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Acquired brain injury (ABI) is the most common disease of the nervous system,
involving complex pathological processes, which often leads to a series of nervous
system disorders. The structural destruction and dysfunction of the Neurovascular
Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular
mechanism underlying NVU destruction and its reconstruction is the key to the
treatment of ABI. SUMOylation is a protein post-translational modification (PTM),
which can degrade and stabilize the substrate dynamically, thus playing an
important role in regulating protein expression and biological signal
transduction. Understanding the regulatory mechanism of SUMOylation can
clarify the molecular mechanism of the occurrence and development of
neurovascular dysfunction after ABI and is expected to provide a theoretical
basis for the development of potential treatment strategies. This article reviews
the role of SUMOylation in vascular events related to ABI, including NVU
dysfunction and vascular remodeling, and puts forward therapeutic prospects.
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1 Introduction

1.1 Neurovascular dysfunction after acquired brain injury

1.1.1 Pathology of ABI
Acquired Brain Injury (ABI) typically is classified into the two following types: traumatic

brain injury (TBI) and non-TBI (non-TBI) (Bruns and Hauser, 2003), with the former
having the highest incidence among neurological diseases (Maas et al., 2022). The causes of
TBI include traffic accidents, violence, and other accidents1. The occurrence of non-TBI is
related to stroke, neoplasm, infection, inflammation, anoxia, alcohol consumption, and drug
use (Goldman et al., 2022). ABI leaves patients with physical and psychological sequelae,
making it difficult for them to reintegrate into society, resulting in a great social burden
(Menon and Bryant, 2019). ABI can cause vascular structure damage, dysfunction of the
neurovascular unit (NVU), destruction of the blood-brain barrier (BBB), brain edema,
activation of immunoreactive cells, the release of immune mediators, oxidative stress,
mitochondrial and metabolic dysfunctions, and changes in cerebral blood flow (CBF)
(Greve and Zink, 2009; Zibara et al., 2019). These eventually lead to headaches,
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cognitive changes, emotional anxiety, and a series of neurological
disorders (Bedaso et al., 2018; Larsen et al., 2019; Chan and
Woldeamanuel, 2020).

The primary injury of ABI is of the mechanical kind and
includes the destruction of neurons, glia, and vascular structures.
It is irreversible. However, secondary injury occurs over time and
initiates multiple signaling cascades, which can change cell function
and cause cell death, including oxidative stress, excitotoxicity,
mitochondrial dysfunction, and inflammation (Lozano et al.,
2015). Within minutes of ABI, astrocytes, and microglia begin to
secrete pro-inflammatory factors (including interleukin-6,
interleukin-1, tumor necrosis factor, etc.), causing local
inflammation (Ghirnikar et al., 1998; Ekmark-Lewen et al., 2010;
Homsi et al., 2010). These inflammatory factors actively recruit
immune cells and glial cells, thus aggravating the occurrence of
inflammation (Lossinsky and Shivers, 2004). Some studies have
shown that microglia can maintain a state of enhanced
inflammation for several months after ABI (Witcher et al., 2015).
The inflammatory responses after ABI include the activation of
immune cells in the central nervous system (CNS) and infiltration of
peripheral immune cells through the BBB, which is mediated by a
variety of inflammatory cytokines. The dysfunction of NVU and
BBB caused by ABI allows activated white blood cells to migrate to
the damaged brain parenchyma, which is also promoted by the
upregulation of cell adhesion molecules. Activated white blood cells,
microglia, and astrocytes produce ROS and inflammatory
molecules, like cytokines and chemokines, leading to
demyelination and destruction of the axonal cytoskeleton
(Goldman et al., 2022). Over time, inflammatory events lead to
brain edema and increased intracranial pressure (McGinn and

Povlishock, 2016). ABI is characterized by the crossover and
fusion of highly related neuropathological reactions, wherein
severe and persistent inflammatory reactions may cause further
deterioration. However, although neuroinflammation aggravates
brain damage in the early stages of ABI, inflammation may also
promote angiogenesis and neurogenesis at a later stage (Candelario-
Jalil et al., 2022).

The vascular network of the brain originates from the internal
carotid artery and goes deep into the brain. The maintenance of
normal brain function requires the integrity of brain structure,
normal synaptic activity, and smooth transmission of
information. However, these require the coordination of different
cells in the NVU and the structural integrity of BBB (Zhao et al.,
2015) (Figure 1). In NVU, endothelial cells (ECs) are part of BBB.
These ECs are related to several substrate-specific transport systems
and can control the transport of nutrients, metabolites, and some
essential molecules (Zhao et al., 2015). The concept of NVU regards
the interaction among neurons, glial cells, and cerebral vessels as a
whole, and promotes the previous treatment singly, such as neuron
protection and vascular remodeling to the level of protection and
repair of NVU, bringing new opportunities for research on the
treatment of ABI.

1.1.2 BBB damage and NVU dysfunction
BBB is formed by ECs of the capillary wall, astrocyte end-feet

ensheathing the capillary, and pericytes embedded in the capillary
basement membrane (Ballabh et al., 2004). The characteristics of
BBB are mainly determined by the connection complex between
brain ECs, including tight, adherens, and gap junctions. Although it
has a strong similarity with the epithelium, the brain endothelial

FIGURE 1
Schematic of neurovascular unit and blood brain barrier components. In NVU, endothelial cells are surrounded by pericytes, which are embedded in
the basement membrane and surrounded by the endfeet of astrocytes. The synaptic connection between astrocytes and neurons regulates neurons.
When brain tissue is injured, microglia respond first. In addition, NVU consists of few oligodendrocytes. The main component of BBB is endothelial cells.
The junctions between endothelial cells are involved in regulating cell bypass permeability.
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junction complex has a special structure and unique pattern of
protein expression (Stamatovic et al., 2016). BBB is a highly selective
physical barrier that strictly controls the microenvironment of brain
cells. As the connection between ECs effectively limits the
permeability of the adjacent cells, and these cells lack phagocytic
vesicles, thus limiting the transport across the fine cytoplasm, the
molecules are transported to CNS by active transport or passive
diffusion (Daneman and Prat, 2015). Vascular ECs not only regulate
the selectivity and permeability of BBB but also CBF, angiogenesis,
and neuronal development (Iadecola, 2017). Although the barrier of
the cerebrovascular system mainly comprises ECs, these are not
functioning alone but as a part of the NVU, resulting in a complex
molecular crosstalk network with different cellular elements in the
NVU (Neuwelt et al., 2011). The formation and stability of cerebral
vessels and BBB depend on the expression of growth factors, guiding
molecules, and signal pathways (Andreone et al., 2015;Walchli et al.,
2015). The function of BBB is to limit the circulation of harmful
substances and blood cells in the blood in cerebral vessels which
cannot enter the brain parenchyma (Winkler et al., 2011). Another
important role of BBB is to reduce cross-cell permeability (Zhao
et al., 2015). ABI can cause BBB damage, and various components in
the blood will invade the brain tissue, resulting in cell infiltration and
damage (Zhao et al., 2015; Montagne et al., 2017). BBB can cause an
imbalance in CBF (Iadecola, 2017; Kisler et al., 2017), initially
resulting in the disorder of the normal physiological function of
the nervous system. Therefore, as a structure connecting the central
nervous system and systemic circulation, BBB is the key to
maintaining the homeostasis of the nervous system.

The concept of NVU emerged in 2001 to emphasize the
relationship between the microvascular system and structural
integrity and functional maintenance of brain cells, along with
the coordinated response between the two in the event of a brain
injury (Iadecola, 2017). NVU includes ECs, basement membranes,
pericytes, astrocytes, microglia, and neurons, as well as
oligodendrocytes (Sweeney et al., 2019). Among the many
components, microglia can promote endothelial repair, thus
maintaining endothelial integrity (Thurgur and Pinteaux, 2019).
The function of neurons is to regulate the activity of enzymes to
meet the metabolic needs of the brain (McConnell et al., 2017). In
the vascular system of the brain, there is a three-dimensional
vascular network comprising pial arteries, capillaries, ascending
venules, and leptomeningeal veins. NVU exists in this vascular
network (Blinder et al., 2013). This three-dimensional vascular
network can enter the deep part of the brain, nourish the
neurons, and transport the metabolites away (Kisler et al., 2017).
The maintenance of normal brain function lies not only in the
connection between neurons but also in the coordination between
different components of the NVU (Lo and Rosenberg, 2009). NVU
is indispensable for the normal maintenance of the function of the
CNS. If NVU is destroyed, various cerebrovascular diseases can
occur, eventually leading to nervous system dysfunction. However,
NVU disorders are common in ABI, and the causal relationship
between NVU dysfunction and diseases is not completely clear
(McConnell et al., 2019).

1.1.3 New vessel formation after ABI
The main damages of ABI to cerebral vessels include

hemorrhage, edema, abnormal CBF and destruction of BBB

(Salehi et al., 2017). Several studies have shown that after
cerebral vascular injury, it will try to repair it (Morgan et al.,
2007; Park et al., 2009). Related studies have shown that the
cerebrovascular system begins to repair within two to 3 weeks of
damage, including not only larger blood vessels, but also smaller
blood vessels, such as capillaries (Park et al., 2009; Siddiq et al.,
2012). After ABI, the abnormal structure of vascular wall, swelling
and apoptosis of endothelial cells and degradation of extracellular
matrix could be seen under electron microscope (Danaila et al.,
2013; Jullienne et al., 2014). The formation of new blood vessels after
ABI is crucial to the recovery of nerve function. Existing literature
shows that angiogenesis and vasculogenesis are two main
mechanisms occurring after brain injury (Salehi et al., 2017).
These complex but different processes play an important role in
repairing the damaged vascular system after brain injury (Salehi
et al., 2017). Angiogenesis refers to the formation of new blood
vessels from the existing vascular system, while vasculogenesis is the
occurrence of neovascularization.

Hypoxia caused by interruption of blood flow after ABI is the
main cause of triggering angiogenesis (Gajavelli et al., 2015). This
may be related to the expression regulation of hypoxia-related
molecules, such as HIF-1 α (Anderson et al., 2009). Vascular
endothelial cells are activated after ABI (Balabanov et al., 2001).
Endothelial cells form vascular sprouts and migrate to hypoxia (Van
Hove and Benoit, 2015). With the accumulation of pericytes, the
damaged blood vessels were repaired (Hirota and Semenza, 2006).
The occurrence of vasculogenesis mainly comes from endothelial
progenitor cells, so this process is actually initiated in the bone
marrow (Asahara et al., 1999). After ABI, endothelial progenitor
cells peak within a week after a brief decrease, and play a role after
maturation in the blood (Gong et al., 2011; Liu et al., 2011). In
addition, endothelial progenitor cells also release some factors,
which can promote the proliferation and migration of ECs and
promote vasculogenesis (Ziegelhoeffer et al., 2004; Urbich et al.,
2005).

After the occurrence of ABI, timely and effective intervention
can restore the function of NVU to varying degrees. Angiogenesis
and vascular remodeling can rebuild the BBB, protect brain tissue
from further damage, provide necessary nutrition, and play a key
role in nerve repair (Esquiva et al., 2018).

1.2 Protein post-translational modifications

Proteins play an important role in most biological processes.
Their functions are regulated by several protein PTMs. PTMs refer
to amino acid chain or terminal covalent enzyme modification, a
reversible process that can affect the activity, localization,
interaction, and function of target proteins (Wang et al., 2014).
PTMs are the core of many cellular signaling events. Usually, PTMs
can work alone or cooperatively. The crosstalk between PTMs often
affects the physiological and pathological processes of cells through
fine-tuning (Vu et al., 2018). PTMs usually occur in the C- or
N-terminal of amino acid side chains of proteins, including the
addition of chemical or functional groups, polypeptide chains,
complex molecules, and modification of amino acids, depending
on the type of PTMs (Xu et al., 2018). More than 450 kinds of PTMs
have been found (Venne et al., 2014), including acetylation,
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ubiquitination, methylation, glycosylation, phosphorylation, and
SUMOylation (Zheng and Shabek, 2017). Ubiquitin has lysine
residues that act on the target protein and complete mono-
ubiquitination or poly-ubiquitination under the action of ligase,
binding enzyme, and activating enzyme. This process can be
reversed by deubiquitinase (Deng et al., 2020). Phosphorylation
mainly acts on serine, threonine, and tyrosine residues of target
proteins (Olsen et al., 2006). Methylation mainly occurs on lysine
and arginine residues. Lysine can be monomethylated,
demethylated, or trimethylated by lysine methyltransferases;
arginine can be monomethylated or dimethylated by arginine
methyltransferases (Zhang et al., 2012; Yang and Bedford, 2013).
Glycosylation can be linked to the side chain by oligosaccharide
transferase by an amide bond (Moremen et al., 2012). As a PTM,
SUMOylation has received more attention in recent years, because it
is necessary to maintain genome integrity, molecular signal
transduction, transcriptional regulation, and gene expression
(Han et al., 2018). When PTMs in the cellular environment are
dysfunctional, conformational changes of related proteins,
imbalance of enzyme activity, abnormal protein folding, and
production of toxic metabolites occur, all eventually leading to
the disease state (Stram and Payne, 2016).

1.3 SUMOylation

SUMOylation is a common PTM of proteins. Small ubiquitin-like
modifier (SUMO), similar to ubiquitin in structure, is an important
protein discovered after ubiquitin (Yeh et al., 2000; Garcia-Rodriguez
et al., 2016). Although the structure of SUMO is similar to that of
ubiquitin, its cellular functions differ. The main function of
ubiquitination is to degrade substrate proteins, while SUMOylation
chiefly regulates cell localization, protein transcription, protein
interaction, and DNA repair processes (Garcia-Rodriguez et al.,
2016; Han et al., 2018). When SUMO binds to a protein, it can
change the location, conformation, activity, and gene expression of
the target protein, thus affecting many physiological and pathological
processes (Chymkowitch et al., 2015).

Five SUMO homologous genes, named SUMO 1–5 are expressed
in humans (Huang et al., 2004; Liang et al., 2016). SUMO1–3 is widely
expressed and participates in the modifications of thousands of
proteins (Hendriks et al., 2017; Hendriks et al., 2018). The
homology between SUMO2 and SUMO3 is very high, up to 97%.
Therefore, the two cannot be completely distinguished and are usually
termed SUMO2/3. They exist in various locations in the cell in a non-
conjugated form and can be attached to the target protein after
stimulating correspondingly (Enserink, 2015; Niskanen and
Palvimo, 2017; Bernstock et al., 2018a). The expression of
SUMO4–5 is limited, and it is not clear whether these can bind to
the target protein (Celen and Sahin, 2020). In the SUMO family,
SUMO2 has the highest abundance compared to the other members,
so the lack of SUMO2 cannot be compensated by other analogs. In
contrast, the functions of SUMO1 and SUMO3 can be compensated
by the other analogs (Wang et al., 2014).

SUMOylation is a dynamic and reversible process (Figure 2),
similar to the cascade reaction of ubiquitin enzymes (Gill, 2004). The
SUMO subtype binds to the target protein through the three
following steps: activation, heterodimer E1 enzyme (SAE1,

SAE2), binding, E2 enzyme (UBE2I/UBC9), substrate
modification, and E2 and E3 protein ligase interaction (Lv et al.,
2018). The SUMOylation pathway is regulated by several enzymes,
among which proteases and ligases are the most important
regulatory modes. The most studied proteases and ligases are of
the SENP and PIAS families, respectively (Lara-Urena et al., 2022).
The proteases involved in SUMOylation modification are specific,
and the most studied proteases are SENP1-3 and SENP5-7 of the
SENP family (Kunz et al., 2018). SUMO-specific peptidases (SENP1,
2, 3, 5, 6, and 7) catalyze the deSUMOylation reaction, thus
dissociating lysine residues of target proteins from SUMO
(Rawlings et al., 2019). PIAS family is mainly involved in DNA
binding and transcriptional regulation (Rabellino et al., 2017).

Many studies have shown that abnormal regulation of
SUMOylation is associated with a variety of diseases, including
heart and neurodegenerative disorders (Da Silva-Ferrada et al., 2016;
Mun et al., 2016). The balance of SUMOylation plays an important
role in cardiac development, metabolism, and stress (Gupta et al.,
2016; Gupta and Robbins, 2016; Liu et al., 2017). Ubc9-mediated
SUMOylation can effectively reduce the incidence of proteotoxic
heart diseases (Gupta et al., 2016). Moreover, therapeutic targets for
cardiac fibrosis and heart failure are also closely related to Ubc9 (Liu
et al., 2017). In neurodegenerative diseases, SUMOylation causes
abnormal accumulation of HTT protein, leading to Huntington’s
disease, which is related to abnormal degradation of the ubiquitin-

FIGURE 2
A diagram of the SUMOylation pathway. The precursor of small
ubiquitin-like modifier (SUMO) are cleaved by SENPs, reveal the
C-terminal diglycine motif (Maturation); It is then activated by the
E1 enzyme SAE1/SAE2, which depends on ATP (Activation); The
activated SUMO is transferred to UBC9 (Conjugation); SUMO is
connected to the side chain of the specific lysine residue of the target
protein, and this process involves E3 ligase (Ligation); SUMO is
dissociated from the target protein, and the free SUMO can participate
in the next catalytic cycle, which is regulated by SENPs
(deSUMOylation).
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proteasome pathway (Steffan et al., 2004). SUMOylation is also
closely related to Alzheimer’s disease, which is related to the
abnormal expression of amyloid- β and tau protein (Yang et al.,
2017). Dysfunctional SUMOylation also plays an important role in
cancer. The upregulation of SUMO binding enzyme increases
SUMOylated proteins, leading to poor prognosis (Moschos et al.,
2007; Chen et al., 2011; Zhang et al., 2013; Seeler and Dejean, 2017).
In several cancers, the abnormal expression of SENPs may promote
their progression (Ding et al., 2008; Bawa-Khalfe and Yeh, 2010; Sun
et al., 2013). SUMOylation plays an important role in the study of
drug resistance in hepatocellular carcinoma (Qin et al., 2014).
Several therapeutic targets against cancer-related to SUMOylation
are being studied. In short, the imbalance between SUMOylation
and deSUMOylation is related to the occurrence and development of
many diseases. Therefore, it is meaningful to study the relationship
between SUMOylation and various diseases.

This review focuses on neurovascular dysfunction after ABI,
with particular emphasis on the correlation between SUMOylation
and neurovascular dysfunction. Actively examining potential
molecular targets is needed and this review discusses the
possibilities for the development of a new treatment for ABI.

2 Regulatory effects of SUMOylation on
the components of NVU

2.1 The regulatory effects of SUMOylation
on ECs

ECs in cerebral vessels are the core components of BBB, and their
morphology and function are different from those of peripheral ECs
(Daneman and Prat, 2015). The ECs in the cerebral vessels have more
mitochondria than the peripheral ECs, consuming more energy to drive
the ion gradient, which is important for enzyme activity (Daneman and
Prat, 2015). ECs do not have small transcellular pores that allow free
diffusion, so these can prevent rapid molecular exchange between blood
and brain tissues (Pandit et al., 2020). The tight connection between ECs
can completely close the gap between them to form continuous blood
vessels (Tietz and Engelhardt, 2015). It also promotes the transmission of
information between neurons and glial cells (Wang et al., 2015). Normal
ECs also play an important role in regulating thrombosis and
vasodilation (Findlay et al., 1989). ECs can secrete vasoactive factors
to control vasodilation and contraction and vasoconstrictors, thus
maintaining the balance in CBF (Sandoo et al., 2010). Endothelial cell
dysfunction (ECD) destroys the integrity of BBB, leading to changes in
CBF, eventually causing functional damage and degradation of the NVU
(Iadecola, 2017), and mediating the occurrence and progression of ABI.
The essence of ECD is a change in their functional phenotype, such as a
deficiency in nitric oxide (NO), senescence of ECs, and increased
expression of endothelial-leukocyte adhesion molecules, which are the
basis for thrombosis and inflammation (Gimbrone and Garcia-Cardena,
2016; Anand et al., 2018; Harding et al., 2019). Given the importance of
ECD in ABI, it remains the focus of future research.

2.1.1 EC senescence and apoptosis
Vascular aging can lead to many cardiovascular and

cerebrovascular diseases, including stroke, hypertension, and
coronary heart disease, and EC aging is an important

characteristic of vascular aging (Ungvari et al., 2018). Reactive
oxygen species (ROS) produced by mitochondrial dysfunction
can activate microglia continuously (Faas and de Vos, 2020; Riley
and Tait, 2020). The increase in ROS in microglia leads to cell death
and neuroinflammation (Chiurazzi et al., 2020). Mature
mitochondrial thioredoxin 2 (Trx2) is an important redox
protein, which can eliminate ROS in time and slow down the
senescence of VECs (Papaconstantinou, 2019). However, the
precursor of Trx2 (PreTrx2) cannot perform the function of
scavenging ROS. SUMOylation of Trx2 can reduce the
accumulation of PreTrx2, promote the formation of Trx2, and
effectively inhibit the senescence of ECs induced by ROS (Chen
et al., 2019). Trx family of proteins reportedly helps reduce ischemic
ABI (Otero-Losada et al., 2019). This may be related to the fact that
cytoplasmic Trx1 and mitochondrial Trx2 can inhibit the
production of free radicals, reduce oxidative stress, and
mitochondria-dependent apoptosis (Chiueh et al., 2005). A
previous study suggests that increased expression of Trx2 exerts a
neuroprotective effect (Lee et al., 2017). A series of studies have
obtained useful results, and the effect of Trx2’s SUMOylation on
ABI is worthy of further study.

An animal study on pigs showed that increased expression of
SUMO1 in the porcine arterial ECs could protect ECs, reduce EC
apoptosis, and increase EC formation. Mechanistic studies have
shown that SUMO1 promotes angiogenesis by regulating
MMP13 expression and the JAK2/STAT5 signaling pathway, and
similar results were obtained usingmouse models (Yang et al., 2013).
The effect of SUMOylation on endothelial cell apoptosis and
senescence is not only that, we need to invest more research to
prove it.

2.1.2 EC inflammation
GATA2, a transcription factor that regulates the expression of

EC adhesion molecules, can be modified by SUMOylation, During
inflammation, SENP1 promotes the deSUMOylation of GATA2 in
ECs, increasing the stability of GATA2, thus finally aggravating
endothelial inflammation (Qiu et al., 2017). NLRP3 inflammatory
bodies can activate IL-1 β and increase the intensity of inflammation
(Wang et al., 2017). Several studies have shown that the initiation
and activation of NLRP3 are significantly upregulated after ABI
(O’Brien et al., 2020). SUMOylation deletion of NLRP3 can increase
the expression of IL-1 β, while the deletion of SENP7 downregulates
the expression of IL-1 β, indicating that NLRP3 can inhibit the
progression of inflammation through SUMOylation (Barry et al.,
2018). Here, SUMOylation seems to show anti-inflammatory effects.

Angiotensin II (Ang II) is a key molecule in the renin-
angiotensin system that regulates blood pressure, which can
promote the production of ROS, apoptosis, and inflammation in
ECs (Benigni et al., 2010). The activation of transcription factor 3
(ATF3), an adaptive reactive protein, and its abnormal expression
lead to atherosclerosis (Forrester et al., 2018). Silencing ATF3 can
inhibit the lipotoxicity of cerebral microvascular ECs (Nyunt et al.,
2019). Another study also supports this view (Aung et al., 2016).
Interestingly, however, another study reports opposite results,
whereby after ATF3 gene knockout, the infarct size increased
significantly in the mouse model of cerebral ischemia (Wang
et al., 2012). ATF3 also inhibits the apoptosis of neurons and
activation of microglia in the rat model of cerebral ischemia and
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alleviates ABI in rats (Ma et al., 2022). The study showed that
compared to the SUMOylation mutant group, the SUMOylation
degree and SUMO1-mediated expression of wild-type
ATF3 increased significantly, thus accelerating the process of
ECD induced by Ang II (Zhang et al., 2016). Simultaneously,
ATF3 is a stress-induced adaptive response protein, which is
associated with immune responses, tumors, inflammation, and
other diseases (Zhou et al., 2011). ATF3 or SUMO1 gene
knockout can inhibit the expression of inflammatory molecules
induced by Ang II, while wild-type ATF3 can reduce the
production of NO. Thus, SUMOylation of ATF3 can increase the
stability of ATF3 and promote ECD mediated by angiotensin-
converting enzyme II (Zhang et al., 2016).

The activation of focal adhesion kinase (FAK) can promote the
progression of EC inflammation, and disturbed flow (D-flow) can
induce EC senescence. D-flow can induce ROS production, further

activating FAK through SUMOylation of FAK K152, forming a
positive feedback loop, which induces EC activation and senescence.
The site-directed mutation of FAK affecting SUMOylation reverses
this phenomenon (Velatooru et al., 2021). Moreover, FAK mediates
the expression of IL-6 in the brain and promotes inflammation
(Keasey et al., 2018). Another study also showed that the mouse
model of stroke had significant anti-inflammatory and
neuroprotective effects after treatment with FAK inhibitors (Jia
et al., 2022).

Extracellular signal-regulated kinase 5 (ERK5) is an anti-
atherosclerotic factor (Heo et al., 2014), and its activation leads
to the upregulation of PPAR, resulting in anti-inflammatory and
anti-atherosclerotic effects (Woo et al., 2008). ERK5 can reduce its
expression through the SUMOylation of PIAS1, thus accelerating
the progression of inflammation (Paez-Mayorga et al., 2018).
Moreover, in the case of hemodynamic abnormality, the

TABLE 1 The regulatory effect of SUMOylation on NVU composition.

Components Genes/
Pathways

Regulated
pathways

Effects References

Astrocytes Guanosine SUMOylation Neuroprotection Zanella et al. (2020)

Endothelial cells Trx2 SUMOylation Effectively inhibit the senescence of ECs induced by ROS Chen et al. (2019)

FAK K152 SUMOylation Induces EC activation and senescence Velatooru et al. (2021)

GATA2 deSUMOylation Aggravating endothelial inflammation Qiu et al. (2017)

NLRP3 SUMOylation Inhibit the progression endothelial inflammation Barry et al. (2018)

ATF3 SUMOylation Accelerating the process of ECD induced by Ang II Zhang et al. (2016)

ERK5 SUMOylation Accelerating the progression of inflammation Paez-Mayorga et al. (2018)

p53 and ERK5 SUMOylation Ancreased apoptosis and expression of ECs Heo et al. (2013)

PKC ζ SUMOylation Accelerate apoptosis of ECs Heo et al. (2011); Dehnavi
et al. (2019)

PPAR γ SUMOylation Aggravated ECD Kim et al. (2019); Yuan
et al. (2019)

MMP13 SUMOylation Promotes angiogenesis Yang et al. (2013)

PAX6 deSUMOylation Accelerate the repair of corneal ECs after injury Yu et al. (2020)

Neurons SUMO2/3 SUMOylation Block the activation of oxidative stress responses and protect neurons Yang et al. (2008)

SUMO1/2 SUMOylation Protect neurons Datwyler et al. (2011); Lee
et al. (2011)

Ubc9 SUMOylation Protect neurons Zhang et al. (2019)

SUMO2 deSUMOylation Significant impairment in cognitive functions in mice Yu et al. (2020)

Ubc9 SUMOylation Enhanced hypoxia resistance, enhanced differentiation ability of neurons
in vitro

Bernstock et al. (2019)

SENP2 SUMOylation Enhanced the neuroprotective effect Bernstock et al. (2018b)

Microglia SENP6 SUMOylation Not only did the area of cerebral infarction reduce significantly but the
motor and cognitive functions of mice with cerebral ischemia also improved
substantially

Mao et al. (2022)

p-NF-κB-p65 deSUMOylation Prevent the progression of neuroinflammation Li et al. (2019)

NEMO deSUMOylation Inhibiting the inflammatory responses induced by microglia Yang et al. (2020)

Pericyte SENP1 deSUMOylation Enlarge the range of focal cerebral ischemia, aggravate motor dysfunction,
and significantly increase neuronal damage after cerebral ischemia in mice

Sun et al. (2020)

Frontiers in Pharmacology frontiersin.org06

Luo et al. 10.3389/fphar.2023.1125662

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1125662


expression of p53 and ERK5 is regulated by SENP2. In the mouse
model carrying a SENP2 deletion, the degree of SUMOylation
increased, and increased apoptosis and expression of ECs were
observed, while in the SUMOylation mutation group, the
apoptosis and expression of ECs were inhibited after
overexpression of p53 and ERK5 (Heo et al., 2013). However,
another study reports opposite conclusions. Ponatinib, a tyrosine
kinase inhibitor (TKI), can upregulate SUMOylation of ERK5,
promote the inflammatory progression of ECs, and disrupt the
normal state of blood vessels (Paez-Mayorga et al., 2018). Protein
kinase C ζ (PKC ζ) can induce SUMOylation of p53 and accelerate
apoptosis of ECs (Heo et al., 2011; Dehnavi et al., 2019). A previous
study suggests that increased expression of PKC ζmay play a role in
preventing cognitive impairment in mice (Wu et al., 2012).

The regulatory effects of SUMOylation on endothelial cell
inflammation show two completely opposite effects.
Proinflammatory or anti-inflammatory effects are related to
different molecules SUMOylation. However, it is uncertain
whether such a role is beneficial or harmful. Considering the
core role of ECs in NVU and BBB, the influence of
SUMOylation on ECs may be an interesting research direction.

2.2 The regulatory effects of SUMOylation
on neurons

The role of SUMOylation in neuroprotection has been studied
for a long time now. After transient cerebral ischemia, the expression
of SUMO2/3 in the hippocampus and cerebral cortex increases
significantly, and the activation of the SUMOylation pathway can
block the activation of oxidative stress responses and protect
neurons (Yang et al., 2008). In the transgenic mouse model,
increased expressions of SUMO1–3 were detected in the brain of
mice after cerebral ischemia (Yang et al., 2014), however,
SUMO1–3 gene knockouts showed limited neurological recovery
after cerebral ischemia (Zhang et al., 2017). These studies show that
overexpression of SUMO1/2 or Ubc9 can protect neurons while
silencing SUMO2/3 is not conducive to neuronal survival (Datwyler
et al., 2011; Lee et al., 2011; Zhang et al., 2019). The specific deletion
of pericytes in SENP1 can enlarge the range of focal cerebral
ischemia, aggravate motor dysfunction, and significantly increase
neuronal damage after cerebral ischemia in mice. In the in vitro
model, knockout of SENP1 from pericytes could activate the
apoptosis process and destroy the integrity of the BBB (Sun
et al., 2020). This is contrary to the conclusions of previous
studies. A recent study has shown that the knockout of the
SUMO2 gene in mouse neurons shows significant impairment in
cognitive functions in mice. This process does not involve changes in
gene structure and neuron morphology but is related to the
impairment in synaptic SUMOylation (Yu et al., 2020). Another
study using neural stem cells showed that mice with middle cerebral
artery occlusion had strong hypoxia resistance after overexpression
of SUMO E2 ligase (Ubc9), along with an enhanced differentiation
ability of neurons in vitro (Bernstock et al., 2019). The expression of
SUMOylation proteins increases significantly in the brain during
coma. Subsequent in vivo and in vitro experiments have shown that
brain SUMOylation can induce ischemic tolerance (Bernstock et al.,
2018a), which can enhance the neuroprotective effect of

SUMOylation by inhibiting the expression of SENP2 (Bernstock
et al., 2018b).

Ion homeostasis involves almost all physiological and
pathological processes, and sodium/calcium exchanger-3 (NCX3)
plays a protective role after cerebral ischemia. A study on the model
of cerebral infarction in rats shows that SUMO1 silencing
aggravated brain injury after cerebral ischemia, and the
combination of SUMO1 and NCX3 could enhance the
neuroprotective effect after cerebral ischemia (Cuomo et al.,
2016). In one study, the authors explored the therapeutic targets
of neuronal apoptosis from the perspectives of biology and
chemistry and found that SUMOylation played a neuroprotective
role through drug activation (Krajnak and Dahl, 2018).

Hypothermic brain protection strategies have long been used
clinically but their underlying molecular mechanism warrant
investigation. After permanent occlusion of the middle cerebral
artery in mice, hypothermic brain protection can greatly promote
the level of SUMOylated proteins in the brain, thus protecting mice
from ischemic injury (Lee et al., 2014). Hypoxia and hypothermia
can promote SUMOylation of neural stem cells and resist hypoxia
injury, while Ubc9 gene knockout can reverse this ability.
SUMOylation is an important mechanism in neural stem cells
for protection against hypoxia injury and can improve the
survival rate and neural repair ability of neural stem cells after
transplantation (Cai et al., 2022). Targeted temperature
management (TTM) cools the whole body or target organs by
lowering the temperature. TTM is of great significance in
ischemia and reperfusion injury after ABI. TTM can induce
SUMOylation, promote the regulation of unfolded protein
responses, inhibit apoptosis and neuroinflammation, and plays a
protective role in the brain (Talma et al., 2016).

With regard to the effects of SUMOylation on neurons, studies
have shown that SUMOylation is more beneficial, but more work is
needed to determine the exact effect of SUMOylation on neurons. In
addition, the related mechanism is worthy of further study.

2.3 The regulatory effects of SUMOylation
on microglia

Annexin-A1 SUMOylation regulates microglial polarization
after cerebral ischemia by modulating the IκB kinase stability via
selective autophagy and significantly improves the neurological
functions in a mouse model of ischemic (Li et al., 2021). The
expression of SENP6 in microglia increases significantly after
cerebral ischemia, and after downregulation of SENP6 in
microglia, positive results were obtained, whereby not only did
the area of cerebral infarction reduce significantly but the motor
and cognitive functions of mice with cerebral ischemia also
improved substantially (Mao et al., 2022). However, opposite
results have also been reported. Alcohol causes inflammation in
the hippocampus of rats, which is caused by an increase in the
number of microglia and is mediated by p-NF-κB-p65. The
overexpression of SENP6 can inhibit this process, prevent the
progression of neuroinflammation, and play a neuroprotective
role (Li et al., 2019). Intermittent hypoxia can cause neuronal
inflammation and neuronal apoptosis in mice, likely due to the
downregulation of the expression of PPAR γ due to increased
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SUMOylation, and further downregulation of SENP1, together
aggravating neuroinflammation and neuronal apoptosis (Wang
et al., 2021b). Another study reported similar results.
SENP1 overexpression inhibits inflammation caused by
intermittent hypoxia, while SENP1 knockout leads to cognitive
decline in mice (Wang et al., 2021c). Moreover, by regulating
SUMOylation of NF- κB essential modulator (NEMO),
overexpression of SENP1 can reduce the activation of NF- κB,
thus inhibiting the inflammatory responses induced by microglia
(Yang et al., 2020).

The effect of SUMOylation on microglia showed different
results. SUMOylation may improve cognitive function through
microglia, but it may also aggravate neuroinflammation. The
difference in results may be due to different research methods,
but it also suggests the diversity of SUMOylation in regulating the
function of microglia. In view of the long-term pro-inflammatory
effect of microglia on neuroinflammation, we should make more
efforts in this research direction.

2.4 The regulatory effects of SUMOylation
on astrocytes

Guanosine plays an active role in many diseases, especially
neuroprotection (Lanznaster et al., 2016; Tasca et al., 2018). For
example, guanosine has an anti-inflammatory effect during
astrocyte senescence (Souza et al., 2016). Guanosine also has a
neuroprotective effect on cerebral ischemia, which may be related
to its ability to reduce the production of ROS (Dal-Cim et al., 2019).
Guanosine can stimulate the proliferation of neural stem cells
through the activation of CREB (Su et al., 2013). A recent study
has shown that the neuroprotective effect of guanosine is related to
the SUMOylation of neurons and astrocytes, and guanosine receptor
antagonists can reverse this effect, suggesting that guanosine can
play a role as a SUMOylation enhancer for neuroprotection (Zanella
et al., 2020) (Table 1).

3 Regulatory effects of SUMOylation on
vascular remodeling

3.1 Effects of SUMOylation on vascular
smooth muscle cells

VSMCs are the main components of the vascular wall, which
play a key role in the stability of vascular structure and the
maintenance of normal vascular pulsation (Lacolley et al., 2017).
VSMCs are characterized by the expression of contractile proteins,
including actin and myosin (Poittevin et al., 2014). VSMCs regulate
CBF by contracting and relaxing blood vessels, changing the
diameter of blood vessels, and regulating the supply of oxygen
and nutrients (Hartmann et al., 2022). VSMCs are regulated by
several molecular mechanisms, affecting the expression of related
genes, thus changing vascular tension (Liu and Lin, 2022). The
renin-angiotensin system (RAS) is the key medium for VSMCs to
perform their physiological functions (Griendling et al., 1997), and
the Notch signaling pathway regulates the migration and adhesion
of VSMCs (Sorrentino et al., 2022). VSMCs mainly include two

phenotypes. Contractile VSMCs function mostly when blood vessels
are healthy, and switch to synthetic VSMC phenotype after vascular
damage (Rensen et al., 2007; Touyz et al., 2018). The changes in
VSMCs are related to cell signaling proteins, injury stimulation, and
cell-to-cell contact. After a neurovascular injury, VSMCs
dedifferentiate and promote vascular repair (Davis-Dusenbery
et al., 2011). Generally, normal VSMC function is very important
for the maintenance and repair of neurovascular function, and
VSMC dysfunction leads to the progression of vascular disease.

In the biological process underlying VSMC proliferation,
Kruppel-like factor 4 (KLF4) acts as a switch (Nie et al., 2016).
When the reaction between KLF4 and the SUMO-binding enzyme,
Ubc9 is inhibited, the proliferation of VSMCs decreases. Another
study reports a similar conclusion (Li et al., 2018). In addition,
peroxisome proliferator-activated receptors (PPARs), an important
regulator of lipid metabolism, also play an important role in the
proliferation of VSMCs. SUMOylation of PPAR γ one promotes the
proliferation and migration of VSMCs (Lim et al., 2009; Wadosky
and Willis, 2012). The Rho-specific guanine nucleotide dissociation
inhibitor (RhoGDI) can regulate the proliferation of VSMCs and the
stability of the thrombus. When Ang II receptor one is activated,
Ang II can increase the stability of RhoGDI and promote the
proliferation of VSMCs through SUMOylation (Dai et al., 2019).
Myocardin is a factor regulating the differentiation of smooth
muscle cells (SMCs), which can be modified by SUMO1 to
increase protein stability, and this process is reversibly regulated
by SENP2, which is known to promote the phenotypic switching of
VSMCs (Liang et al., 2022).

Autophagy is a research hotspot, and its activation is related
to the proliferation of VSMCs under hypoxic stress (Wen et al.,
2019). In the mouse model of hypoxic pulmonary hypertension,
the overexpression of SUMO1 activates the autophagy pathway,
resulting in the dedifferentiation of VSMCs from the pulmonary
artery and enhanced VSMC proliferation (Yao et al., 2019). In
hypoxic mice, the expression of SUMO1 is upregulated, and a
significant increase in VSMC proliferation, migration,
dedifferentiation, and autophagy is observed. Downregulation
of SUMO1 expression can reverse these phenotypes (Yao et al.,
2019). On the contrary, another study concluded that HIF-1 α
could increase the expression of the downstream gene, VEGF, and
enhance the proliferation of pulmonary artery smooth muscles in
rats through SENP1-mediated deSUMOylation (Zhou et al.,
2016). These two studies on pulmonary artery smooth muscles
have shown opposite results. Thus, evaluating the role of
SUMOylation in cerebral VSMCs is a potential research
direction.

As a SUMOylation proteolytic enzyme, SENP3 plays an
important role in the occurrence and development of many
tumors (Han et al., 2010). Studies have shown that a high
expression of SENP3 is closely related to arterial remodeling. It
can significantly promote the proliferation and migration of VSMCs
while silencing SENP3 reverses this effect and slows down vascular
remodeling in mice. In addition, increased SENP3 expression can
also enlarge the area of the remodeled arterial intima (Cai et al.,
2021). Another study showed that SUMOylation had a positive
effect on VSMCs, increasing vascular intimal thickness and muscle
fiber production in mice, all promoting vascular remodeling (Dai
et al., 2019).
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The proliferation of VSMCs is very important for the stability of
normal vascular structure. Related studies have shown that
SUMOylation can promote the proliferation and migration of
VSMCs, but there are different research conclusions. Generally
speaking, the role of SUMOylation on VSMCs can not be
ignored and needs to be further explored.

3.2 Effects of SUMOylation on angiogenesis

Angiogenesis plays a key role in various physiological and
pathological processes, including inflammation, diabetes, infection,
and cancer. Angiogenesis means to regenerate and maintain the
structure of blood vessels based on the original blood vessels, which
is a dynamic and complex process (Carmeliet and Jain, 2011). Blood
vessels originate from endothelial progenitor cells through a process
called vasculogenesis, and further collateral circulation formation
occurs, referred to as angiogenesis (Carmeliet, 2003). After ABI,
angiogenesis helps restore the supply of oxygen and nutrients to the
damaged brain, stabilize blood perfusion in the brain, maintain the
survival of neurons, and promote the recovery of the nervous system.
Research on VEGF1–5 and their receptors, placental growth factors
(PLGFs), fibroblast growth factors (FGFF1, FGFF2) and their receptors,
transforming growth factors, and tumor necrosis factor has been
conducted. They are angiogenic factors and anti-angiogenic factors
(Huang and Bao, 2004; Ucuzian et al., 2010). There are many sources of
angiogenic factors, including ECs, fibroblasts, platelets, and cancer cells
(Ucuzian et al., 2010).

VEGFs mediate physiological processes mainly by activating
VEGFR2, which participates in cell migration, regulation of
endothelial connections, and angiogenesis (Simons et al., 2016).
During the process of pathological angiogenesis in VEGFR2, the
loss of SENP1 hinders pathological angiogenesis and tissue repair
and reduces VEGF-induced angiogenesis (Zhou et al., 2018).
SUMOylation not only regulates PTMs of proteins but also
regulates VEGFR at the gene level. Related studies have shown
that PROX1, which regulates lymphangiogenesis, is also regulated
by SUMOylation when it induces VEGFR expression (Pan et al.,
2009). Basic FGF (FGF2) is a pro-angiogenic factor, which can
activate the FGF receptor-1 (FGFR1) of ECs to promote
angiogenesis. Under hypoxia, FGFR is SUMOylated, which
promotes VEGF2 aggregation but limits VEGF1 aggregation,
thus activating the VEGFR2 signal and enhancing angiogenesis
(Zhu et al., 2022). However, some studies have shown that
VEGFR-2 can specifically bind to SUMO1, inhibit the
angiogenic signal pathway in non-small cell lung cancer cells,
and prevent the malignant progression of tumor cells (Wang and
Jiang, 2020).

The notch signaling pathway plays an important role in
many physiological and pathological processes, as well as
vascular diseases. The activation of the Notch1 pathway in
ECs can inhibit the expression of VEGFR, restrict the
transmission of the VEGF signaling axis, and reduce
angiogenesis (Benedito et al., 2009). The absence of
SENP1 in ECs leads to long-term SUMOylation of the
Notch1 signaling pathway and slows down the speed of
retinal vascularization. Notch1 can reversibly regulate signal
transduction for endothelial angiogenesis through

SUMOylation (Zhu et al., 2017). In neurovascular diseases,
the regulatory role of SUMOylation on Notch pathway
deserves further exploration.

In a study on cerebral ischemic stroke, inhibition of the
AKT/mTOR pathway was found to promote angiogenesis and
neurogenesis and improve CBF and glucose metabolism (Zhao
et al., 2019). However, the opposite results have been obtained in
a study on cardiovascular disease. In vitro and in vivo
experimental studies have shown that SENP2 gene deficiency
can improve cardiac function after myocardial infarction in
mice owing to the increase in the SUMOylation activity of
targeting protein kinase B (AKT), which promotes
cardiomyocyte proliferation and angiogenesis (Chen et al.,
2021). In another study, similar results were obtained. A
decrease in the level of SUMOylation reduced AKT activation
and cell proliferation. Interestingly, the activation of AKT is not
regulated by the classical PI3K pathway (de la Cruz-Herrera
et al., 2015). A study on cardiac ischemia-reperfusion injury
showed that after the injury, the activity of the deSUMOylation
enzyme decreased, while some genes related to angiogenesis
showed SUMOylation changes, indicating its important role in
the process of cardiac angiogenesis (Hotz et al., 2020). The
difference in the regulation of AKT in cardio-cerebral
angiogenesis may be the potential research direction of
assessing the role of SUMOylation on the regulation of
neuroangiogenesis.

A recent study showed that Astragaloside IV (AS-IV) could
stabilize HIF-1 α protein by activating the SUMOylation pathway,
and could promote the proliferation and migration of VECs, thus
improving angiogenesis under hypoxic conditions and accelerating
wound healing (Wang B. et al., 2021). SUMOylation is also closely
related to angiogenesis in tumor-related research. For example,
angiogenesis under hypoxia is promoted in prostate cancer cells,
which is regulated by androgen receptor-dependent SUMOylation
(Vlachostergios and Papandreou, 2012).

4 Conclusion and perspective

ABI remains a major health problem, posing a heavy burden on
these patients and their families. Many studies have focused on the
treatment of ABI, including targets for molecular therapy and drug
development, and some promising research directions have been
applied in clinical settings. However, considering the complexity of
ABI and individual differences among patients, the effectiveness of
monotherapy cannot be exaggerated, because a single treatment
cannot solve pathological progression.

In this review, we briefly report the composition and normal
physiological functioning of the neurovasculature. This paper
focuses on the role of SUMOylation in phenotypes related to
neurovascular pathological progress, including EC disturbance,
VSMC proliferation, angiogenesis, etc. We also discussed the
neuroprotective effects of SUMOylation. For easier elaboration,
we wrote the above sections separately but in reality,
physiological and pathological processes are not strictly
independent but occur almost simultaneously and involve
mutual integration. For example, the improvement in EC
function also has a positive effect on angiogenesis; SMC
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proliferation is also a part of vascular remodeling. ECs are not
only the basis of VSMC proliferation, angiogenesis, and vascular
remodeling but also many scholars of several fields, resulting in
the accumulation of research results, so we focused on this aspect
in the review. However, its limitation is that we only reviewed the
correlation between SUMOylation and ABI, and did not detail its
internal relationship and causal relationship.

Remarkable progress has been made in the study of
SUMOylation and ABI worldwide. However, given the
complexity of the pathological mechanism of ABI, the
development of treatment is still challenging. The purpose of this
review is to understand how neurovascular disorders associated with
ABI occur; how SUMOylation is involved in these injuries, and how
SUMOylation improves ABI. It is important to understand the role
of SUMOylation in ABI as it may be the potential molecular
mechanism underlying ABI or brain protection. We hope that
this review will provide theoretical references for future research
on SUMOylation and ABI.
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