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Background: Vancomycin is a glycopeptide antibiotic with a high risk of acute liver
injury. Resveratrol is believed to protect the liver against toxicity.

Aim: To investigate the ability of resveratrol to attenuate vancomycin-induced liver
toxicity in rats injected with vancomycin.

Method: Twenty-four adult male Wistar rats were distributed into three groups. The
control group received only a vehicle, while the treated group received either
vancomycin 200 (mg/kg, i. p.) only or vancomycin (200mg/kg, i. p.) with
resveratrol (20 mg/kg, oral gavage). All groups received their dose once daily for
7 days. Hepatic damage was assessed by measuring biochemical parameter levels in
serum, aspartate transaminase (AST), alanine transaminase (ALT), alkaline
phosphatase (ALP), and lactate dehydrogenase (LDH). Also, antioxidants and
inflammation biomarkers such as Interleukin-6 (IL-6), malondialdehyde (MDA),
nitric oxide (NO), and glutathione (GSH) were measured. Furthermore, the
vancomycin-induced pathological changes in the liver were evaluated by
histopathological studies.

Results: In the vancomycin-treated group, hepatic serum biomarkers such as AST,
ALT, ALP, IL-6, and MDA were elevated, while NO and GSHwere depleted. However,
resveratrol co-treatment with vancomycin prevented the elevation of AST, ALT, ALP,
IL-6, and MDA and it protected the liver from NO and GSH depletion. Also, regarding
vancomycin-induced degeneration of hepatocytes, resveratrol co-treatment with
vancomycin prevented such degeneration and improved mononuclear cells in the
liver.

Conclusion: The results showed that oral administration of resveratrol has a
significant hepatoprotective effect against vancomycin-induced hepatotoxicity.
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Introduction

Many drugs are known to produce liver injury, and these adverse hepatic events usually
result in severe liver injury if not treated properly (Bissell et al., 2001). It has been estimated that
drug-induced liver failure represents half of the cases of all forms of acute and chronic liver
disease (Kaplowitz, 2001). Approximately 10% of chronic hepatitis cases occur due to drug use,
and 5% from hospital admissions, while 50% of acute liver failure cases occur due to drug use
(Pandit et al., 2012). Hepatotoxicity associated with antibiotics is asymptomatic and usually
presents mild hepatic injury (Thiim and Friedman, 2003). Vancomycin is a glycopeptide
antibiotic with known bactericidal activity, and it is considered the drug of choice for treating
methicillin-resistant Staphylococcus aureus infections (David and Daum, 2010; Steinmetz et al.,
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2015). However, several side effects have been reported with
vancomycin, such as hypotension, phlebitis, nephrotoxicity, and
hepatotoxicity (Badran et al., 2011; Bamgbola, 2016).

Moreover, a few reports have shown that chronic use of
glycopeptide antibiotics has the potential to elevate liver
enzymes and induce hepatotoxicity (Cadle et al., 2006; Chen
et al., 2011; Brunetti et al., 2020). However, data to support the
influence of vancomycin on liver dysfunction are limited, and the
mechanism of vancomycin-induced hepatotoxicity has not been
studied effectively. Many risk factors contribute to vancomycin-
induced hepatotoxicities, such as long-term treatments, high doses,
obesity, patient age, and overall health (Larrey, 2002; Breedt et al.,
2005; Kohno et al., 2007; Florescu et al., 2008). Moreover, the
hepatic injury associated with vancomycin could also be due to
sepsis, bacterial endotoxins, fever, or hemolysis (Sibai, 2004; Shah
et al., 2010; Kouijzer et al., 2021). While different strategies have
been suggested to reduce any potential risk of hepatotoxicity
associated with vancomycin treatment (Aldaz et al., 2000;
Hwang et al., 2015; Regal et al., 2019; Tsutsuura et al., 2021),
the exact mechanism for this injury is not fully understood. Several
studies have suggested that vancomycin-induced toxicity could be
due to several factors, including the generation of free radicals,
oxidative stress, and inflammation, which cause liver injury in
animal studies (Sahin et al., 2006; El Bohi et al., 2021). In addition,
reactive oxygen species (ROS) are usually generated within cells,
leading to the initiation of oxidative stress-related intermediates,
which contribute to chronic inflammation and liver fibrogenesis
(Bataller and Brenner, 2005; Friedman, 2008; Novo and Parola,
2008). Therefore, herbal compounds with antioxidant and anti-
inflammatory properties have been considered.

Indeed, cumulative reports have suggested that herbal
compounds have a great potential to attenuate drug-induced
liver toxicity due to their antioxidant and anti-inflammatory
properties (Abou Seif, 2016; Parthasarathy and Evan Prince,
2021). Hence, many herbal compounds have been used as
traditional medicines for liver disorders (Ali et al., 2008; Zhang
et al., 2018; Philips et al., 2020; Das et al., 2022). In addition, these
are potential sources of new therapeutic agents that could be used
to prevent hepatic injuries. For example, resveratrol has long been
known to have antioxidant and anti-inflammatory effects.
Moreover, researchers have recently become more interested in
resveratrol, from its ability to extend human lifespans to its effect
on chemoprevention, cardiovascular diseases, and
neurodegenerative disorders, as reported in several studies
(Gescher and Steward, 2003; Srivastava et al., 2013; Pourhanifeh
et al., 2019; Banez et al., 2020; Labban et al., 2021a; Labban et al.,
2021b). The antioxidant properties of resveratrol have been
demonstrated in several in vitro studies. The antioxidant
property of resveratrol has been demonstrated by inhibiting
nicotinamide adenine dinucleotide phosphate oxidases, which
inhibit the production of reactive oxygen species (ROS)
(Halliwell, 2007; Yousefian et al., 2019). As well as protecting
cells from oxidative stress, resveratrol also promotes the
expression of antioxidative enzymes and their substrates (Miguel
et al., 2021; Santos et al., 2021). Recently, it has been suggested that
resveratrol has hepatoprotection properties through its anti-
inflammatory and antioxidant effects (Chupradit et al., 2022; Ma
et al., 2022; Tong et al., 2022). It has also been reported that
resveratrol attenuates acetaminophen toxic metabolite N-acetyl-p-

benzoquinone-imine and facilitates liver regeneration by
modulating the silent mating type information regulation two
homolog (SIRT1), tumor protein P53, and Tumor Necrosis
Factor-alpha (TNF-α) (Sener et al., 2006; Wang et al., 2015).
Moreover, resveratrol has been shown to improve glutathione
(GSH) levels and antioxidant enzyme activities, and to decrease
ROS production in liver tissues (Bujanda et al., 2008; Rivera et al.,
2008; Rubiolo and Vega, 2008; Sebai et al., 2010). Also, one study
reported that the thioacetamide-induced hepatotoxic effect
associated with TNF-α and iNOS elevation was inhibited by
resveratrol (Ebrahim et al., 2022).

This study investigates the effect of high doses of vancomycin
administered to induce liver toxicity. A few studies have investigated
similar regimens and found that high doses of vancomycin were
associated with elevated levels of liver enzymes, the tissue activities
of catalase, superoxide dismutase activities, lipid peroxidation, and
malondialdehyde (MDA) (Ahmida, 2012; Çağlayan et al., 2019; El
Bohi et al., 2021). Moreover, this research investigates the ability of
resveratrol to attenuate vancomycin-induced liver toxicity through
several biomarkers, such as liver tissues, inflammatory mediators, liver
enzymes, and antioxidant property markers.

Materials and methods

Drugs

Resveratrol (ProHealth, United States) and vancomycin
(Medis, Tunisia) were used in the study. All other chemicals
and reagents used were of analytical grade. Resveratrol and
vancomycin were dissolved in a saline solution (0.9% NaCl) as a
vehicle for both drugs.

Dose selection
The vancomycin dose was based on several recent studies using

200 mg/kg, i. p. to induce hepatotoxicity (Kucukler et al., 2020) and
nephrotoxicity (Ahmida, 2012) once daily for seven consecutive days.
The resveratrol dose was based on several studies using the same dose
against several compounds, such as dimethylnitrosamine (Lee et al.,
2010) and concanavalin (Zhou et al., 2015).

Animals
Twenty-four male adult Wistar rats (weighing 170–207 g) were

used. The animals were housed in plastic cages (4 rats per cage)
under a 12 h light/12 h dark schedule in a humidity-controlled
room and were fed a normal diet. They had access to food and water
ad libitum and were monitored daily to ensure proper animal
welfare. The rats were acclimatized for 1 week before starting the
experiment. Then, the rats were distributed into three groups (n =
8 in each group). The rats received only a vehicle in the first group
(control). In the second group, vancomycin, the rats received
vancomycin (200 mg/kg, i. p.) once daily for seven consecutive
days. In the last group, vancomycin + resveratrol, the rats received
vancomycin (200 mg/kg, i. p.) and resveratrol (20 mg/kg, oral
gavage) once daily for seven consecutive days. All the
treatments were carried out within 7 days, and the animals were
euthanized using CO2 and sacrificed on the eighth day. The tissue
and serum samples were collected, homogenized, centrifuged, for
analysis.
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Measurement of biochemical parameters

The serum samples were used for the measurement of all
biochemical parameters. The usage of serum samples was based on
several reportes that have useed similar methods to assess hepatic
function. Aspartate transaminase (AST), Alanine transferase (ALT) as
reported in (Yin et al., 2019), Alkaline phosphatase (ALP) (Ibrahim
et al., 2020), Interleukin-6 (IL-6) (Xia et al., 2019), nitric oxide (NO)
(Fathy et al., 2019), GSH (Ibrahim et al., 2020) and MDA (Omara
et al., 2021).

Markers of liver tissue damage
The serum samples were analyzed using assay kits and ELISA for

liver functions. Aspartate transaminase (AST), Alanine transferase
(ALT) and Alkaline phosphatase (ALP) were assessed using ELISA
kits (MyBioSource kits catalog: MBS269614, MBS264975,
MBS011598, MBS726781; MyBioSource, Inc.) A centrifuge was
then performed at approximately 1000× g for 15 min. Serum was
collected, and the assay was immediately performed according to the
manufacturer’s recommendations (MyBioSource, Inc.). A standard
curve was established using a series diluent. A Microplate reader
(450 nm detection wavelength filter, 570 nm or 630 nm correction
wavelength filters) was used to perform all the tests.

Markers of inflammation
Interleukin-6 (IL-6) and nitric oxide (NO) levels in the serum were

measured with the fully automatic ELISA DSX best 2000® microtiter
plate and the ELISA kits. A centrifuge was then performed at
approximately 1000× g for 15 min. Serum was collected, and the
assay was immediately performed according to the manufacturer’s
recommendations (MyBioSource, Inc.).

Markers of antioxidant and prooxidant
GSH andMDA levels in the serum were measured using an ELISA

DSX best 2000® microtiter plate and the ELISA kits. In a serum
separator tube, the serum was clotted for 2 hours at room temperature
and overnight at 2°C–8°C. A centrifuge was then performed at
approximately 1000× g for 15 min. Serum was collected, and the
assay was immediately performed according to the manufacturer’s
recommendations (MyBioSource, Inc.). A Microplate reader (450 nm
detection wavelength filter) was used to perform all the tests.

Histopathology
The liver tissues were used for the histopathological assessment

and prepared in 10% formalin solution for 2 days. In addition, the
tissue was embedded in paraffin blocks following routine tissue
tracking procedures. Finally, Hematoxylin and eosin stains were
used to stain the slides. Masson’s Trichrome method was
employed, which involves deparaffinizing and rehydrating the liver
in descending series of alcohols before staining them with Biebrich
scarlet-acid fuchsin solution. A solution of phosphomolybdic-
phosphotungstic acid was then used to differentiate the sections.

Statistical analysis

Statistical analyses were performed using GraphPad Prism™
(v9.3.1). Data were expressed as mean ± standard error of the
mean. A one-way ANOVA, followed by Tukey’s post hoc test, was

used for comparisons. A p-value of <0.05 was considered statistically
significant.

Results

Measured levels of AST, ALT, ALP, and LDH

The effect of vancomycin on AST, ALT, ALP and LDH was
observed in the rats’ serum. The one-way ANOVA test revealed a
significant main effect on the AST serum levels [F (2, 21) = 216.0, p <
0.0001, Figure 1A]. Further analysis using Tukey’s multiple
comparisons test revealed that rats injected with only vancomycin
had significantly increased levels of AST compared to the control
group (p < 0.0001). Interestingly, the rats injected with resveratrol and
vancomycin were protected against vancomycin-induced toxicity. In
addition, the vancomycin + resveratrol group of rats showed a
significant increase in AST levels, p = 0.0083, compared to the
control group.

Moreover, vancomycin had a significant main effect on the ALT
serum levels in the groups [F (2, 21) = 124.0, p < 0.0001, Figure 1B].
Further analysis using Tukey’s multiple comparisons test revealed that
the control group rats displayed no change in ALT, p = 0.1949.
However, the rats injected with only vancomycin displayed a
significant increase in ALT compared to the control group (p <
0.0001). Interestingly, the rats injected with resveratrol and
vancomycin were protected against vancomycin-induced toxicity.

Another significant main effect on ALP serum levels in the groups
[F (2, 21) = 209.3, p < 0.0001, Figure 1C]. Further analysis using
Tukey’s multiple comparisons test revealed that the control rats
displayed no change in ALP, p = 0.5888. The rats injected with
vancomycin showed a significant increase in ALP compared to the
control group (p < 0.0001), and the rats injected with resveratrol and
vancomycin were protected against vancomycin-induced toxicity.

Moreover, significant main effect on LDH serum levels in the
groups [F (2, 21) = 130.9, p < 0.0001, Figure 1D]. Additional analysis
using Tukey’s multiple comparisons tests indicated that the control
group rats had no change in LDH, p = 0.8200. However, the rats
injected with only vancomycin displayed a significant increase in LDH
compared to the control group (p < 0.0001). Remarkably, resveratrol
demonstrated a protective role against vancomycin-induced toxicity.

Measured levels of IL-6 and NO

The effect of vancomycin on IL-6 and NO levels was observed
in the rats’ serum. The one-way ANOVA test revealed that
vancomycin had a significant main effect on the IL-6 serum
levels in the groups F (2, 21) = 141.8, p < 0.0001, Figure 2A.
Further analysis using Tukey’s multiple comparisons test revealed
that the control rats displayed no change in IL-6, p = 0.9185.
However, the rats injected with only vancomycin had a significant
increase in IL-6 compared to the control group (p < 0.0001).
Interestingly, the rats injected with resveratrol and vancomycin
were protected against vancomycin-induced toxicity.

The significant main effect on NO serum levels in the groups [F (2,
21) = 118.3, p < 0.0001, Figure 2B]. Tukey’s multiple comparisons test
revealed that the control group rats displayed no change in NO serum
levels, p = 0.6613. However, the rats injected with only vancomycin
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FIGURE 1
(A) Aspartate transaminase (AST) levels in u/l, (B) Alanine aminotransferase (ALT) in u/l, (C) Alkaline phosphatase (ALP) in unit/liter (u/l), and (D) lactate
dehydrogenase (LDH) (IU/L), were measured in the control rats, rats injected with vancomycin only, and rats injected with vancomycin and resveratrol.
Significant difference: ns = non-significant, **p < 0.001 ****p < 0.0001.

FIGURE 2
Interleukin-6 (IL-6) levels in ng/ml and (B) nitric oxide (NO) levels in parts per million (ppb) were measured in the control rats, rats injected with
vancomycin only, and rats injected with vancomycin and resveratrol. Significant difference: ****p < 0.0001.

FIGURE 3
(A) Malondialdehyde (MDA) (nmol/ml) and (B) Glutathione (GSH) levels in ng/ml were measured in the control rats, rats injected with vancomycin only,
and rats injected with vancomycin and resveratrol. Significant difference: **p < 0.001; ****p < 0.0001.
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showed a significant NO increase compared to the control group (p <
0.0001). Remarkably, the rats injected with resveratrol and
vancomycin were protected against vancomycin-induced toxicity.

Measured levels of MDA and GSH

The effect of vancomycin onMDAwas observed in the rats’ serum. A
further one-way ANOVA test showed that vancomycin had a significant
main effect on theMDA serum levels in the groups [F (2, 21) = 190.2, p <
0.0001, Figure 3A]. Also, Tukey’s multiple comparisons test revealed that
the control group rats displayed a significant change in MDA serum
levels, p < 0.0057. Again, the rats injected with only vancomycin displayed
a significant increase in LDH compared to the control group (p < 0.0001),
while the rats injected with resveratrol and vancomycin were protected
against vancomycin-induced toxicity.

The effect of vancomycin on GSH levels was observed in rats’
serum. The test revealed a significant main effect on GSH serum levels
in the groups [F (2, 21) = 167.3 < 0.0001, Figure 3B]. Further analysis
using Tukey’s multiple comparisons test revealed that the control
group rats displayed no change in GSH, p = 0.5894. However, rats
injected with only vancomycin displayed a significant decrease in GSH
compared to the control group (p < 0.0001). Interestingly, the rats
injected with resveratrol and vancomycin were protected against
vancomycin-induced toxicity.

Histopathological results
For the control group, a microscopic examination of the liver

revealed a normal appearance, as shown in Figure 4A. For the control
+ vancomycin group, liver-intralobular mononuclear inflammatory
infiltrations and Mallory bodies were evident due to the degeneration
of hepatocytes, as shown in Figure 4B. For the vancomycin +
resveratrol group, the liver showed a marked improvement in the
mononuclear cells, as shown in Figure 4C.

Discussion

Biological systems depend on the liver to detoxify xenobiotics
(Apte and Krishnamurthy, 2011). Several studies have shown that

hepatic damage disrupts the body’s regular metabolism (Fabbrini
and Magkos, 2015; Kurland et al., 2015). There are several causes of
acute liver failure, including viral hepatitis, toxic liver damage
caused by poisons and drugs, and ischemia (Jalan et al., 2012;
Bernal and Wendon, 2013). The liver metabolises xenobiotics as
the body’s first line of defense against ingested toxins and drugs,
which often cause necrosis and apoptosis (Tsochatzis et al., 2014).
A growing body of research focuses on the potential toxicity of
antibiotics in the liver (Acevedo, 2015; Fernández et al., 2016;
Zoratti et al., 2022). Vancomycin tends to cause adverse events
after prolonged use, and large doses may be toxic to the liver
(Kucukler et al., 2020). This study aimed to determine whether
resveratrol plays a beneficial protective role against vancomycin-
induced toxicity in the livers of male Wistar rats.

This study’s findings align with several other research studies that
present vancomycin’s potential toxicity (Kucukler et al., 2020).
However, to our knowledge, no previous study has investigated the
protective role of resveratrol. This study revealed an elevation in serum
biomarkers such as AST, ALT, and ALP levels in the groups given only
vancomycin or vancomycin with resveratrol, compared to the control
group. The serum level of ALT is the most widely used clinical
biomarker of hepatic function (Senior, 2012). Furthermore, GSH,
an antioxidant, was restored to the normal level in the rats injected
with vancomycin and resveratrol, indicating the antioxidant activity of
the latter.

Moreover, the rats injected with vancomycin only had
significantly reduced GSH levels, confirming the previous
findings. Several parameters were affected by the administration
of vancomycin. The levels of IL-6, LDH, MDA, and NO were highly
increased in the rats injected with vancomycin. Vancomycin
administration caused hepatocyte damage, leading to liver
enzyme elevation. Hepatotoxic studies commonly measure liver
enzyme levels such as ALT, AST, and ALP as serum hepatic
biomarkers for determining liver lesions (Deshpande et al.,
1998; Sadeghi et al., 2008; Mehrzadi et al., 2018). In this study,
vancomycin caused a significant elevation in the serum hepatic
biomarkers ALT, AST, and ALP. The concentration of ALT and
AST enzymes in serum reflects the severity of liver damage as these
enzymes are present in high concentrations in the liver (Adeyemi
and Akanji, 2011; Adeyemi and Adewumi, 2014; Yilmaz et al.,

FIGURE 4
Histopathological liver evaluation in (A) control rats, (B) rats injected with vancomycin only, liver-Intralobular mononuclear inflammatory infiltrations
(white arrow), and Mallory bodies (black arrow) due to degeneration of hepatocytes and increased vacuolation in the cytoplasm of hepatocytes appeared as
indistinct clear vacuoles (black arrow) indicate glycogen infiltration and (C) rats injectedwith vancomycin and resveratrol, liver-showedmarked improved on a
mononuclear cell, and decrease number of mononuclear inflammatory infiltrates (white arrow) and decrease of Mallory bodies (black arrow).
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2017). In addition, many tissues in the body contain ALP;
therefore, it can be considered a non-specific enzyme (López-
Posadas et al., 2011). Furthermore, hepatobiliary duct dysfunction
or the destruction of hepatic cell membranes can cause a rise in
serum ALP, which could indicate a problem with the excretory
function (Lowe et al., 2017; Kashima et al., 2018). On the other
hand, co-treatment of vancomycin with resveratrol protected
against vancomycin-induced hepatic damage, evidenced by the
significantly decreased levels of the hepatic serums AST, ALT,
and ALP.

It is well known that vancomycin is almost completely
eliminated from the body by the kidneys; however, the
mechanism by which nephrotoxicity occurs is still unclear. It
has been demonstrated in experimental animals that the drug
may cause tubular ischemia and acute tubulointerstitial injury by
inducing oxidative stress in the proximal renal tubule cells (King
and Smith, 2004; Gupta et al., 2011a). Here, vancomycin increased
the serum levels of IL-6 (a pro-inflammatory cytokine). The cell
surface receptors of the IL-6 family of cytokines regulate cell
function (Taga and Kishimoto, 1997). IL-6 consists of two
structural subunits: a ligand-binding subunit called the IL-6
receptor and a signal-transducing glycoprotein called Gp130
(Yamauchi-Takihara and Kishimoto, 2000). The liver
synthesizes several acute phase proteins in response to IL-6 as
it is involved in the pathogenesis of many fibrogenic diseases (Choi
et al., 1994). In recent studies, IL-6 has been linked to acute and
chronic liver damage (Cao et al., 1998; Gewiese-Rabsch et al., 2010;
Bergmann et al., 2017; Shao et al., 2020). In addition, many
xenobiotics drugs can injure the liver and trigger the release of
pro-inflammatory cytokines like TNF-α and IL6 into the
bloodstream (Takai et al., 2016; Olaniyan et al., 2018; Wu
et al., 2018). By demonstrating the changes in cytokines that
occur in hepatic cells, rodent models can illustrate the
molecular changes associated with human hepatic cell death. In
this study, we also tested the serum level of MDA, an oxidative
stress biomarker that serves as an index of oxidative damage in the
liver (Bakan et al., 2002). MDA has been reported to induce
collagen production by hepatic stellate cells, resulting in fibrosis
(Hadizadeh et al., 2017). Also, it has been reported that
vancomycin could initiate an intracellular production of
peroxides that triggers the production of MDA (Oktem et al.,
2005). Thus, in this study, the vancomycin-induced high serum
levels of MDA could be due to vancomycin’s free radical trapping
activity and oxidative stress.

GSH has several functions, including serving as an
antioxidant, and playing a role in redox and cell signaling
(Franco and Cidlowski, 2009; Mari et al., 2009). It acts by
reducing hydrogen peroxide, scavenging ROS, and reactive
nitrogen species (RNS); therefore, it protects cells against
oxidative damage (Day and Suzuki, 2005; Winter et al., 2017).
The build-up of an oxidized form of GSH, glutathione disulfide
(GSSG), and the depletion of GSH are closely related to ROS and
RNS effects on the liver and cells (Yuan and Kaplowitz, 2009;
Eskandari et al., 2012). Hepatic NO and its derivatives are
essential in liver physiology and pathophysiology (Laskin
et al., 2001; Chen et al., 2003; Diesen and Kuo, 2010). It is
also a second messenger that acts in several pathways and
plays a crucial role in regulating blood pressure by relaxing
the endothelium, attacking tumor cells, and stimulating the

brain (Gupta et al., 2011b; Korde Choudhari et al., 2013;
Picon-Pages et al., 2019). Although NO has multiple and
complex roles, it has been suggested that it affects the
pathogenesis and progression of liver diseases (Iwakiri and
Kim, 2015; Ekhlasi et al., 2017; Wang et al., 2018). On the
other hand, LDH (a non-specific tissue damage biomarker) was
elevated in vancomycin-treated animals. Numerous tissues and
organs in the body produce LDH, including the muscles, liver,
heart, pancreas, kidneys, brain, and blood. Body tissue damage
can be detected by using the LDH test, determining its location
and severity (Farhana and Lappin, 2022). In this study,
vancomycin administration causes liver damage, contributing
to LDH elevation in the serum. This elevation could arise from
vancomycin, causing damage to the kidneys. It has been reported
that vancomycin can cause kidney damage (Naghibi et al., 2007),
making this test a non-specific marker for liver damage.

Resveratrol is a natural compound extensively studied in
preclinical studies as a nutraceutical and therapeutic agent. In
addition, the antioxidant properties of resveratrol have been
demonstrated in a wide range of hepatic disorders (Pan et al.,
2017; Bircan et al., 2018). The antioxidant effect functions
mainly by reducing ROS and eliminating direct free radicals,
while improving the activity of endogenous antioxidant enzymes
superoxide dismutase, catalase, and GSH (Carrizzo et al., 2013;
de Oliveira et al., 2018). Furthermore, it has been reported that
resveratrol is involved in several vital pathways regulating de
novo fibrogenesis deposition in the liver (Hessin et al., 2017). For
example, resveratrol (10 and 20 mg/kg/day) was administered to
cirrhotic rats, where it reduced portal pressure, improved
vasodilatory acetylcholine responsiveness, and reduced the
production of thromboxane A2, resulting in liver tissue
regeneration (Di Pascoli et al., 2013; Zhang et al., 2016).

Globally, liver illnesses continue to be a severe health burden.
For the treatment of this category of disorders, new and secure
therapeutic options are required. This study shows that resveratrol
is a good alternative in this area. This approach could significantly
improve potential resveratrol therapeutic applications.
Understanding how resveratrol improves many liver disease
conditions may lead to novel treatment possibilities. For
example, resveratrol produces beneficial effects and reduces
possible toxic effects when combined with other medications
and substances. As a result, there is still future work to be done
because there are still significant gaps in our knowledge about this
chemical.
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