field
(D) and hydrogen bond acceptor field (A). Among them, the model
composed of SEHDA has the best statistical results, and the details
are shown in Table 5.

3.4 External verification results

In order to prove the stability of the 3D-QSAR model
constructed in this experiment, the external verification formula
was used to verify the model with satisfactory results. The value of
R2
ext obtained by external verification formula was 0.997, greater

than 0.5, indicating that the CoMSIA model constructed in this
experiment has a strong predictive ability. At the same time, in order
to further demonstrate the predictive ability of the model, all
compounds were put into the model to predict their compound
activity, which can be found to be extremely reliable (Figure 6).

3.5 COMSIA contour maps

One of the advantages of CoMSIA is the ability to isolate and
observe the effects of various physical and chemical properties on
biological activity through 3D correlation contour maps. This

TABLE 5 Statistical results of the optimal CoMSIA model.

Model q2 ONC r2 SEE F

CoMSIA 0.63 6 0.987 0.056 189.027

Name S E H D A

Contribution (%) 6.2 29.6 18.6 19.9 25.8

Notes: ONC, the optimum number of components. SEE, the standard error of estimate. S, steric. E, electrostatic. H, hydrophobic. D, hydrogen bond donor. A, hydrogen bond acceptor.

FIGURE 6
Experimental and predicted values of CoMSIA model. All
compounds IC50 were converted to “−log(IC50)+9.”
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contour map helps to identify the important regions of the
molecular field that affect the biological activity, and also to
mark the molecular field features that contribute significantly to
the active site of ligands and receptors (Chen et al., 2021;Wang et al.,
2022).

In this experiment, the steric, electrostatic, hydrophobic,
hydrogen bond donor and acceptor fields were constructed
according to the compound 19g with the best compound
activity, among which the electrostatic field had the highest
contribution. In other words, the influence of electrostatic

FIGURE 7
Contour map of optimal compound 19g. (A) In the steric field, green represents favorable and yellow represents unfavorable. (B) In the electrostatic
field, blue represents a positive electric field and red represents a negative electric field. (C) In the hydrophobic field, yellow represents favorable andwhite
represents unfavorable. (D) Favorable (cyan) and unfavorable (purple) hydrogen bond donor fields. (E) Favorable (magenta) and unfavorable (red)
hydrogen bond acceptor fields.
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field on the compound activity should be taken into
consideration in subsequent compound design experiments.
Figure 7 shows the five contour maps.

3.6 Design new compounds and predict
activity

From the results of 2D-QSAR experiments, we know that the
descriptor ‘Min nucleoph React index for an O Atom’ has the
greatest impact on the compound activity of compounds. Fukui
atomic nucleophilic reaction index formula (Franke, 1984) has a
very detailed explanation for this kind of descriptors, as expressed as
follows:

NA � ∑
i∈A

C2
iHOMO③

where C2
iHOMO stands for highest occupied molecular orbital MO

coefficients, NA stands for minimum nucleophilic reaction index.
Through an in-depth study of this formula, it is easy to conclude that
the regression coefficient of “Min nucleophilic reaction index of O
atom” is positive, and the more negatively charged oxygen atoms in
the molecule, the greater the nucleophilic reaction index. The larger
the nucleophilic reaction index, the larger the IC50 value of the
compound, and the lower the compound activity. According to this
conclusion, the activity of a compound can be improved by
increasing the valence of the oxygen atom or decreasing the
number of oxygen atoms in the compound.

TABLE 6 The compounds of newly designed and their predicted values.

Name Predictive value

19g 9.027

19g.1 10.135

19g.2 10.178

19g.3 10.289

19g.4 10.336

19g.5 10.545

19g.6 10.651

19g.7 10.661

19g.8 10.674

19g.9 10.845

19g.10 10.901

FIGURE 8
Docking assay of compounds 19g, and 19g.10 with osteosarcoma related target (FGFR4, PDB ID: 4XCU).

Frontiers in Pharmacology frontiersin.org13

Lian et al. 10.3389/fphar.2023.1124895

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1124895


Electrostatic field contributed the most in the five CoMSIA
contour maps, so electrostatic field is the main factor to be
considered in compound design. Of course, there are other force
fields that need to be considered. The biggest innovation of this
study is the design of new compounds by combining the descriptor
“minimum nuclear reaction index of O atoms” and CoMSIA
contour maps. The specific combination method is to reduce the
number of molecular oxygen atoms or increase the valence of
oxygen atoms in the favorable region of contour map according
to Fukui nucleophilic reaction formula. Finally, 200 new
quinazolines were designed. Table 6 shows the ten compounds
with the highest compound activity. Compound 19g.10 has the
highest value of antitumor activity among these compounds and can
be considered as a potential chemotherapeutic agent for the
treatment of osteosarcoma. However, in order to prove the target
binding capability of the newly designed compounds with
osteosarcoma targets, it is necessary to continue with small
molecule docking experiments.

3.7 Molecular docking results

In docking experiments, compound 19g and the new compound
19g.10 were used as ligands for docking with the osteosarcoma-
related target FGFR4, and Figure 8 represents the docking results for
both compounds (yellow dashed lines represent hydrogen bonds).

From the docking conformation of compound 19g, the oxygen
atom (located in the structure 2,4-Dichloro-1,5-dimethoxy-3-
methylbenzene) formed a hydrogen bond with the protein
residue ASP630, and the nitrogen atom of the quinazoline core,
as well as the hinge region, formed a hydrogen bond with Ala553.
This is the same binding mode as that of BLU9931, a selective
inhibitor of FGFR4 first identified by Hagel M, Miduturu C et al.
(Hagel et al., 2015).

From the docking conformation of compound 19.10, it appears
that compound 19g.10 can form hydrogen bonds not only with
residues ASP630 and ALA553 but also the N-methylpropanamide
structure of the compound can form hydrogen bonds with residue
ASN557. And the 1-fluoride-4-methylpiperazine structure can also
form hydrogen bonds with the protein residue LYS471. The above
results suggest that compound 19g.10 designed in this experiment
does have potential as a chemotherapeutic candidate for
osteosarcoma.

4 Conclusion

In this study, linear and non-linear 2D-QSAR models were
obtained experimentally, and it can be seen from the experimental
results that the descriptor Min-NRO has the greatest influence on
compound activity. However, it is obvious that only 2D
experiments are not enough, so it is necessary to continue with
3D conformational relationship experiments. Through the
CoMSIA method, a 3D-QSAR model with high q2 (0.63) and r2

(0.987) values and low error values (0.05) was obtained. In
addition, among the five contour maps of CoMSIA model, the
contour map that contributes most to the compound activity of the
compound is the electrostatic field.

Finally, 200 new quinazoline derivatives were designed
according to the molecular descriptor Min-NRO and contour
map. In order to further verify the correlation between the
compounds and the targets of osteosarcoma, small molecule
docking experiments were also performed in this study,
indicating that compound 19g.10 also had good target
binding capability and can be regarded as a potential target
compound for osteosarcoma. In conclusion, this study designed
a reliable QSAR model for quinazoline compounds, which
provided new ideas for compound design and could provide
important guidance for the development of future
chemotherapeutic drugs for osteosarcoma.
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