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Background: Immunotherapy has limited effectiveness in ovarian cancer (OC)
patients, highlighting the need for reliable biomarkers to predict the effectiveness
of these treatments. The C-X-C motif chemokine ligands (CXCLs) have been
shown to be associated with survival outcomes and immunotherapy efficacy in
cancer patients. In this study, we aimed to evaluate the predictive value of
16 CXCLs in OC patients.

Methods: We analyzed RNA-seq data from The Cancer Genome Atlas, Gene
Expression Omnibus, and UCSC Xena database and conducted survival analysis.
Consensus cluster analysis was used to group patients into distinct clusters based
on their expression patterns. Biological pathway alterations and immune
infiltration patterns were examined across these clusters using gene set
variation analysis and single-sample gene set enrichment analysis. We also
developed a CXCL scoring model using principal component analysis and
evaluated its effectiveness in predicting immunotherapy response by assessing
tumor microenvironment cell infiltration, tumor mutational burden estimation,
PD-L1/CTLA4 expression, and immunophenoscore analysis (IPS).

Results: Most CXCL family genes were overexpressed in OC tissues compared to
normal ovarian tissues. Patients were grouped into three distinct CXCL clusters
based on their CXCL expression pattern. Additionally, using differentially
expressed genes among the CXCL clusters, patients could also be grouped
into three gene clusters. The CXCL and gene subtypes effectively predicted
survival and immune cell infiltration levels for OC patients. Furthermore,
patients with high CXCL scores had significantly better survival outcomes,
higher levels of immune cell infiltration, higher IPS, and higher expression of
PD-L1/CTLA4 than those with low CXCL scores.

Conclusion: The CXCL score has the potential to be a promising biomarker to
guide immunotherapy in individual OCpatients and predict their clinical outcomes
and immunotherapy responses.
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Introduction

Ovarian cancer (OC) is estimated to be the fifth leading cause of
cancer-related deaths among women in the United States in 2023
(Siegel et al., 2023). The standard treatment for OC involves radical
surgery and chemotherapy (Ledermann et al., 2013), but the 5-year
survival rate for OC patients remains low despite these efforts
(Oronsky et al., 2017). Immunotherapy has emerged as a
promising new approach for treating various types of cancer
(Kraehenbuehl et al., 2022). The FDA has approved six types of
immune checkpoint inhibitors (ICIs) for cancer therapy since 2011,
including targeting cytotoxic T lymphocyte-associated protein 4
(CTLA-4), programmed death-1 (PD-1), and programmed death-
ligand 1 (PD-L1) (Hargadon et al., 2018). Although ICIs have shown
success in treating several cancers, not all patients with ovarian
cancer respond to immunotherapy (Hamanishi et al., 2021; Moore
et al., 2021). Therefore, it is critical and urgent to identify new and
effective strategies to guide immunotherapy in OC patients, in order
to improve their outcomes.

Biomarkers are essential in directing the efficacy of
immunotherapy in cancer and enhancing patient outcomes. The
use of specific biomarkers can help predict which patients will likely
respond positively to immunotherapy, allowing for a tailored
treatment plan. One significant biomarker is the expression of
specific proteins, such as PD-L1, on the surface of cancer cells.
High PD-L1 expression has been linked to improved responses to
immunotherapy drugs that target this protein (Patel and Kurzrock,
2015). Another biomarker is the presence of immune cells, known as
tumor-infiltrating lymphocytes (TILs), within the tumor tissue.
High levels of TILs have also been associated with improved
responses to immunotherapy (Presti et al., 2022). Moreover, the
genetic composition of the tumor can also impact the response to
immunotherapy. For instance, mutations in genes like TP53 have
been connected with improved responses to immunotherapy in
cancer (Dong et al., 2017). However, the current biomarkers do not
fully explain the responses to immunotherapy in OC, and there is a
pressing need for more effective biomarkers to guide
immunotherapy in this patient population.

C-X-C motif chemokine ligands (CXCLs) are a group of
chemical molecules that guide cell migration and are widely
associated with tumor progression and response to
immunotherapy (Charo and Ransohoff, 2006; Markl et al., 2022).
For instance, CXCL1 has been linked to the promotion of cancer cell
migration and the progression of gastric cancer (Wang et al., 2017)
and breast cancer metastasis (Wang et al., 2018). On the other hand,
CXCL8 is a target for solid tumor immunotherapy (Dominguez
et al., 2017), and CXCL9/10 has been demonstrated to enhance the
accumulation of effector T cells at the tumor site and suppress tumor
growth (Karin, 2020). In ovarian cancer, high levels of
CXCL1 expression have been found to promote cancer
progression by inducing cell proliferation (Bolitho et al., 2010),
whereas CXCL9 has been shown to potentiate anti-tumor activity
and drive a positive response to anti-PD-L1 therapy (Seitz et al.,
2022). Despite these findings, the systematic predictive value of
CXCLs in terms of overall survival and response to immunotherapy
in individual OC patients remains unclear.

Our study aimed to systematically evaluate the role of CXCLs in
OC prognosis and immunotherapy.We found that most of the CXCL

family genes were overexpressed in OC compared to normal tissues,
and were independent predictors of patient outcomes. Based on the
expression levels of CXCLs, OC patients were grouped into three
distinct CXCL patterns or gene clusters, each with a distinct
relationship to patient outcome and immune cell infiltration.
Additionally, we developed a CXCL scoring model using principal
component analysis (PCA), which accurately predicted the prognosis
and immunotherapy response of individual patients withOC. Patients
with high CXCL scores had improved survival, increased immune cell
infiltration, and a higher sensitivity to immunotherapy.

Materials and methods

Data download and processing

To assess the expression of CXCLs in normal and OC tissues, we
collected 88 normal ovary samples and 427 ovarian cancer samples
with normalized TPM (transcripts per kilobase million) from the
UCSC Xena database (https://xena.ucsc.edu/). The gene
transcription data and clinical information of OC were obtained
from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/) databases, which were merged into a TCGA-GEO
matrix (totaling 758 samples) after adjusting for batch effects using
the “SVA” R package. We used the “limma” R package to compare
the expression levels of CXCLs between normal and OC tissues.
Information on copy number and somatic mutations was also
obtained from the UCSC Xena database for generating Circos
plots with the “RCircos” R package and calculating the tumor
mutational burden (TMB) with the “maftools” R package.
Survival analysis was conducted using Cox regression analysis
and Kaplan–Meier (KM) methods, statistical significance was
defined as a p-value less than 0.1 for Cox regression analysis and
less than 0.05 for Kaplan-Meier methods.

Consensus cluster analysis to build clusters
based on the expression of CXCLs

We used consensus cluster analysis to group the TCGA-GEO
cohort based on the expression levels of the 16 CXCLs, with the help
of the “ConsensusClusterPlus” R package (Wilkerson and Hayes,
2010). The analysis showed that grouping the samples into three
clusters (k = 3) had the best association of intra-typical samples, a
low coefficient of variation, and an adequate sample size for each
cluster. The fitness of the classification was evaluated using Principal
Component Analysis (PCA) (Ringner, 2008). A heatmap of the
CXCL expression levels among the three CXCL clusters and their
corresponding clinical features was generated using the “pheatmap”
R package.

Gene set variation analysis (GSVA) of three
CXCL clusters

To understand the distinct biological pathways associated with
the three CXCL clusters, we conducted gene set variation analysis
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(GSVA) using the “GSVA” R package (Hanzelmann et al., 2013).
The “c2. cp.kegg.v2022.1. Hs.symbols” gene set was obtained from
the GSEA website (https://www.gsea-msigdb.org) and used to
analyze the enrichment of gene sets in each of the three CXCL
clusters. This analysis aimed to provide insights into the biological
processes that may contribute to the observed differences in CXCL
expression between the three clusters. The top 20 enriched pathways
were visualized in a heatmap, with adjusted p-values less than 0.
05 considered significant.

Infiltration levels of immune cells

The tumor microenvironment (TME) infiltration immune cell
type was defined by Zhang et al. (2020). The relative infiltration
levels of each type of immune cell in each sample were calculated
using the single-sample gene set enrichment analysis (ssGSEA)
(Subramanian et al., 2005). The enrichment score represented the
enrichment of each type of immune cell in the sample. The
correlation between the CXCL score and each type of infiltration
immune cell was analyzed using the “corrplot” R package.

Differentially expressed genes analysis
among CXCL patterns

To identify the differentially expressed genes (DEGs) among the
three CXCL patterns, a differentially expressed genes analysis was
performed using the “limma” R package on the normalized TPM
data of 758 ovarian cancer patients from the three CXCL clusters
(Smyth, 2004). A significance threshold of adjusted
p-value <0.001 was applied to filter DEGs. As a result,
3811 DEGs were identified between CXCL clusters A and B,
552 DEGs between CXCL clusters A and C, 1941 DEGs between
CXCL clusters B and C, and 244 shared DEGs. The results of
differentially expressed genes analysis were visualized using
Venn diagrams generated by the “VennDiagram” R package. The
shared DEGs were further evaluated for their potential biological
functions using Gene Ontology (GO) (Ashburner et al., 2000) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis (Kanehisa and Goto, 2000). A univariate
Cox regression analysis was conducted to identify shared survival
related DEGs, and a significance threshold of p < 0.05 was applied.
Based on the expression levels of shared survival related DEGs,
the TCGA-GEO cohort was grouped into three gene clusters using
consensus cluster analysis. The expression of shared survival
related DEGs in the three gene clusters was visualized using the
“pheatmap” R package, and the “limma” R package was used to
analyze the expression profiles of 16 CXCLs among the three gene
subtypes.

Differences in survival among CXCL clusters,
gene clusters, or CXCL score model

For survival analysis, patients with missing follow-up information
were excluded. The probability of survival was compared across CXCL
clusters, gene clusters, and CXCL score groups, respectively, using the

“survival” and “survminer”R packages. The assessment of the survival
curves was performed through the Kaplan-Meier method and log-
rank tests.

Estimating tumor mutational burden (TMB)

The tumor mutational burden (TMB) is calculated as the
number of mutated bases per million bases. The simple
nucleotide variations of OC patients were obtained from the
TCGA database and processed using Practical Extraction and
Report Language (Perl) version 5.30.0. The patients were divided
into two groups, high TMB and low TMB, based on the optimal
cutoff value of TMB. Survival analysis was performed to
compare the prognosis between the high and low TMB groups
and to assess the impact of TMB on prognosis when combined with
CXCL scores.

Immunophenoscore (IPS) analysis in the
CXCL score model

Charoentong et al. introduced the Immune Prediction Score
(IPS), which is used to predict a patient’s response to checkpoint
blockade in cancer (Charoentong et al., 2017). The clinical data and
IPS for OC patients were obtained from The Cancer Immunome
Atlas (https://tcia.at/). In this study, the IPS was analyzed to evaluate
the effectiveness of immunotherapy in OC patients with high and
low CXCL scores.

Construct a CXCL score model

To evaluate the predictive value of CXCLs in individual patients,
we developed a CXCL score model based on the expression levels of
the shared survival related DEGs among the three CXCL clusters.
The CXCL score was calculated by summing the signature scores,
which were extracted from the PCA as the first and second principal
components (PC1 and PC2). The formula for defining the CXCL
score is as follows (Ringner, 2008).

CXCL score � ∑ PC1i + PC2i( )

Where “i” represents the expression levels of the shared survival
related DEGs among the three CXCL clusters.

Statistical analysis

Statistical analyses were conducted using R software version
4.2.1. The Student’s t-test or Wilcoxon rank-sum test was applied to
evaluate the distribution of variables. The Log-rank test or Kruskal-
Wallis test was used to compare data between two or more groups,
respectively. Correlations between two variables were analyzed using
Pearson or Spearman correlation analysis. The “survival” R package
was used to subgroup samples. Kaplan-Meier survival analysis and
univariate Cox regression analysis were performed using the
“survminer” package.
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Results

The characteristics of CXCLs in OC

To investigate the characteristics of CXCLs in OC, we
compared the expression levels of 16 CXCL family genes
between normal ovarian tissues and OC tissues using the UCSC
Xena and TCGA databases. The PCA results showed that the
gene expression profiles of normal and OC tissue were different
(Figure 1A). Among the CXCLs, mRNA levels of CXCL1,
CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9,
CXCL10, CXCL11, CXCL13, CXCL14, and CXCL16 were
upregulated in OC, while the expression of CXCL12 was
significantly higher in normal ovarian tissue (Figure 1B). We
also analyzed copy number variation (CNV) and somatic
mutation frequency of the CXCL family genes using the TCGA-
OC cohort. Figure 1C shows that, for most CXCLs
(excluding CXCL17), the frequency of gain copy number was
higher than that of lost copy number (Figure 1C). CXCL family
genes (CXCL7, CXCL9, CXCL16, CXCL6, and CXCL12) showed
somatic mutation events in 10 of 463 TCGA-OC samples,
with CXCL7 exhibiting the highest mutation frequency (4/463)
(Figure 1D).

The prognostic value of CXCLs in OC

To assess the prognostic value of individual CXCL family genes in
OC patients, we performed Kaplan-Meier (K-M) survival analysis and
univariate Cox regression analysis using the TCGA and
GSE140082 databases. The K-M curve showed that the expression
levels of CXCL4, CXCL6, CXCL7, CXCL12, and CXCL14 were
associated with worse survival outcomes (Figures 2B, D, E, J, L),
while the expression levels of CXCL2, CXCL5, CXCL8, CXCL9,
CXCL10, CXCL11, and CXCL13 were correlated with better overall
survival (OS) of patients (Figures 2A, C, F–I, K). Univariate Cox
regression analysis also showed that 5 CXCL family genes (CXCL9,
CXCL10, CXCL11, CXCL13, and CXCL14) were single risk factors for
the OS of patients (Supplementary Table S1). These results suggest that
CXCL9, CXCL10, CXCL11, CXCL13, and CXCL14 could be used as
potential prognostic biomarkers for OC patients.

CXCLs expression-based subtypes in OC
patients

To understand the role of CXCLs in OC, patients from the
TCGA-OC and GSE140082 cohorts were combined and grouped

FIGURE 1
Characteristics of CXCLs in OC. (A) The PCA plots demonstrate a clear distinction between normal and OC tissue, with blue dots representing
normal tissue and yellow dots representing tumor tissue. (B) The box plots depict themRNA expression (log2 x + 1) profiles of 16 CXCLs in normal andOC
tissue. ***p < 0.001. (C) The CNV frequency of CXCLs in TCGA-OC is illustrated by the height of the column, with red dots representing an increase in
frequency and green dots representing a decrease in frequency. (D) The somatic mutation rate of CXCL family genes in TCGA-OC patients. The
bottom bar graph represents mutation transformation.
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into multiple patterns based on the similarity of CXCL family
member expressions using consensus cluster analysis. The
analysis identified three subgroups based on the lack of
significant increase in the area under the cumulative distribution
function (CDF) curve and the clear boundaries observed between
the subgroups (Figures 3A, B). The differences among the subclasses
were further evaluated using PCA, which revealed that CXCL
clusters A, B, and C were significantly distinct from each other
(Figure 3C). The heatmap showed that CXCL family genes were
upregulated in CXCL cluster A and downregulated in CXCL cluster
B (Figure 3D). In cluster C, some CXCL genes were upregulated
while others were downregulated (Figure 3D).

To gain further insights into the biological differences among the
three CXCL clusters, Gene Set Variation Analysis (GSVA) was

performed. Results indicated that CXCL cluster C was mainly
associated with immune responses, such as regulating the T cell
receptor and Toll-like receptor signaling pathways
(Figure 3E,Supplementary Figures S1A, B). A survival analysis was
also conducted on patients in each CXCL cluster. The results showed
that patients in CXCL cluster C had a better overall survival rate
compared to those in CXCL cluster A and B (p < 0.001) (Figure 3F).
Single-sample gene set enrichment analysis (ssGSEA) revealed a
significantly higher infiltration of immune cells in CXCL cluster C
compared to CXCL clusters A and B, which may explain the better
survival outcomes of patients in CXCL cluster C compared to CXCL
clusters A and B (Figure 3G). Therefore, OC patients can be successfully
divided into three subtypes based on the similarity of CXCLs
expression.

FIGURE 2
The prognostic significance of CXCLs in OC. Kaplan-Meier curve displays the difference in overall survival between patients with high and low
expression levels of (A) CXCL2, (B) CXCL4, (C) CXCL5, (D) CXCL6, (E) CXCL7, (F) CXCL8, (G) CXCL9, (H) CXCL10, (I) CXCL11, (J) CXCL12, (K) CXCL13, and
(L) CXCL14. All data are derived from TCGA-OC and GSE140082 datasets.
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Identification of three gene clusters based
on the expression patterns of DEGs among
three CXCL clusters

To further examine the biological significance of the CXCLs,
244 shared DEGs were identified across the three CXCL subtypes
(Figure 4A). These shared DEGs were found to be enriched in
several immune cell-related pathways, such as T cell
differentiation (Figures 4B, C; Supplementary Figures 2A, B),
and 94 DEGs were significantly associated with the OS of patients
(Supplementary Table S2). Patients were then divided into three
gene clusters based on these 94 OS-related shared DEGs
(Supplementary Figures 3A, B). The Kaplan-Meier curve
showed that patients in gene cluster C had a better survival
rate compared to patients in gene clusters A and B (Figure 4D).
The expression profile of the 94 OS-related shared DEGs along
with clinical characteristics among the three gene clusters is

displayed in a heatmap (Figure 4E). Additionally, we
compared the expression levels of the CXCLs in the three gene
clusters. As indicated by the box plot, patients in gene cluster A
expressed the lowest mRNA levels of the CXCLs, while most
patients in gene cluster B had higher expression levels of CXCLs
than those in gene cluster C (Figure 4F). In conclusion, patients
can be effectively separated into three gene clusters that can
predict their overall survival.

Construct a CXCL score model

Due to the diversity of tumors, we utilized PCA methodology to
accurately evaluate the CXCL pattern of individual OC patients, which
was named theCXCL score. The attribute changes of individual patients
were depicted in a Sankey diagram (Figure 5A). Next, OC patients were
divided into high-score and low-score groups based on their CXCL

FIGURE 3
CXCLs expression-based subtypes of OC patients. (A,B) Consensus clustering analysis was performed based on the expression of CXCLs. The
consensus cumulative distribution function (CDF) from k = 2 to 9 is shown in (A), and the heatmap of the consensus matrix (k = 3) is shown in (B). (C) PCA
plots of the three CXCL subtypes. Blue dots represent CXCL cluster A, yellow dots represent CXCL cluster B, and red dots represent CXCL cluster C. (D)
The mRNA expression of 16 CXCLs in the three subtypes is shown in a heatmap. (E) A heatmap shows the results of KEGG pathway enrichment
analysis betweenCXCL clusters B and C. (F) The Kaplan-Meier curve displays the outcome of patients in the three CXCL subtypes. (G)Box plots display the
level of immune cell infiltration in the three CXCL subtypes. ***p < 0.001.
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scores, and the survival outcomes of patients in these two groups were
compared. The results showed that patients with high CXCL scores had
a better survival rate compared to those with low CXCL scores (Figures
5B–D). We then analyzed the correlation between CXCL score and
immune cell infiltration level using Spearman correlation analysis. Our
results showed that a high CXCL score was positively correlated with
higher immune cell infiltration (Figure 5E). Additionally, we calculated
the CXCL scores of patients in different CXCL clusters and gene
clusters. Among the three CXCL patterns, patients in CXCL cluster
C had the highest CXCL score, while CXCL cluster B had the lowest
CXCL score (Figure 5F). In the three gene clusters, the average CXCL
score of patients in gene cluster C was higher than those in gene clusters

A and B (Figure 5G). Therefore, the CXCL score may serve as a
potential positive biomarker for predicting the prognosis of OC
patients.

The association between CXCL score and
TMB/somatic mutation rates

High levels of tumormutational burden (TMB) and the presence
of cancer gene mutations have been positively linked to sensitivity to
immunotherapy in some types of tumors (Bai et al., 2020). To assess
the immunotherapeutic response of individual OC patients, we

FIGURE 4
Three prognosis gene clusters in OC. (A) Venn diagram displays DEGs among three gene subtypes, with 244 genes identified as sharedDEGs. (B) The
top 30 enriched KEGG pathways based on the shared DEGs. (C) Dot plots show the top 10 GO terms in each biological process, based on the shared
DEGs. (D) Kaplan-Meier curve displays the survival probability of patients in the three gene subtypes. (E) The heatmap displays the distribution of shared
survival related DEGs, clinical characteristics, and the CXCL cluster in the three gene clusters. (F) Box plots display the expression of CXCLs in the
three gene clusters. **p < 0.01, ***p < 0.001.
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analyzed the relationship between the CXCL score and TMB.
Although there was not a strong correlation between TMB and
CXCL score, there was a trend towards patients with high CXCL
scores having higher TMB values (Figures 6A, B). We then divided

patients into two classes based on their TMB value, with 108 patients
in the high TMB (H-TMB) class and 145 patients in the low TMB
value class (L-TMB). Survival analysis showed that patients in the
H-TMB group had better survival outcomes than those in the

FIGURE 5
Construct a CXCL score model through PCA. (A)The Sankey diagram illustrates the connections between CXCL clusters, gene clusters, CXCL score
patterns, and patient survival outcomes. (B) The distribution of patients with low or high CXCL scores who are alive or deceased. (C) Bar plots show the
CXCL score distribution in patients with different prognoses. (D) Kaplan-Meier curve displays the survival probability of patients with varying CXCL scores.
(E) The relationship between CXCL score and the level of immune cell infiltration is shown, with blue indicating negative correlations and red
indicating positive correlations. (F,G) Bar plots illustrate the difference in CXCL score between the three CXCL clusters (F) and three gene clusters (G),
respectively, with p values indicated.
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L-TMB group (p < 0.001) (Figure 6C). The results of the joint
analysis of the CXCL score and TMB showed that patients in the
H-TMB group with high CXCL scores had the best survival, while
those in the L-TMB group with low CXCL scores had the worst
outcome (Figure 6D). We also analyzed the somatic mutations of
patients in the two CXCL score groups using the TCGA-OC cohort.
Results showed that the somatic mutation rate of patients in the high
CXCL score group (98.72%) was higher than in the low CXCL score
group (96%). The mutation rate of the TP53 gene was 91% in the
high CXCL score group and 83% in the low CXCL score group

(Figures 6E, F). Collectively, these results suggest that higher CXCL
scores are associated with higher TMB values, indicating better
responses to immunotherapy.

Predictive value of CXCL score for
immunotherapy outcomes

Expression of PD-L1 is a clinically recognized indicator for
anti-PD-1/PD-L1 therapy in cancer patients (Luchini et al., 2019;

FIGURE 6
The association between CXCL score and TMB/somatic mutation rates. (A) Box plots show the TMB values in the high and low CXCL score groups.
The p-value is indicated. (B) Scatter plots demonstrate the relationship between CXCL score, TMB, and the three gene clusters. Gene Cluster A is
represented by blue dots, Gene Cluster B by yellow dots, and Gene Cluster C by red dots. (C) Kaplan-Meier curve presents the survival of patients with
high and low TMB values, designated as H-TMB and L-TMB, respectively. (D) Survival analysis for patients grouped by both CXCL score and TMB
values. (E,F) Waterfall plot displays the distribution of somatic mutations in patients with high (E) and low (F) CXCL scores. Each column represents an
individual patient.
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Twomey and Zhang, 2021), while CTLA-4 is another potential
target for immune checkpoint inhibitor (ICI) therapy
(Rowshanravan et al., 2018). To determine the predictive value
of the CXCL score in immunotherapy, we compared the
expression levels of PD-L1 and CTLA-4 between patients with
high and low CXCL scores. Results showed that patients with
high CXCL scores expressed higher levels of PD-L1 (Figure 7A)
and CTLA-4 (Figure 7B) compared to those with low CXCL
scores, indicating that these patients may benefit more from ICI
treatment.

Additionally, the immunophenoscore (IPS) has been found to
predict the efficacy of anti-PD-1 and anti-CTLA-4 therapy

(Charoentong et al., 2017). To further validate the value of the
CXCL score in predicting immunotherapy response, we evaluated
the sensitivity of ICI therapy using IPS. Results indicated
that patients with high CXCL scores had better survival
outcomes compared to those with low CXCL scores with either
anti-PD-1 or anti-CTLA-4 therapy (Figures 7C–E). Clinical trials
have shown that combination therapy with anti-PD-1 and anti-
CTLA-4 is effective in treating lung cancer and melanoma
(Wolchok et al., 2013; Hellmann et al., 2019). The results as
depicted in Figure 7F indicate that patients with high CXCL
scores have higher IPS levels compared to those with low CXCL
scores when treated with the combination therapy of anti-PD-

FIGURE 7
The predictive value of the CXCL score in immunotherapy. (A,B) Box plots present the expression levels of PD-L1 (A) and CTLA4 (B) in patients with
high and low CXCL scores. (C–F) Violin plots display the IPS scores of patients with low and high CXCL scores who received non-ICI therapy (C), PD-1
therapy alone (D), CTLA4 therapy alone (E), or a combination of PD-1 and CTLA4 therapy (F).
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1 and anti-CTLA-4 (Figure 7F). This suggests that patients with
high CXCL scores may experience a greater benefit from this
combination therapy.

Taken together, the CXCL score may serve as a positive
predictor for a patient’s response to immunotherapy and could
be used to select the appropriate patient population for the treatment
in ovarian cancer.

Discussion

The CXCL family genes play a crucial role in the progression of
tumors and in the microenvironment (Bikfalvi and Billottet, 2020).
However, the full extent of their importance in OC remains unclear.
Our study confirmed the expression of CXCLs in OC tissue compared
to normal tissue and found that most CXCLs were overexpressed in OC
tissue. Based on this expression profile, we were able to group OC
patients into three CXCL clusters. Of these clusters, patients in cluster C
had better survival rates and higher infiltration of immune cells. By
using DEGs among CXCL clusters, we identified three gene clusters,
and developed a CXCL score to predict prognosis and immunotherapy
response in individual patients. The relationships of the CXCL score
with clinical outcomes, cell infiltration levels, somatic mutations, and
immunotherapy sensitivity were also studied to evaluate the value of
CXCLs in OC.

The CXCLs are involved in tumor progression. For instance,
CXCL1 and CXCL8 have been found to stimulate ovarian cancer
cell growth via activation of the p38 and Wnt/β-catenin pathway
(Duckworth et al., 2016; Wen et al., 2020; Park et al., 2021).
CXCL5, secreted by ovarian cancer-associated mesothelial cells, has
been demonstrated to have tumor-promoting properties (Peng et al.,
2019). Furthermore, high levels of CXCL11 expressed in cancer-
associated fibroblasts in ovarian cancer biopsies were found to
facilitate cancer cell metastasis (Lau et al., 2014). Our results align
with these findings and show that CXCL1, CXCL5, CXCL8, and
CXCL11 are overexpressed in ovarian cancer. Additionally, previous
studies have found that overexpressed CXCL9, CXCL10, and
CXCL13 are positively associated with better overall survival, while
elevated CXCL12 and CXCL14 levels are linked to poor outcomes
(Popple et al., 2012; Bronger et al., 2016; Li et al., 2020; Ukita et al.,
2022). Our study validated these findings and showed that CXCL9,
CXCL10, CXCL12, CXCL13, and CXCL14 are independent risk factors
for clinical outcomes. High levels of CXCL9, CXCL10, and
CXCL13 were found to be associated with good prognosis, while
high expression levels of CXCL12 and CXCL14 were correlated with
poor survival. These findings suggest that CXCLsmay play a crucial role
in the progression of ovarian cancer.

The relationship between genomic profiling and survival
outcome in cancer patients has gained significant attention in
recent years. Research has shown that chemokine ligands
CXCL10 and CXCL11 have anti-angiogenic properties and can
effectively inhibit tumor progression (Romagnani et al., 2004;
Billottet et al., 2013). Additionally, CXCL9, CXCL10, and
CXCL13 are involved in attracting CD8 effector T cells, and a
high infiltration of T lymphocytes has been linked to improved
survival outcomes (Sato et al., 2005; Harlin et al., 2009; Ukita et al.,
2022). Our study found three subfamilies of OC patients with
distinct survival outcomes based on the expression of the CXCLs.

Patients in cluster C with the highest expression of CXCL9/10/11/13,
who also showed activation of immune-related pathways and high
infiltration of immune cells including T cells, had the best survival
outcomes. Conversely, patients in cluster B, characterized by low
expression of CXCL9/10/11/13 and low immune cell infiltration,
had a poor prognosis. These findings highlight the potential use of
CXCL expression as a biomarker for the treatment and prognosis of
ovarian cancer.

Immunotherapy, including anti-PD-1/PD-L1 and CTLA-4, is
commonly employed in various solid tumors, but its efficacy in OC
is limited (Marabelle et al., 2020; Robert, 2020; Marcus et al., 2021;
O’Malley et al., 2022). Identifying reliable biomarkers to direct
immunotherapy may broaden the reach of immunotherapy to
OC patients (Zamarin and Jazaeri, 2016). In our study, we
utilized the CXCL score as a biomarker to predict individual
patients’ responses to immunotherapy in OC. High PD-L1/
CTLA4 expression levels, high IPS scores, and a greater number
of cancer gene mutations have been established as solid predictive
biomarkers for patients who are more likely to benefit from
immunotherapy (Egen et al., 2002; Garon et al., 2015; Herbst
et al., 2016; Charoentong et al., 2017; Bai et al., 2020; Marabelle
et al., 2020). We examined the prognostic significance of the CXCL
score in immunotherapy response by evaluating these predictive
biomarkers. Our findings indicate that patients with high CXCL
scores had elevated levels of PD-L1/CTLA4, high IPS scores, and a
high frequency of cancer gene mutations. Therefore, the CXCL score
can be used as a predictor of immunotherapy response in OC
patients.

Immune cells express chemokine receptors and can be attracted
to tumors through chemokines, including CXCLs. Our study
revealed a positive correlation between the CXCL score and the
infiltration of immune cells. However, the underlying mechanism
behind this connection is still unclear. It is plausible that the CXCL
score serves as a measure of the concentration of immune cells in the
tumor microenvironment. A high CXCL score, indicating a high
expression of anti-tumor CXCL, may attract a larger number of
immune cells to the tumor, resulting in a more inflamed
microenvironment and enhanced response to immunotherapy.
On the other hand, a low CXCL score may indicate a lack of
immune cell infiltration and a less favorable tumor
microenvironment, leading to a weaker response to
immunotherapy. Further studies are needed to fully understand
the mechanisms linking the CXCL score to clinical outcomes and
immunotherapy responses in patients.

In conclusion, our comprehensive evaluation of CXCLs in ovarian
cancer has uncovered a promising biomarker that could forecast the
prognosis and response to immunotherapy for individual patients. This
has the potential to enhance the implementation of precision-targeted,
personalized immunotherapy in ovarian cancer patients.
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