
A systematic and comprehensive
analysis of T cell exhaustion related
to therapy in lung adenocarcinoma
tumor microenvironment

Peipei Hu1, Jiahao Ma1,2* and Jinjian Chen1*
1Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
2Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of
Animal Diseases, School of Pharmacy, Xinxiang University, Xinxiang, China

Background: T cell exhaustion (TEX) is an important immune escape mechanism,
and an in-depth understanding of it can help improve cancer immunotherapy.
However, the prognostic role of TEX in malignant lung adenocarcinoma (LUAD)
remains unclear.

Methods: Through TCGA and GEO datasets, we enrolled a total of 498 LUAD
patients. The patients in TCGA-LUAD were unsupervised clustered into four
clusters according to TEX signaling pathway. WGCNA analysis, survival random
forest analysis and lasso regression analysis were used to select five differentially
expressed genes among different clusters to construct a TEX risk model. The risk
model was subsequently validated with GEO31210. By analyzing signaling pathways,
immune cells and immune checkpoints using GSEA, GSVA and Cibersortx, the
relationship between TEX risk score and these variables was evaluated. In
addition, we further analyzed the expression of CCL20 at the level of single-cell
RNA-seq and verified it in cell experiments.

Results: According to TEX signaling pathway, people with better prognosis can be
distinguished. The risk model constructed by CD109, CCL20, DKK1, TNS4, and
TRIM29 genes could further accurately identify the population with poor
prognosis. Subsequently, it was found that dendritic cells, CD44 and risk score
were closely related. The final single-cell sequencing suggested that CCL2O is a
potential therapeutic target of TEX, and the interaction between TEX and CD8 + T is
closely related.

Conclusion: The classification of T cell depletion plays a crucial role in the clinical
decision-making of lung adenocarcinoma and needs to be further deepened.
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1 Introduction

The mortality rate of lung adenocarcinoma remains high throughout the world (Relli et al.,
2019). LUAD is the most common form of primary lung cancer. Smoking-primary or
secondary exposure, are the main causes (Hutchinson et al., 2019). The traditional
treatment of LUAD includes surgical resection, chemotherapy, and radiotherapy. A number
of new therapeutic approaches have also been discovered that can be used to treat LUAD, such
as immunotherapy (Succony et al., 2021).
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As a subset of T immunocytes, CD8+ T lymphocytes are
responsible for mediating the activity of the T immunocytes to
chronic infections and cancers (Zhang and Bevan, 2011). Chronic
infections and tumor antigens cause differentiated CD8 + T cells to
exhaust (Speiser et al., 2014; McLane et al., 2019). The expression of
cytokine suppression, decreased killing, and hypoproliferation of
T cells are all symptoms of T cell exhaustion (TEX), which occurs
as a result of these processes (Freeman et al., 2006; Zhang et al., 2022).
The immune checkpoint inhibitors working mechanism is not
depleting T cells in the immune microenvironment, and TEX is
thought to be a pathway of resistance (Chow et al., 2022). In
parallel, Immunotherapy to restore TEX responses has transformed
the current clinical decision for cancer treatment (Hudson and
Wieland, 2022). There has been evidence that inhibiting the PD-1
inhibitory receptor pathway can reactivate the TEX response and
active the immune anti-tumor effect (McLane et al., 2019).

Although T lymphocytes in the body can attack tumors, the latter
often present a highly reactive microenvironment that shuts down the
killing capacity of T cells (Ma et al., 2019). The tumor
microenvironment (TME) is a key factor in the escape of tumor
cells from the immune system, and this environment plays a key role
in cancer development (Gholami et al., 2017). In the TME, T cells are
regulated by a complex immunosuppressive network consisting of
cancer cells, inflammatory cells, stromal cells and cytokines (Jiang
et al., 2015). Among these TME components, cancer cells,
inflammatory cells, and suppressor cytokines have key roles in
regulating T cell phenotype and function (Speiser et al., 2016).
These components contribute to the eventual differentiation of
T cells into “exhausted” T cells. Eventually, the majority of T cells
in the TME differentiate into exhausted T cells that express high levels
of suppressor receptors, produce fewer effector cytokines, and lose the
ability to eliminate cancer.

In the initial characterization of exhausted T cells, the levels of
transcription factors T cell factor (TCF1) and programed cell death
protein (PD-1) expression were used to distinguish between the
progenitor and terminally differentiated subtypes (Im et al., 2016;
Siddiqui et al., 2019). As a result of progenitor exhaustion, T cells
exhibit stem cell characteristics or memory characteristics, which
enable them to self-renew and transform into terminally
differentiated cells (Akbar and Henson, 2011; Utzschneider et al.,
2016). Comparatively, the terminally differentiated branching subtype
does not have a functional recovery potential and is limited in its
expansion potential (Philip et al., 2017; Khan et al., 2019). In another
study, TEX was divided into four stages based on Ly108 and
CD69 expression (TEXprog1: Ly108 + CD69+; TEXprog2: Ly108 +
CD69−; TEXint: Ly108-CD69−; TEXterm: Ly108-CD69+) (Beltra et al.,
2020). These studies have shown the TEX process is dynamic, with a
phenotypic and functional continuum of intermediate states,
indicating a developmental hierarchy (Zhang et al., 2022). Further
researches showed that individual patients displayed different levels of
T cell exhaustion (Kim et al., 2021) and the presence of T cell
activation or exhaustion biomarkers such as sTIM-3, CD25 in
patients is evidence of this, these markers are associated with a
poor outcome (Berg et al., 2022). In a pan-cancer analysis, Zhang
et al. obtained TEX-related genes through machine learning to classify
tumors in different things TEX for clinical decision-making (Zhang
et al., 2022).

In this study, we performed clustering analysis on the TCGA-
LUAD data through TEX-related pathways, and further WGCNA and

random survival forest and lasso regression analyses to construct TEX
risk scores. Subsequently, the relationships between TEX risk scores
and GSEA pathway enrichment analysis, GSVA pathway enrichment,
and CIBERSORTX immune infiltrating cells were analyzed.
348 urothelial cancer patients which treated with atezolizumab
(PD-L1) were collected to examined the effect of TEX risk score on
immunotherapy effectiveness. Single-cell sequencing data and
experiment were finally used to analyze potential therapeutic
targets and cell communication in TEX.

2 Materials and methods

2.1 Data acquisition

The expression data, gene mutations, and clinical information
were collected from the Cancer Genome Atlas (TCGA) website for
284 patients with LUAD (Tomczak et al., 2015). And 214 LUAD
patients’ information were collected through dataset GSE31210 in the
GEO database. Single-cell sequencing data (GSE176021) of tumor-
infiltrating T lymphocytes from six NSCLC patients were obtained
from the GEO database. For data inclusion criteria, we selected patient
samples with RNA transcriptome sequencing data and complete
clinical data. For data from different datasets de-batching effects
were performed and normalized, and we used fragment per
kilobase transcript/fragment per million mapping (FPKM)
expression values for further analysis. In FPKM, RNA-seq data
were normalized to the length of each gene and the total number
of aligned reads in the library (Trapnell et al., 2010). FPKM values
were transformed using log2 (FPKM + 1). The flowchart of our
investigation was displayed in Figure 1.

2.2 Unsupervised cluster analysis

The molecular signature database provided information on TEX
signaling pathways and marker genes (Wherry, 2011; Liberzon et al.,
2015). Similar to previous studies, we performed an unsupervised
cluster analysis of LUAD patients using IFN-γ, TNF, and IL-2
signaling pathways to represent the TEX pathway (Zhang et al.,
2022). The specific method is to use ssGSEA through the “GSVA”
R package to estimate the activity score of each patient’s TEX pathway
(Hänzelmann et al., 2013). The percentage of patients at different
stages in different clusters is also shown.

2.3 Comparison of overall survival between
different clusters

To further explore the differences among different subgroups, we
first drew Kaplan-Meier (K-M) survival curves for different clusters
with the mark of 50% survival rate. Then the K-M survival curve of
pairwise subgroups was drawn.

2.4 CIBERSORTX

To further explore the abundance of immunocytes in different
classifications, we used CIBERSORTX algorithm to evaluate
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22 immunocytes in samples fromdifferent clusters (Steen et al., 2020). After
cell infiltration of each sample was obtained, COX regression analysis was
conducted to explore the prognostic value of various cells in each TEX
cluster. Based on median immune cell content, LUAD was divided into
diverse subgroups, and survival rates were compared between groups.

2.5 Weighted gene co-expression network
analysis

The correlation patterns among genomics can be described using a
systems biology method known as a weighted correlation network analysis
(WGCNA) (Langfelder and Horvath, 2008). The R package repository had
the package WGCNA 3.6.1 that was used for the WGCNA. WGCNA
analysis was performed after deunion of the four cluster differential genes.
The significance of each gene was taken into account when calculating the
association between the gene expression profile and the TEX score, and the
relationship between module eigengenes and gene expression profiles was
taken into consideration when determining module membership. The soft
threshold parameters were set at a power of 4 and a scale-free R2 of 0.9, in
order to ensure the topology network was scale-free despite the number of
nodes. The analysis consisted of retrieving an initial set of six modules, and
the Grey modules that showed the strongest correlations were applied for
further investigation.

2.6 RandomForest

Using the survival random forest of 1,000 trees by the R package
randomSurvivalForest version 3.6.4, it was possible to validate the

results and rank the importance of 7 genes obtained from Lasso
regression using the R package randomSurvivalForest Version 3.6.4
(Taylor, 2011). The relative importance of gene > 0.2 is considered the
ultimate hub gene.

2.7 Construction and validation of risk models

Gene expression tends to show significant collinearity between
genes, which means it is necessary to use prognostic models if needed.
LASSO regression and other methods reduce the number of variables
to further reduce the redundancy of the model and increase the
convenience of clinical use. Based on the following formula, we
were able to calculate the risk score according to the following
(Tibshirani, 1997):

Risk score � ∑
n

i�1
Exp i*Coef i

Here, the TCGA-LUAD data set was employed as the training set
to construct the risk model of LUAD patients based on survival
random forest screening genes, took OS as the outcome event, and
p value less than 0.05 as the limit of statistical significance. We then
categorized the patients into diverse subgroups based on the formula
generated by the risk model. Meanwhile, the K-M survival curve was
drawn for the high and low risk group. Receiver operating
characteristic (ROC) curves have a wide range of uses in
identifying the diagnostic power of threshold changes. To further
analyze the predictive power of prognostic models, we plotted the
ROC. An analysis of multivariate cox regression was undertaken in

FIGURE 1
Flow chart of the study.
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order to determine the independent prognostic significance of risk
scores. To ensure the value of external generalization of the prognostic
model, we used another LUAD dataset (GSE31210) for validation.

2.8 Biological function in relation to risk score

A follow-up analysis looked at genes with differential
expression (DEGs) between high and low risk groups. It was
established that the cut-off criteria for the study were |FC| >
2 and adj. p.val > 0.05. GSEA software was used to analyze
three data sets of HALMARK, KEGG and GO for the biological
functional differences among high-risk patients (Shi and Walker,
2007; Subramanian et al., 2007).

2.9 GSVA analysis between high-And low-risk
groups

By using the GSVA analysis, it was possible to explore the
differences between subgroups in signaling pathways for disease
development (Hänzelmann et al., 2013). Moreover, a correlation
analysis was conducted between the partial signal pathway score
and the risk score.

2.10 The predictive significance of TEX risk
model

A boxplot was made to illustrate the expression of 11 immune
checkpoints between different subgroups. An analysis of 22 different
types of immune cell infiltration was performed using the
CIBERSORTX algorithm.

The detailed gene mutation statuses of the subgroups were
displayed using the R package “maftools” to make comparisons
between the two subgroups (Mayakonda et al., 2018). With the
IMvigor210 package, we were able to determine gene expression
and immunotherapeutic effectiveness in the IMvigor210 cohort
(Mariathasan et al., 2018). IMvigor210 cohort is widely used to
analyze the efficacy of immunotherapy.

2.11 Single cell sequencing analysis

It is a standard processing procedure that is used to do
downstream processing on scRNA-seq data which is carried out
using Seurat R software package, version 3.0.2, and a standard
downstream processing package for this analysis (Stuart et al.,
2019). In addition, genes detectable in fewer than 3 cells and genes
detected in fewer than 200 cells were excluded, and the percentage
of mitochondria detected was limited to no more than 20% of the
total number of genes. Then, t Data was normalized using
LogNormalize. A non-linear method used for reducing the
dimensions of a sample is t-distributed stochastic neighborhood
embedding (t-SNE) that is used for unsupervised clustering and
unbiased visualization of cell populations on a two-dimensional
map after principal component analysis (PCA) (Van Der Maaten
and Hinton, 2008). A minimum fraction of 0.25 cell population
fraction was used in both populations in order to identify marker

genes in each cluster using the “FindAllMarkers” function. The
filtering criterion was filter value of absolute log2 fold change
(FC) ≥1. To visualize each marker gene’s expression patterns
within the cluster, the “DotPlot” function in Seurat was used.
Then, the SingleR package (version 1.0.0) was utilized for
annotating cell types based on marker-based information (Aran
et al., 2019).

2.12 Cell culture

The A549 and BEAS-2B cell lines were obtained from Dr Liu.
A549 cell lines were cultured in RPMI-1640 (Invitrogen) and
BEAS-2B cells were cultured in DMEM medium, The medium
was supplemented with 10% FBS (Gibco).

2.13 Molecular expression verification

The expression of CCL20 in tumor and normal tissues of LUAD
patients was compared through GEPIA2 online website, and we
analyzed the overall survival rate of high expression group and low
expression group (Tang et al., 2017).

The total RNA was extracted using the Trizol reagent. RT was
performed with DNA-free total RNA in Revert Aid First Strand cDNA
Synthesis Kit (Thermo). For PCR amplification, specific primers were
used to amplify the transcribed cDNA. CCL20 Forward: ATGTGC
TGTACCAAGAGTTTGC; CCL20 Reverse: CCAATTCCATTCCAG
AAAAGCC.

Integrated DNA technologies (Coralville, IA, United States)
provided us the synthetic siRNA and the scrambled negative
control siRNA. This experiment consisted of transfecting cells with
LipofectamineTM RNAiMAX (Thermo Fisher Scientific,
Massachusetts, United States) in opti-MEM according to the
procedure given by the manufacturer.

2.14 Flow cytometry

The manufacturer’s instructions were followed when
performing flow cytometry. Apoptosis was detected with the
Annexin V-PE/7-ADD Apoptosis Detection Kit (Vazyme,
A213-01). The B525 nm wavelength was selected for the
Fluorescein (FITC) signal channel, and the B610 nm
signal channel was selected for the ECDPE-TR (ECD) signal
channel.

2.15 Statistical analysis

It was determined that two groups with normally distributed
variables and those with variables that were not normally
distributed were statistically significant using independent t-tests
and Mann-Whitney U tests. In order to make a comparison
between the two groups on the basis of differences between the
groups, we conducted an analysis of variance (ANOVA) and a
Kruskal–Wallis test (Hazra and Gogtay, 2016). We performed
Spearman correlation and distance correlation analyses using
the R package Hmisc 4.4.1. To analyze the correlation between
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the objects. Those objects whose coefficient was greater than
0.5 were considered highly correlated (Faul et al., 2007). For the
purpose of identifying the prognostic factors, Cox regression
analyses were conducted. A survival curve with all survivorship
curves generated by the R package survminer was also used to
determine the overall survival (OS) and TEX riskScore values

before generating any survival curves with the R package
survminer. As a means of plotting the heatmaps, the R package
Complex Heatmap 2.4.3 was used. R package ggplot2 was used for
visualizing data comparisons. There were two-sided statistical
analyses conducted using R software, which was used for all
statistical analyses.

FIGURE 2
Unsupervised cluster analysis was performed on LUAD patients according to TEX signaling pathway. Unsupervised cluster analysis of patients with
TCGA□LUAD (consensus matrix k = 4) (A). Delta area of unsupervised consensus cluster analysis (B). Heatmap of scores for four T cell exhaustion and IFNG/
TNF/IL-2 signaling pathways (C). Percentages of different clinical stages in TEX clusters (D). Kaplan-Meier survival curves for the four TEX clusters (E). Kaplan-
Meier survival curves for TEXC and TEXD (F). Kaplan-Meier survival curves for TEX A and TEXD (H). The cibersortX algorithm in four TEX clusters was used
to analyze the infiltration results of 22 immune cells (G). K-M survival curves of patients with high and low abundance of mast cells resting in TEXa (I) and TEXc
(J). Volcano plot of differential genes between TEXa and TEXb (K), TEXc and TEXa (L), TEXd and TEXa (M), TEXc and TEXb (N), TEXd and TEXb (O), TEXd and
TEXc (P).

Frontiers in Pharmacology frontiersin.org05

Hu et al. 10.3389/fphar.2023.1126916

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1126916


FIGURE 3
WGCNA analysis and random survival analysis. Clustering dendrogram of TCGA-LUAD (A). Heatmap of correlation between WGCNA modules and
clinical features (B). Various soft thresholding powers are calculated according to their scale-free fit index (C). Soft-threshold power mean connectivity
analysis (D). Plot of random survival forest based on number of trees and error rate (E). Variable Importance ranking of genes in random survival forests (F).
Relative Importanc ranking of genes in random survival forests (G).
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3 Results

3.1 Unsupervised cluster analysis

The outcome of unsupervised cluster analysis were displayed in
Figures 2A, B, where the best result was to classify the 284 LUAD
patients into four TEX cluster (consensus matrix k = 4) according to
the GSVA scores of the three IFNG/TNFA/IL-2 pathways. Figure 2C
displayed the GSVA scores of the three pathways within the four
clusters. Cluster B has the highest IFNG/TNF/IL-1 pathway score, and
cluster D has the lowest score. The number of patients with stage1 in
cluster b was larger than in cluster A, B and C. The number of patients
with stage1 in cluster B was larger than that in cluster A, B and C
(Figure 2D), suggesting that the overall survival of patients in cluster b
may be better than that in other cluster populations. We plotted K-M
survival curves for the overall survival of the four cluster populations,
and there was no statistically significant difference (p = 0.116) in
survival between the four clusters (Figure 2E). We plotted the K-M
survival curves separately for cluster B and cluster A C D, and the
results suggested that the overall survival rate of cluster B was higher
than that of cluster A C D (Figures 2F-H; Supplementary Figure S1)
(Cluster C vs. D, p = 0.042; cluster A vs. D, p = 0.025; cluster B vs. D,
p = 0.073).

To further analyze the abundance of immune cells in different
cluster, we applied the CIBERSORTX algorithm to evaluate the
22 immune cells in the samples in different clusters. After cell
infiltration score was obtained for each sample, COX regression
analysis was performed to explore the prognostic value of various
cells in each TEX cluster. Mast cell resting was a protective factor in
both TEXa and TEXc (Figures 2I, J).

For further analysis of the transcriptome differences between
different cluster, we will contrast between different cluster
differences in gene analysis, analysis of the standard is greater than
or equal to | logFC | = 0.5, rectify the p value is less than 0.05, and
mapped the volcano map is used to display the results of the analysis
(Pearson correlation coefficient = 0.2, p value < 0.001) (Figures 2K–P).

3.2WGCNA and survival random forest results

WGCNA analysis results suggested that the grey module was most
relevant to survivals related information, and the grey module was
selected for subsequent analysis (Figures 3A–D). There were 36 genes
chosen as hub genes in the Grey module since they had absolute values
of module membership [MM] that were greater than 0.5 and absolute
values of gene significance [GS] that were greater than 0.5 within the
module (Supplementary Table S1). Variable selection based on
minimum depth values above the threshold (0.001) and importance
values above the threshold (0.2) yielded seven tentative (SOX9, CD109,
CCL20, DUSP5, DKK1, TNS4, and LCAL1) candidate prognostic
markers for LUAD. This suggests that these seven genes are most
relevant to the prognosis of LUAD (Figures 3E–G).

3.3 Development and validation of TEX risk
model

A TEX risk model that includes five genes was constructed using
lasso regression analysis. The formula for the risk score is as follows:

risk socre = (0.2628*CD109 + 0.0464*CCL20 + 0.0163*DKK1 +
0.0359*TNS4 + 0.0348*TRIM29). The TCGA-LUAD patients were
divided into high- and low-risk groups based on their risk scores. The
K-M survival curve between high and low risk groups suggested that
the high-risk group had worse overall survival (p < 0.001) (Figure 4A).
The AUC values of the TEX risk model were 0.823 in the first year,
0.688 in the third year, and 0.619 in the fifth year (Figure 4B).
Multivariate COX analysis showed that TEX Score was an
independent prognostic factor (p < 0.05, Hazard Ratio :1.625
[1.329−1.986]) (Figure 4C). In the validation set GSE31210, we also
found that high-risk LUAD patients had worse OS (Figure 4D). The
AUC values of TEX risk model in the validation set were 0.643 in the
first year, 0.655 in the third year, and 0.700 in the fifth year. These
results TEX risk model have good predictive power (Figure 4E).

3.4 TEX risk score and biological function
GSEA analysis

Based on the HALLMARK, KEGG, and GO datasets, we
performed an enrichment analysis of biological functions in high-
risk patients using GSEA software. The results showed that the five
HALLMARK pathways with the highest enrichment were bile acid
metabolism, heme metabolism, MYC target v1, peroxisome, and
protein secretion (Figure 4F). The five most enriched pathways in
the GO database were DNA conformational changes, negative
regulation of cellular macromolecular biosynthetic processes,
ribonucleoprotein complex biogenesis, mitochondrial matrix, and
vacuolar membrane (Figure 4G). The top five enriched KEGG
pathways were insulin signaling pathway, melanoma, peroxisome,
T cell receptor signaling pathway, and vascular smooth muscle
contraction (Figure 4H). The results showed that high-risk patients
were highly associated with many tumor proliferation and
metabolism-related pathways, suggesting that targeted TEX affects
the prognosis of LUAD patients mainly through tumor proliferation
and metabolic pathways.

3.5 TEX risk score and GSVA analysis

We selected several gene sets for GSVA analysis based on the
above GSEA results and found that TEX score was positively
correlated with glycosaminoglycan degradation, linoleic acid
metabolism, o glycan biosynthesis, leukocyte transendothelial
migration, focal adhesion, ECM receptor interaction and
p53 signaling pathway (Figures 5A, B). This suggests a potential
pathway through which TEX exerts its effects.

3.6 Relationship between TEX risk score and
immunity

Considering the great potential of TEX for immunotherapy, In
both high and low risk groups, we plotted the expression levels of
11 immune checkpoints. In the high-risk group, CD44 expression was
higher, which may be a therapeutic target in the future (Figure 5C).
Based on 22 immune cell infiltrations, the high-risk group had a higher
percentage of resting Dendritic cells and a lower percentage of
activated Dendritic cells (Figure 5D). Further correlations of TEX
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risk scores and 22 immunocytes are shown in Figure 5E. The radar
chart further showed the contents of 22 immunocytes in the high-risk
group (Figure 5F), suggesting that TEX may affect the prognosis of
LUAD by regulating the state of Dendritic cells.

3.7 Relationship between TEX risk score and
genetic mutations

We used a map to determine the landscape of gene mutations in
high and low-risk subgroups of patients (Figures 6A, B). There was no
statistically significant difference between the gene mutation

frequencies between the groups that were analyzed, but it was
noted that TP53 and TTN had the highest mutation frequencies.

3.8 Relationship between TEX risk score and
immunotherapy

Based on the TCGA-LUAD data set and the IMvigor210 data
set, subgraph analyses were conducted to evaluate immunotherapy
and chemotherapy in high-risk and low-risk groups. The high-risk
group demonstrated a lower percentage of responders to
immunotherapy (Figure 7A), and TEXscore was lower in those

FIGURE 4
Construction and validation of TEX risk model. Kaplan-Meier (K–M) survival curves of patients in the high and low risk groups in TCGA-LUAD (A) and
GSE31210 (D). Multivariate Cox analysis in TCGA-LUAD cohort (C). TEX risk model AUC values at year 1, 3, and 5 in TCGA-LUAD (B) and GSE32120 (E).
HALLMARK pathway enrichment analysis (F), GO pathway enrichment analysis (G) and KEGG pathway enrichment analysis (H) of the high-risk group in TCGA-
LUAD.
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with low response (Figure 7B). These results suggest that patients
with lower TEX risk scores are able to achieve a better
immunotherapy response. Specific immunotherapy responses fall

into four types: CR: complete response; PR, partial response; SD:
stable disease; PD: progressive disease. There was no statistically
significant difference in TEX risk scores among the four types of

FIGURE 5
Relationship between TEX risk scores and immunity. GSVA analysis between high and low risk groups in TCGA-LUADA (A). Correlation scores of TEX risk
scores and signaling pathways (B). Expression of 11 immune checkpoints in the high and low risk groups (C). The abundance of 22 immune cells in cibersortx
high and low risk groups was analyzed (D). Association of TEX risk scores and 22 immune cells (E). Radar plot of the abundance of 22 immune cells in the high-
risk group (F).
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response, suggesting that the specific immunotherapy response was
not related to the risk score (Figure 7C).

It was found that the high-risk group had also a poorer overall
survival rate than the low-risk group when they received
immunotherapy, regardless of the median risk score (Figure 7D).
These results suggest that the TEX risk score has a role in predicting
the efficacy of immunotherapy and the prognosis of patients receiving
immunotherapy.

3.9 Single-cell sequencing analysis revealed
the therapeutic targets of TEX

To further search for the potential therapeutic target-cell interactions
of TEX, a total of 8 cell subtypes were identified in the single-cell
sequencing dataset of T cells (B, CD4 Tconv, CD8T cell, CD8Tex,
DC, NK, T prolif, Treg) (Figure 8A). The key gene in the risk model,
CCL20, was most highly expressed on TEX cells (Figures 8B,C), CCL20, a
key gene in the risk model, was most highly expressed on TEX cells,
suggesting that CCL20 plays an important role in the TEX process in
LUAD patients and is a potential therapeutic target. GSEA analysis
showed that TEX cells were mainly enriched in cell adhesion (Figure 8D).
The results of cell communication showed that TEX mainly interacted
with CD8T cells (Figures 8E,F). These results provide new explanatory
theories and therapeutic targets for TEX depletion in LUAD.

3.10 GEPIA2, real-time quantitative PCR, and
flow cytometry validation

The GEPIA2 website contained 483LUAD patients and 347 normal
lung tissues, and we found the expression level of CCL20 was higher in
tumors tissues. Subsequently, the LUAD patients were classified into

diverse subgroups based on CCL20 expression value (Figure 9A), and the
results also showed that the high expression group had a shorter overall
survival (p = 0.022) (Figure 9B). In addition, we detected CCL20mRNA
values in both normal and tumor cell lines. The results displayed that the
mRNA expression level of CCL20 in A549 was more than twice that in
BEAS-2B (Figure 9C). Subsequently, we knocked down CCL20 in
A549 cells by siRNA (Figure 9D), and the CCL20 knockdown cells
had more apoptosis than the control cells (Figure 9E).

4 Discussion

A growing body of evidence suggests that TEX is the result of
delayed phenotypic differentiation as well as intermediate functional
stages within T cells that follow a sustained state of hierarchy
dysfunction. Like other forms of cellular differentiation, it is
believed that TEX is the result of T cell hierarchical dysfunction
over a prolonged period of time (Wherry, 2011; Jiang et al., 2015;
Blank et al., 2019). By understanding CD8 + T cell dysregulation and
exhaustion in the tumor microenvironment (TIME), we can overcome
the TEX barrier and improve immune checkpoint blockade therapies
in the clinic, regardless of whether the type of tumor is the same or
different (Kurtulus et al., 2019). The dynamics and heterogeneity of
TEX in the TIME are not well studied across LUAD.

In this study, we preferred unsupervised CLUSTER analysis of
284 LUAD patients based on the three most closely TEX signaling
pathways (IFNG, TNF, and IL-2), and the patients were divided into
four clusters. In cluster D, the number of LUAD patients with the lowest
signal pathway score and the largest number of stage1 was the highest.
The K-M curve showed that cluster D patients had a better prognosis.
PD-1 overexpression leads to inhibitory signaling and induces TEX,
leading to tumor immune escape (Zwergel et al., 2022), which suggested
that we can use TEX related pathways for prognosis judgment and precise

FIGURE 6
Gene mutation landscape. Gene mutation landscape in high (A) and low risk groups (B).
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treatment of LUAD. Analysis of immune cell infiltration in four
TEXclusters 22 by cibersortx revealed that higher abundance of mast
cells resting in TEXa and TEXc was associated with worse prognosis. The
existence of mast cells is associated with the prognosis of patients with
lung adenocarcinoma, as exosomes derived from mast cells have been
shown to promote the proliferation of lung adenocarcinoma cells (Xiao
et al., 2014; Bao et al., 2020). However, the specific mechanism of TEX
and mast cells needs to be further studied.

WGCNA analysis of the differentially expressed genes and
survival random forest analysis obtained 7 key genes (SOX9,
CD109, CCL20, DUSP5, DKK1, TNS4, and LCAL1). Then we
selected 5 genes (CD109, CCL20, DKK1, TNS4 and TRIM29) by
lasso regression algorism to build a TEX risk model. In the
training set TCGA-LUAD and the validation set GSE, high-risk
patients had worse overall survival. The AUC value and
multivariate cox regression analysis of TEX risk model in training
set and validation set showed that Tex risk model had good predictive
value and clinical application value. Cluster of differentiation 109
(CD109) is a glycosylphosphatidylinositol-anchored protein (Lee et al.,

2020). Further studies showed that CD109 promoted lung
adenocarcinoma invasion and metastasis in vivo through TGF-β
signaling pathway (Chuang et al., 2017; Lee et al., 2020; Taki et al.,
2020). However, there is no study on CD109 and TEX.

Through the enrichment analysis of GSEA and GSVA, we found
that TEX score was positively correlated with glycosaminoglycan
degradation, linoleic acid metabolism, o glycan biosynthesis,
leukocyte transendothelial migration, focal adhesion, ECM receptor
interaction and P53 signaling pathway. Targeting P53 has been shown
to restore CD8 + T cells depleted in hepatitis C virus infection.
However, other pathways and TEX pathways are still worthy of
further exploration in LUAD. Subsequent immune checkpoint
analysis revealed that the high risk group had increased expression
of CD44, a stemness marker of non-small cell lung cancer, and
activation of CD44 related pathways promoted squamous cell lung
cancer resistance to FGFR1 inhibition (Elakad et al., 2022; Panda and
Biswal, 2022). These results suggest that TEX may be involved in the
stemness and other phenotypes of LUAD resulting in a poorer
prognosis in high-risk patients.

FIGURE 7
Relationship between TEX risk score and immunotherapy. Percentage weight with response (R) and no response (NR) in the high and low risk groups (A).
Wilcoxon test for TEX scores in response and no response populations (B). Boxplots of TEX scores in the four treatment responses (C). K-M survival curves for
the high and low risk groups in the immunoresponsive population (D). PR, partial response; CR:complete response; PD: progressive disease; SD: stable
disease.
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Furthermore, in the pathway enrichment analysis, we found that
bile acid metabolism, peroxisome, and T cell receptor signaling
pathways were significantly enriched. It has been shown that bile
acids can regulate cell growth and proliferation and that alterations in

bile acid levels in disease states are associated with liver injury/
regeneration and tumorigenesis (Li and Apte, 2015). Peroxisomes
can regulate various biological processes and play an important role in
several diseases and conditions, and some studies suggest that they

FIGURE 8
Analysis of TEX by single-cell sequencing. Major subtypes of cells (A). The amount of CCL20 expression on different cells (B,C). Up-regulated kegg
pathways in different cell types (D). Interaction conunts of different cell subtypes (E). Diagram of the interaction network between TEX and other cell types,
with the width of the network edge being the total number of ligand and receptor pairs (F).
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may also have an important role in the development and progression
of cancer and may represent a new opportunity for cancer therapy
(Peters et al., 2005; Youssef and Badr, 2011). In contrast, T cell

receptor-based immunotherapy has been shown to be a promising
approach for the treatment of various types of cancer. TCRs can
recognize epitopes of proteins from any subcellular compartment,

FIGURE 9
GEPIA2, Real-time quantitative PCR, and flow cytometry validation. CCL20 expression in LUAD tissues and normal lung tissues in GEPIA (A). K-M curves
of overall survival of LUAD patients with high and low CCL20 expression in GEPIA2 (B). Relative mRNA expression of CCL20 in A549 cell line and BEAS-2B cell
line (C). After knocking down CCL20 in A549 cells by siRNA, the expression of CCL20 gene in the three groups of cells was detected (D). The number of
apoptotic cells in the three groups was counted by flow cytometry (E). * <0.05.
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including the membrane, cytoplasm and nucleus, and these
advantages allow TCRs to detect a wide range of targets, such as
neoantigens, cancer germline antigens and viral oncoproteins, and in
the clinical setting TCR-based immunotherapy can mediate solid
regression of malignant tumors, including immune checkpoint
inhibitor-refractory cancers (Schmitt et al., 2009; Kirsch et al.,
2015; Chandran and Klebanoff, 2019).

To accurately describe the mechanism of TEX at the single-cell
level, we found that the major cells could be divided into eight types
through single-cell sequencing data GSE of T cells. It has been found
that C-C motif chemokine ligand 20 (CCL20) is involved in the
occurrence and development of various types of cancer. We found
that CCL20, a key gene in the TEX risk score, was highly expressed on
TEX cells. In LUAD patients, high expression of CCL20 is related to
epithelial-mesenchymal transition (EMT), which is associated with
poor prognosis. Patients responding to anti-PD-L1 therapy were
significantly better when CCL20 expression was low rather than
high (Fan et al., 2022). Notably, TNF signaling is also a key
pathway in TEX, suggesting that targeting CCL20 in TEX may
have potential clinical value. KEGG signaling pathway analysis
identified multiple gene sets up-regulated in TEX, and three
signaling pathways attracted our attention. The first is the antigen
processing and presentation pathway. Previous findings suggested that
patients with higher TEX risk scores had a higher proportion of
dendritic cells. The single-cell analysis here further confirms the
possible interaction between TEX and DC. Studies have shown that
immune checkpoint therapy can restore the immune function of TEX,
but it depends on the depleted precursor state of T cells. Dendritic cells
provide an important niche for TPEX and prevent its excessive
activation (Dähling et al., 2022). Cell communication shows that
TEX mainly interacts with CD8T cells, CD8 + T cells differentiate
and deplete to TEX, and TEX further acts on CD8 + T cells. This
suggests that if we can stop this process, it may provide new ideas for
immunotherapy. Subsequent GEPIA2 data analysis, RT-PCR and flow
cytometry results similarly indicated CCL20 as a prognostic indicator
for LUAD.

Clinically, there are a number of available risk models based on
multiple genes that can predict the prognosis of cancer patients. For
example, 21 gene expression analysis (Oncotype DX, Genomic Health)
is one of several commercially available gene expression assays that
provide prognostic information in hormone receptor-positive breast
cancer (Sparano et al., 2018). In clinical practice guidelines for breast
cancer, the National Comprehensive Cancer Network (NCCN)
strongly recommends 21-gene expression testing (Sparano et al.,
2018). Our study now consists of 5 genes and represents a
clinically convenient test. Moreover, our model is based on TEX-
related genes, which means that our model also has unique potential
for predicting immune function in patients.

However, our experiments still have some limitations. Our model
performs well, but additional experiments are needed to further
validate our model. In addition, although basic experiments were
performed to validate one gene in the model, the specific mechanism
by which it exerts its function still needs to be explored clearly.

Compared with other traditional models, our model still has great
advantages. Our model has not only been validated using different
datasets, but also an in-depth analysis based on single cell sequencing
data, which will greatly affirm the reliability of our model. Our model
can well predict the prognosis and immune control of LUAD patients
and provide help for individual precision treatment.

5 Conclusion

We comprehensively described the prognostic significance,
immunotherapy value and possible mechanism of TEX in LUAD
patients for the first time. Nevertheless, the study has certain limitations.
Firstly, we defined TEX only according to the scores of three TEX-related
signaling pathways, whichmay simplify the definition of TEX. Secondly, we
used public data to analyze the relationship between TEX and LUAD, and
there is a lack ofmolecular biology experiments and in vivo results to further
confirm our conclusion. In conclusion, our results provide a new insight
into the role of TEX in LUAD.
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