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Lipid metabolism disorders (LMD) can cause a series of metabolic diseases,
including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and
atherosclerosis (AS). Its development is caused by more pathogenic factors,
among which intestinal flora dysbiosis is considered to be an important
pathogenic mechanism of LMD. In recent years, the research on intestinal flora
has made great progress, opening up new perspectives on the occurrence and
therapeutic effects of diseases. With its complex composition and wide range of
targets, traditional Chinese medicine (TCM) is widely used to prevent and treat
LMD. This review takes intestinal flora as a target, elaborates on the scientific
connotation of TCM in the treatment of LMD, updates the therapeutic thinking of
LMD, and provides a reference for clinical diagnosis and treatment.
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1 Introduction

With the development of society and the improvement of living conditions, the
incidence of lipid metabolism disorders (LMDs) is increasing year by year and showing
a trend of rejuvenation, which seriously threatens human health. Abnormal lipid metabolism
is a pathological process of elevated blood lipid levels and ectopic lipid deposition caused by
genetic or acquired factors, and is an important risk factor for manymetabolic diseases. Lipid
metabolism is central to this process, and when lipid biosynthesis and degradation are
abnormal, or when lipoprotein synthesis, metabolism, and transport are impaired, this can
lead to disorders of lipid metabolism, contributing to hyperlipoproteinemia (Karr, 2017),
obesity (Aron-Wisnewsky et al., 2021), non-alcoholic liver disease (NAFLD) (Katsiki et al.,
2016), and atherosclerosis (Zhang et al., 2022b). Furthermore, dyslipidemia also has an effect
on other target organs such as the brain and kidneys (Ross, 1999). Therefore, it is crucial to
investigate the biological mechanisms underlying the development of LMD and to seek
effective therapeutic targets for effective regulation of lipid metabolism to prevent and
treat LMD.

The intestinal flora is an essential component of the intestinal micro-ecosystem and
controls numerous metabolic processes with the host immune system, such as energy
balance, glucose and lipid metabolism (Sonnenburg and Backhed, 2016). In recent years,
numerous studies have further elucidated the connection between intestinal flora and its
metabolites and LMD (Woting and Blaut, 2016; Jonsson and Backhed, 2017; Duttaroy,
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2021), finding that dysregulation of intestinal flora and its
metabolites contribute to the development of LMD (Ridaura
et al., 2013; Matey-Hernandez et al., 2018; Jia et al., 2021). LMD
can also be improved by altering the intestinal flora by fecal
transplantation or probiotic administration (Falcinelli et al., 2018;
Allegretti et al., 2020; Witjes et al., 2020). In addition, LMD can
affect intestinal flora homeostasis and have a negative impact on the
organism’s health. Numerous studies have shown that the intestinal
flora structure of animals with high-fat diet (HFD) -induced LMD is
altered, as evidenced by a decrease in intestinal flora diversity, a
reduction in Bacteroidetes, and an increase in Firmicutes,
Proteobacteria, and Verrucomicrobia (Tomas et al., 2016), or a
significant decrease in the abundance of beneficial bacteria like
Bifidobacterium and Lactobacillus (Wang B. et al., 2020).
Meanwhile, some key intestinal metabolites such as
lipopolysaccharides (LPS) (Cani et al., 2007b), bile acids (BAs)
(Gillard et al., 2022), short-chain fatty acids (SCFAs) (Wang G.
et al., 2021), branched-chain amino acids (BCAAs) (Nie et al., 2018)
and trimethylamine-N-oxide (TMAO) (Janeiro et al., 2018) were
discovered to play a role in the host’s lipid metabolism function.
Therefore, intestinal flora dysbiosis may take a significant part in the
progression of LMD, and reshaping the structure of intestinal flora
can contribute to correcting LMD.

Studies have found that Lipid-lowering drugs can treat LMD by
altering the intestinal flora. Simvastatin can alter the abundance and
diversity of intestinal flora from phylum to genus level, modulate the
downstream metabolic pathways of intestinal flora and ultimately
exert a hypolipidemic effect (Zhang S. et al., 2020). In another research
investigating the influence of intestinal flora on the atorvastatin’s
hypolipidemic effect, it was found that atorvastatin significantly
reduced serum levels of total cholesterol (TC) and low-density
lipoprotein (LDL) in mice with intact intestinal flora but did not
have the same effects inmice with depleted intestinal flora. Besides, we
observed changes in the abundance of several sphingolipids after
treatment with atorvastatin in mice with intact intestinal flora, which
was not present in mice with depleted intestinal flora, suggesting that
the lipid-lowering efficacy of atorvastatin also depends on the
composition of intestinal flora before treatment (Zimmermann
et al., 2020). However, in addition to the financial burden, long-
term use of statins may trigger side effects such as myopathy (muscle
pain or muscle weakness), hyperglycemia and liver enzyme
abnormalities (Bellosta and Corsini, 2018), limiting the treatment
options for patients. Therefore, it is crucial to provide patients with
therapies that are effective and have few side effects.

TCM has been practiced for several thousand years in China, and
now its use has expanded globally. TCM has a significant role in
improving human subhealth, controlling metabolism and preventing
major diseases. For a long time, TCMhas been playing a significant role
in improving metabolic disorders due to its multi-component and
multi-target properties (Zhang et al., 2014; Zhang H. Y. et al., 2021).
Research has revealed that TCM (natural medicine extracts and
Chinese herbal formulas) can significantly improve the components
andmetabolite function of intestinal flora, as well as help tomaintain of
intestinal flora homeostasis, thereby regulating lipid metabolism. For
example, baicalin improved HFD-induced abnormalities in glucose
and lipid metabolism via enhancing the number of bacteria that
produce SCFA (Ju et al., 2019). Poria cocos (Schw.) Wolf
[Polyporaceae; Poria] water insoluble polysaccharide (WIP)

improved markedly glucose and lipid metabolism in ob/ob mice,
and the underlying mechanism may be associated with increased
numbers of butyrate-producing bacteria Lachnospiracea and
Clostridium, elevated butyrate levels in the intestine, improved
intestinal barrier function, and activated the intestinal peroxisome
proliferator-activated receptor γ (PPAR-γ) pathway (Sun et al.,
2019). Si Miao Formula, a classic TCM formula, played an anti-
NAFLD role by altering the composition of intestinal flora,
especially by upping the proportion of Akkermansia muciniphila
and down-regulating the production of pro-inflammatory proteins
(Han et al., 2021). Resveratrol (RSV) inhibited TMAO production by
remodeling intestinal flora, depressed the enterohepatic farnesoid X
receptor/fibroblast growth factor 15 (FXR/FGF15) pathway, enhanced
BA hydrolase activity, and promoted the synthesis of hepatic BAs,
resulting in its anti-AS effects (Chen et al., 2016). On the other hand,
intestinal flora may convert effective ingredients of TCM in a variety of
ways to generate secondary metabolites, thus exerting the therapeutic
effects of TCM in regulating lipid metabolism-related pathways and
gene expression. It was found that treatment with Dingxin Recipes
(DXR) IV resulted in increased levels of metabolites related to fatty acid
metabolism, such as acetate and butyrate, downregulation of the Liver
X Receptor α/sterol regulatory element-binding protein 1 (LXR-α/
SREBP1) axis, decreased blood lipid levels, as well as suppression of
excessive cholesterol deposition in the aorta in HFD-fed mice (Zhang
et al., 2021c). Notably, lack of Blautia greatly reduced the cholesterol-
lowering efficacy of berberine (BBR), revealing that intestinal flora
plays a crucial part in BBR’s hypolipidemic impact (Wu et al., 2022).

In this review, we aimed to elucidate the role of intestinal flora
and its metabolites in the occurrence and prevention of LMDs, and
to systematically evaluate the multiple mechanisms involved in the
regulation of intestinal flora in the improvement of LMDs in TCM,
with the aim of providing new approaches for the prevention and
treatment of LMDs in TCM and evidence for the development of
novel anti-LMD drugs.

2 Relationship between intestinal flora
and LMD

A growing majority of research have revealed an interaction
between lipid metabolism and intestinal flora (Matey-Hernandez
et al., 2018; Aron-Wisnewsky et al., 2021). Dysbiosis of the intestinal
flora can disrupt lipid metabolism, and dyslipidemia can in turn
cause imbalances in intestinal flora, but the exact mechanisms
between the two remain to be investigated in depth. In recent
years, researchers have also identified intestinal flora metabolites
that may also be involved in regulating lipid metabolism, including
LPS, SCAFAs, BAs, TMAO (Liang et al., 2020; Zhou X. et al., 2021;
Jia et al., 2021). These metabolites derived from the intestinal flora
can act not only on the host local tissues, but also affect the host
endocrine and organ functions the in various ways (Figure 1).

2.1 The role of intestinal flora structure in the
development of LMD

Intestinal flora is an important influence on energy absorption
and metabolism, and a decrease in intestinal flora diversity is
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associated with an increased relative risk of LMD (Rastelli et al.,
2018). Studies have shown that the α diversity of intestinal flora in
high-fat rats is significantly reduced, as demonstrated through a
drop in the intestinal flora abundance and a decrease in the
structural stability of intestinal flora (Zhao J. et al., 2022). This
phenomenon is consistent with the findings on intestinal flora of
patients with LMD (Mu et al., 2020), but the specific composition of
intestinal flora in healthy and obese people is still debated (Kasai
et al., 2015). The human intestinal flora is mainly composed of
Firmicutes and Bacteroidetes, which account for more than 98% of
intestinal flora abundance and are involved in lipid and BA
metabolism to maintain energy balance in the host. Among
them, Firmicutes can induce hepatic steatosis via regulating fatty
acid inflow and lipogenesis (Chen Y. H. et al., 2019), while
Bacteroidetes can suppress obesity by promoting the catabolism
of BCAAs in brown adipose tissue (BAT) (Yoshida et al., 2021). In
addition, Bacteroidetes also produce bile salt hydrolase (BSH), which
hydrolyzes conjugated BAs and regulates BAs-mediated lipid
metabolism (Tian et al., 2019). Therefore, Firmicutes are
hypothesized to be positively correlated with LMD, and
Bacteroidetes are negatively correlated with LMD. A lower
Firmicutes/Bacteroidetes (F/B) ratio represents a healthier gut
microbial environment, and the risk of obesity and LMD may be
increased by an elevated F/B ratio (Magne et al., 2020). Firmicutes
were increased in the intestinal tract of obese individuals compared
to healthy individuals, and F/B ratio decreased with an increase in
Bacteroidetes and a decrease in Firmicutes following weight loss
treatment (Damms-Machado et al., 2015). Akkermansia is a mucus-
degrading bacteria that reverses HFD-induced increase in adiposity,
metabolic endotoxemia, and adipose tissue inflammation (Everard
et al., 2013). Bifidobacterium also promotes changes in lipid
metabolism and glucose homeostasis (Salazar et al., 2019). Long-

term HFD-induced changes in the structure of intestinal flora in
animal models, mainly in the form of a significant reduction in the
content of beneficial bacteria like Akkermansia, Bifidobacterium,
Lactobacillus, Blautia, and Faecalibaculum, which have the ability to
alleviate LMD (Shin et al., 2014; Wang B. et al., 2020). In another
study, a substantial growth in the abundance of Bacteroides and
Parabacteroides was found in hyperlipidemic rats (Zhao J. et al.,
2022). Bacteroides and Parabacteroides contain a large number of
conditionally pathogenic bacteria that can increase the risk of
infection. They can also produce acetic acid, which promotes
appetite and increases food intake by activating the
parasympathetic nervous system and promoting the release of
insulin and ghrelin, leading to elevated TG levels, liver and
muscle fat accumulation and the development of obesity-related
metabolic diseases (Perry et al., 2016). LMD influenced by changes
in the intestinal flora have been found extensively in animals and are
also largely reflected in humans (Maruvada et al., 2017). Therefore,
the management of LMD focused on the modulation of intestinal
flora structure is crucial.

2.2 The role of LPS in the development
of LMD

A normal intestinal mucosal barrier is fundamental for
maintaining intestinal function. One study indicates that the
pathophysiological root of LMD is a compromised intestinal
barrier (Schulz et al., 2014). Damage to the tight junction
proteins between intestinal epithelial cells, such as ZO-1,
Occludin and Claudin1, which are essential for the intestinal
mucosal barrier, leads to a rise in intercellular permeability and
the admission of bacteria, endotoxins, as well as macromolecules

FIGURE 1
The molecular mechanisms of intestinal flora involved in the development of Lipid metabolism disorders (LMD).
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into other tissues, organs or body circulation via the cellular bypass
pathway, resulting in metabolic endotoxemia, inflammation and
metabolic disorders (Zheng et al., 2022). LPS is the central aspect of
Gram-negative (G-) bacteria’s outermost layer of cell wall, and is an
important inflammatory stimulus that can cause severe damage to
the intestinal barrier and contribute to a chronic inflammatory
response in the body, leading to the development and
progression of metabolic diseases (Zhang-Sun et al., 2015). It has
been found that a HFD disrupts the structure of intestinal flora and
increases the abundance of LPS-producing bacteria, such as
Desulfovibrio, which further enhances intestinal permeability and
contributes to large amounts of LPS to enter the circulation from the
intestine, triggering metabolic endotoxemia (Cani et al., 2007a),
which is linked to the development of LMDs including dyslipidemia,
obesity, NAFLD and cardiovascular disease (Manco et al., 2010).
LPS can exacerbate lipid metabolism by binding to Toll-like receptor
4 (TLR4), a receptor expressed on macrophages, hepatocytes and
adipocytes, and inducing the secretion of pro-inflammatory factors
like interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-
1). Secretion, exacerbating lipid metabolic disorders (Robbins et al.,
2014). Furthermore, LPS increases intestinal permeability through
chronic inflammation mediated by MAPK or NF-κB pathways
(Zhou et al., 2018), triggering circulating metabolic endotoxemia
and leading to lipid dysfunction (Sultana et al., 2016). Myeloid
differentiation factor 88 (MyD88), a central adapter molecule for
most TLRs, regulates fat storage and inflammatory responses
(Everard et al., 2014), influences the activity of transcription
factors related to lipid metabolism and BA profiles, and is
involved in regulating the body’s inflammatory response and
lipid metabolism (Duparc et al., 2017). Additionally, LPS forms a
triple complex with CD14 and LPS-binding protein (LBP), which
activates the MyD88/NF-B pathway and increases the production of
numerous inflammatory proteins. Moreover, cluster of
differentiation 36 (CD36) is an important lipid absorption
regulator in the intestine, and its expression is mediated by
derivatives of Desulfovibrio and Clostridium. Loss of CD36 may
lead to excessive lipid accumulation and activation of inflammatory
factors, triggering the risk of LMD (Plociennikowska et al., 2015;
Petersen et al., 2019). Thus, chronic low-level inflammation in the
organism may be a key link in the pathogenesis of LMD, and
disorders of intestinal flora may also contribute to chronic
inflammation.

2.3 The role of SCFAs in the development
of LMD

SCFAs are metabolites derived from the fermentation of
undigested carbohydrates or proteins by intestinal flora and
include butyrate and acetate, propionate. Among them, butyrate
is primarily performed by Firmicutes, while acetate and propionate
are mostly generated by bacteria belonging to Bacteroidetes (Walker
et al., 2005), and they can play a crucial part in controlling host
appetite, lipid metabolism, inflammatory response, and
maintenance of energy balance through various pathways
(Sanchez et al., 2020). SCFAs, represented by butyric acid and
propionic acid, not only stimulate the release of leptin from
adipose tissue, suppressing hunger and reducing host feeding

activity (Naraoka et al., 2018), but also inhibit hepatic FAS
activity and reduce serum lipid (TG and TC) levels (Larkin et al.,
2009). As key regulators of host lipid metabolism, about 95% of
SCFAs are absorbed in the intestine or utilized by intestinal flora,
acting as important regulators of host lipid metabolism. These
molecules not only providing the host energy, but also acting as
signal transduction molecules to initiate G protein-coupled
receptors 43 and 41 (GPR43 and GPR41) in intestinal epithelial
cells. Activated GPR43 and GPR41 promote the secretion of peptide
tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1) from
enteroendocrine L cells, which reduce appetite, increase energy
release and inhibit adipocyte synthesis through the “brain-gut
axis” (Eslick et al., 2022). SCFAs also promote beige lipogenesis,
leading to enhanced fat oxidation and energy expenditure, a process
associated with the activation of GPR43 or GPR41 (Lu et al., 2016).
And butyric acid also improves serum lipid metabolism by
increasing fatty acid oxidation in brown adipose tissue (BAT)
through thermogenesis, significantly reducing serum TG levels
(Li Z. et al., 2018). In addition, SCFAs may also be involved in
lipid metabolism by regulating related pathways and gene
expression. For example, butyric acid downregulates the
expression of proliferator-activated receptor γ (PPARγ),
upregulates the expression of uncoupling protein 2 (UCP2),
promotes mitochondrial proton efflux, which in turn activates
the AMPK pathway, decreases lipid synthesis, and increases lipid
oxidation. Acetic acid decreases SREBP-1 expression and ATP
citrate lyase (ATP-CL) mRNA levels, decreases acetyl coenzyme
A supply, and contributes to a decrease in cholesterol and fatty
acid synthesis; it also enhances acyl-CoA oxidase (AOX) gene
expression, promotes fatty acid β-oxidation, and increases energy
expenditure (Fushimi et al., 2006). While another study
speculated that acetate regulation of lipid metabolism may be
associated with an increase in the AMPK/PGC-1α/PPARα axis
(Araujo et al., 2020). Additionally, SCFAs can regulate the
intestinal barrier and inflammatory levels and are indirectly
implicated in lipid metabolism regulation. According to
studies, SCFAs can elevate intestinal trans-epithelial resistance
and reduce LPS production, thereby upregulating tight junction
protein expression and mucin secretion, reducing intestinal
mucosal permeability and alleviating intestinal barrier
disorders (Zhao et al., 2018). Meanwhile, SCFAs inhibit the
expression of TNF-α/NF-κB inflammation-related genes,
reduce the secretion of pro-inflammatory molecules like IL-6
and IL-12, as well as increase the secretion of anti-inflammatory
molecules like IL-10 and IL-4, alleviating chronic inflammatory
response and avoiding the formation of hyperlipidemia (Chang
et al., 2014; Yuan et al., 2019).

2.4 The role of BAs in the development
of LMD

The synthesis of BAs is the main pathway of cholesterol
degradation and metabolism in humans, which is regulated by
intestinal flora. The majority of primary BAs are converted from
cholesterol by the enzymatic action of three cholesterol
hydroxylases, CYP7A1, CYP8B1 and CYP27A1 in the liver
(classical pathway), and a small proportion is processed by
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CYP27A1 and CYP7B1 in extrahepatic sites (alternative pathway).
Primary BAs, which including cholic acid (CA) and
chenodeoxycholic acid (CDCA), can bind to glycine or taurine to
form conjugated BAs like glycocholic acid (GCA),
glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA)
and taurochenodeoxycholic acid (TCDCA). The bile salt export
pump (BSEP) or ATP-binding cassette subfamily G member 5
(ABCG5)/ABCG8 subsequently actively transfers these
conjugated BAs into the bile, where they contribute to lipid
emulsification when the food enters the intestine (Jia et al.,
2018). The apical sodium-dependent bile acid transporter
(ASBT) reabsorbs around 95% of BAs from the intestine; The
apical sodium-dependent bile acid transporter (ASBT)
reabsorbs around 95% of BAs from the intestine; these are
subsequently released into the portal circulation by the
organic solute transporter α/β (OST α/β), which finally
transports them back to the liver (Vourakis et al., 2021).
Intestinal flora can reduce cholesterol levels by producing
BSH and CYP7A1, which decouple conjugated BAs into
unconjugated BAs including deoxycholic acid (DCA) and
lithocholic acid (LCA), preventing their reabsorption through
ASBT and promoting BAs excretion through the feces
(Wahlström et al., 2016). It is known that BSH-producing
bacteria include Bacteroides, Bifidobacterium, Clostridium,
Eubacterium and Lactobacillus, while Clostridium and
Eubacterium also possess 7α-dehydroxylation activity
(Vourakis et al., 2021). BAs can also act as signaling
molecules, such as conjugated BA T-βMCA, unconjugated
BAs CDCA and LCA, which regulate lipid metabolism by
interacting to the BA receptors like FXR and Takeda G
protein-coupled receptor 5 (TGR5) to regulate BA self-
synthesis, transport, as well as lipid digestion and absorption
(Schoeler and Caesar, 2019). In summary, BAs play an important
part in lipid metabolism homeostasis. Increasing intestinal BA
production can block the reverse cycle from BA to cholesterol; it
can also accelerate the transformation of cholesterol to BA,
lowering serum TC levels. It is worth noting that the
synthesis and excretion of BAs are related to the regulation of
intestinal flora.

2.5 The role of TMAO in the development
of LMD

Trimethylamine oxide (TMAO) is an intestinal flora-
dependent metabolite formed by the oxidation of
trimethylamine (TMA) in the liver by flavin-containing
monooxygenase (FMO), especially FMO3 (Chen Y. et al.,
2019). Studies have shown that serum TMAO levels are
determined by genetics, diet and intestinal flora, and may be a
biomarker of AS (Randrianarisoa et al., 2016; Canyelles et al.,
2018). Another observational study found that TMAO levels were
positively and significantly related with body mass index (BMI),
fatty liver index and visceral obesity index, and could be used as a
predictor of NAFLD and metabolic syndrome (Barrea et al.,
2018). Additionally, 8 consecutive weeks of supplementation
with a high TMAO diet may lead to elevated the levels of
plasma TC, TG and LDL-C and induce hyperlipidemia (Koeth

et al., 2013). Knockdown of FMO3 may downregulate circulating
TMAO levels and acts as a preventive measure against
hyperlipidemia (Miao et al., 2015). As a result, intestinal flora
metabolite TMAO is essential for lipid metabolism. The
underlying mechanism of TMAO-induced disruption of lipid
metabolism is unknown; however, it may be associated with host
cholesterol and BA metabolism. It has been investigated that
TMAO reduces the expression of CYP7A1 and CYP27A1, two
key enzymes necessary for the synthesis of BAs, and various BA
transport proteins, decreases BA biosynthesis, inhibits the
reverse cholesterol transport (RCT) pathway, and affects BA
metabolism and cholesterol homeostasis in the hepatic-
intestinal tract (Koeth et al., 2019). In turn, BAs can also lead
to an increase in serum TMAO by mediating the upregulation of
FMO3 expression by FXR (Bennett et al., 2013). Moreover,
TMAO is able to induce CD36 and scavenger receptor A1
(SR-A1), which are involved in stimulating macrophages to
bind ox-LDL, promoting macrophage foaminess and causing
intracellular cholesterol accumulation (Wang et al., 2011).
This process may also be mediated through MAPK and NF-κB
signaling pathways that promote vascular inflammation, one of
the earliest cellular signals in the atherosclerotic process (Ma
et al., 2017; Geng et al., 2018).

2.6 The role of intestinal flora and its
metabolites in the clinical monitoring and
treatment of LMD

Obesity, NAFLD and AS are frequently associated with LMD.
Therefore, for the efficient implementation of atherosclerotic
cardiovascular disease (ASCVD) preventive and treatment
methods, early diagnosis of dyslipidemia and monitoring changes
in its levels are key foundations.

Routine lipid testing to identify the “hidden” high-risk groups
will not only facilitate better treatment decisions, but more
importantly, it will provide early intervention for these high-risk
individuals or patients with LMD, so that they can have more
cardiovascular benefit. The basic items of clinical lipid
monitoring are TC, TG, LDL-C and HDL-C. It is noteworthy
that LDL-C is an important causative factor of ASCVD and has
an important significance in lipid monitoring. More and more
clinical laboratories are using ApoAⅠ, ApoB, and Lp(a) as routine
lipid testing items. In addition, the clinical testing items of oxLDL,
FFA and non-HDL-C are also receiving increasing attention. In
recent years, assays for intestinal flora and its metabolites have also
been increasingly used to assist in monitoring lipid levels. Usually
healthy people have low F/B ratio, while patients with LMD tend to
have high F/B ratio (Human Microbiome Project, 2012). The main
core of LMD such as hyperlipidemia is chronic low-level
inflammation in the body, which is also caused by intestinal
flora, often manifested as elevated serum LPS levels (Dai and Fu,
2019). SCFA is inversely correlated with lipid levels and can reduce
serum TG and TC levels by inhibiting FAS activity (Larkin et al.,
2009). BA is produced by cholesterol conversion, and its increased
synthesis and impaired transport frequently lead to the development
of LMD (Haeusler et al., 2016). Serum TMAO levels predict the risk
of cardiovascular disease and are closely related to the regulation of
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cholesterol (Chen et al., 2019). Therefore, the detection of intestinal
flora and its metabolites can also be used as a reference item for
clinical lipid monitoring, but it still needs to be combined with the
items of lipid testing for comprehensive assessment, so it is not yet
popular in the clinic.

Currently, the guidelines recommend three main classes of lipid-
lowering drugs (Du, 2022): 1) Statins, which reduce cholesterol
synthesis in hepatocytes mainly through competitive inhibition of
endogenous cholesterol synthesis rate-limiting enzymes, leading to a
significant decrease in blood cholesterol levels, and are the
cornerstone of primary prevention of ASCVD. 2) Ezetimibe,
which reduces cholesterol by inhibiting the absorption of
cholesterol in the intestinal tract. 3) Proprotein convertase
subtilisin/kexin type 9 (PCSK9) inhibitors, which lower
cholesterol levels by inhibiting the binding of PCSK9 to LDL
receptors and preventing LDL receptor degradation, are the most
potent cholesterol-lowering drugs available and have a good safety
profile, offering another option for high-risk patients who are statin
intolerant (Koren et al., 2019). The intestinal flora and its
metabolites serve as a key link in lipid metabolism, and the
therapeutic effect of lipid-lowering drugs may be related to the
regulation of intestinal flora. Statins were found to modulate the
abundance of SCFA, SBA, TMAO and LPS-producing intestinal
flora, which in turn affected AMPK-SREBP, FXR, PXR, FFAR2 and
TLR4-Myd88 signaling pathways, acting to regulate cholesterol
metabolism and LDL-C levels (Sun et al., 2022). In addition,
different statins, such as atorvastatin, simvastatin and
resevastatin, have different effects on different intestinal flora.
Desulfurization was negatively correlated with TG and HDL-C
levels, and desulfurization was significantly reduced after
ezetimibe intervention (Jin et al., 2022). Desulfovibrio was
considerably decreased following ezetimibe treatment and had a
negative correlation with TG and HDL-C levels (Jin et al., 2022).
PCSK9 inhibitors can promote the clearance of LDL-C and LPS
from the blood, regulate intestinal microecology, alleviate intestinal
inflammation and endotoxemia, and reduce the risk of
cardiovascular disease (Morelli et al., 2019). Furthermore,
probiotic supplementation alone was able to significantly reduce
plaque area in the full-length aorta and aortic sinus, lower plasma
TMAO and cecum TMA levels, improve lipid disorders, reduce
serum oxLDL and inflammatory factor levels in mice, increase
cecum acetate and butyric acid levels, and reduce inflammatory
responses in the aorta and liver of mice by inhibiting the levels of key
proteins in the TLR4/MyD88/NF-kB/NLRP3 pathway (Wang,
2022). In contrast, mice on diets supplemented with choline or
TMAO showed increased cholesterol levels in peritoneal
macrophages, elevated TMAO plasma levels, and enhanced aortic
atherosclerotic plaques (Wang et al., 2011). Thus, intestinal flora and
its metabolites also play an important role in the treatment of LMD,
but further studies are needed to validate this in order to maximize
the clinical benefits of drugs.

3 Mechanisms of regulating intestinal
flora in TCM for LMD

TCM is widely utilized to treat metabolic diseases in China. The
effective components of TCM can directly interact with the

intestinal flora once they enter the intestinal system by oral
administration and produce therapeutic effects. Studies have
shown that TCM (natural medicine extracts, Chinese herbal
formulas and proprietary Chinese medicines) can effectively
modify the host intestinal flora structure and its metabolite levels,
repair the intestinal mucosal barrier, reduce inflammatory
infiltration, as well as regulate lipid metabolism-related pathways
and genes expression to correct LMD (Dai and Fu, 2019). Therefore,
we systematically summarized the possible mechanisms involved in
TCM to modulate intestinal flora and its metabolites in order to
prevent and treat LMD (obesity, hyperlipidemia, NAFLD, and AS)
(Figure 2).

3.1 TCM remodels the structure of intestinal
flora to improve LMD

TCM treatment encourages the development of beneficial
intestinal bacteria by increasing the diversity of intestinal flora,
while inhibiting the growth of harmful bacteria (Ding K. et al.,
2019; Ling et al., 2022). It was found that intervention with Zexie
Tang (ZXT) (Xu et al., 2017), Shenlingbaizhu Powder (SLBZ)
(Hong, 2021), Ganoderma lucidum polysaccharide (GLP) (Sang
et al., 2021), G. lucidum polysaccharide and chitosan (PC) (Tong
et al., 2020), Pueraria lobata starch (PLS) (Yang Y. et al., 2022),
Luteolin (Liu, 2022), Naringin (Wang F. et al., 2020), Inulin (Bao,
2021; Cui et al., 2022), Epigallocatechin gallate (EGCG) (Zuo,
2020), RSV (Chen et al., 2016) greatly enriched the abundance of
Bifidobacterium in the intestinal tract; Modified Xiongdan
yinchen granules (MXYG) (Wu et al., 2021), Tian Huang
Formula (THF) (Pang, 2021), Tea seed saponins (Lin et al.,
2020), Kaempferol (Wang T. et al., 2020), Green Brick Tea
(Zhou T. T. et al., 2021) were able to upregulate the relative
abundance of Lactobacillus; the intervention of Yunpi Huazhuo
granules (YPHZ) (Kou et al., 2022), Qinggan Qushi Huoxie
prescription (QGQSHX) (Zhang X. Y. et al., 2022), Jiangzhi
Ligan Decoction (JZLG) (Tang et al., 2016), Modfied Yinchen
Wuling San (MYCWL) (Xu et al., 2019), Purple yam (Dioscorea
alata L.) resistant starch (PYRS) (Li T. et al., 2019) and PLS (Yang
Y. et al., 2022) also increased the abundance of intestinal
Bifidobacterium and Lactobacillus, resulting in an increase in
the proportion of beneficial bacteria and a corresponding
increase in its metabolites, such as acetate and lactate, thus
lowering the PH in the intestine and greatly inhibiting the
development of harmful bacteria such as Parabacteroides,
Desulfovibrio, Escherichiacoli, Enterococcus and Helicobacter.
Interestingly, we also found that Alistipes had a negatively
relationship with serum lipid profile, while PC (Tong et al.,
2020) and Porphyran (Wang X. et al., 2022) were able to
reduce lipid levels by upregulating the abundance of Alistipes.
Blautia was negatively correlated with visceral fat area, and the
number of Blautia was noticeably increased by Ilex pubescens
triterpenoid saponins (IPTS) (Ba et al., 2021) treatment.
Akkermansia was negatively correlated with inflammation
levels, while Alisma orientale extract (Li L. S. et al., 2019),
Jaboticaba peel and seed powder (JPSP) (Soares et al., 2021)
were able to elevate the relative abundance of Akkermansia and
reduce inflammation levels and lipid accumulation.
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Faecalibaculum, a SCFAs-producing bacteria, while Burdock
inulin (Wang, 2020) and Yinchenhao Decoction (Li Z. H.
et al., 2019) can upregulate the relative abundance of
Faecalibaculum to promote the production of SCFAs and
alleviate inflammation to improve lipid metabolism. In
contrast, the opposite result was observed after Caffeic acid
(Mu et al., 2021) treatment, which showed a decrease in the
abundance of Faecalibaculum. This suggests that it may be the
role of multiple intestinal flora in regulating lipid metabolism and
inflammation levels, and that Faecalibaculum may not be a core
flora.

In addition, the effectiveness of TCM in reversing the elevated F/
B ratio in animals with a HFD has been experimentally confirmed. It

was found that some natural medicine extracts, proprietary Chinese
medicines and Chinese herbal formulas reduce F/B ratio by
decreasing Firmicutes abundance and increasing Bacteroidetes
abundance, such as Guizhi Tang (GZT) (Yuan et al., 2021),
Naoxintong Capsule (NXT) (Lu et al., 2022), Huanglian Jiedu
Decoction (HLJD) (Jiang et al., 2021), Quyu Huatan Tongmai
Prescription (QYHTTM) (Miao et al., 2022), Danggui Shaoyao
San (DGSY) (Yu et al., 2021), Laminaria japonica polysaccharide
(LJP) (Zhang et al., 2021d), Porphyran-derived oligosaccharides
(PYOs) (Wang X. et al., 2021), Ethyl Acetate Extract of
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. [Araliaceae,
Acanthopanacis senticosi radix et rhizoma seu caulis] (Jia et al., 2022)
and Lonicera caerulea L. berry polyphenols (LCBP) (Wu et al., 2018).

FIGURE 2
Mechanisms of TCM in improving LMD by regulating the intestinal flora.
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In contrast, the abundance of Firmicutes and Bacteroidetes were not
mentioned after applying interventions such as Jieyu Qutan
Huazhuo Prescription (JYQTHZ) (Li N. et al., 2021; Li N. et al.,
2022), Shenerjiangzhi formulation (SEJZ) (Zhang et al., 2022c), Jian
Pi Tiao Gan Yin (JPTGY) (Dong et al., 2022), Shanmei (SM) Capsule
(Du et al., 2022), Tongxinluo (TXL) Capsule (Qi et al., 2022), Hugan
Qingzhi Tablet (HGQZ) (Tang et al., 2018; Tang, 2019), Compound
Danshen Dripping Pills (Zhang Y. Y., 2020), Jiangan Jiangzhi Pill
(JGJZ) (Zhao Z. et al., 2022), Jiangzhi Granules (JZG) (Wang R. R.
et al., 2021), Procyanidin B2 (PB2) (Xing et al., 2019), Resistant
starch (RS) (Shou, 2021), Tea polyphenol (TP) (Wang et al., 2018)
and Gynostemma pentaphyllum (Thunb.) Makino [Cucurbitaceae;
Gynostemmatis herba] (GP) (Huang et al., 2018), and only a
decrease in F/B ratio was reported. It has been suggested that
one of the pathways in which TCM regulates LMDs is through a
relative decrease in the F/B ratio of the intestine. However, it remains
to be further investigated exactly by which bacteria are regulated, or
which of the many genera affected by TCM have the greatest effect
on F/B ratio by alteration.

3.2 TCM restores intestinal barrier and
alleviates LPS-induced inflammation to
improve LMD

Studies have found that TCMs are effective in improving the
inflammatory response related to dyslipidemia, possibly by
maintaining intestinal barrier and reducing the release of
inflammatory factors. Some natural medicine extracts, proprietary
Chinese medicines and Chinese herbal formulas, such as Xiexin
Decoction (XXD) (Chen, 2021), Biejia Jian Wan (BJJW) (Qiu et al.,
2017), RSV (Yao, 2017) increased occludin mRNA expression;
Dengzhan Shengmai Capsules (DZSM) (Guo et al., 2022), Senna
tora (L.) Roxb. [Fabaceae; Cassiae semen] (ST) (Luo et al., 2021),
Astragalus mongholicus polysaccharides (mAPS) (Zhong M. et al.,
2022), Lycium barbarum polysaccharide (LBPs) (Gao et al., 2021),
Inulin (Perez-Monter et al., 2022), EGCG (Zuo, 2020), Usnea
diffracta Vain. [Usneaceae; U. diffracta] (UD) (Zhang L. D. et al.,
2021) and Momordica charantia L. [Cucurbitaceae; Fructus
momordicae] (MC) (Bai, 2019) also significantly enhanced
occludin and ZO-1 expression, thus significantly enhancing
intestinal barrier integrity. Huayu Qutan Formula (HYQT)
(Zheng et al., 2022), Gegen Qinlian Decoction (GGQL) (Liu,
2019), Diammonium glycyrrhizinate (DG) (Li Y. et al., 2018) and
GLP (Sang et al., 2021) significantly upregulated Claudin-1,
Occludin and ZO-1 expression, which repaired intestinal mucosal
barrier and prevented the development of chronic inflammation and
LMD. Moreover, WIP (Sun et al., 2019) and JZG (Wang R. R. et al.,
2021) elevated the expression of mucosal integrity protein Muc5 in
addition to ZO-1 and occluding has also been reported to increase
the expression of Muc2 and Muc4, maintain intestinal mucosal
integrity, and improve intestinal inflammation (Li W. et al., 2019).
Akkermansia, a mucin-degrading bacteria present in the mucosal
layer, it can produce certain enzymes that affect the expression of
mucins and tight junction proteins to regulate the intestinal barrier
function. RSV (Chen, 2019; Chen et al., 2020), BBR (Zhu et al., 2018)
and Rosa roxburghii Tratt polysaccharide (RTFP) (Zhang p. et al.,
2022) were able to enrich the abundance of Akkermansia, and

increase the colonic mucus layer thickness and intestinal tight
junction proteins expression, thus reducing intestinal
hypometabolic endotoxemia. Therefore, all of these TCMs can
enhance intestinal barrier integrity and reduce intestinal
permeability, thereby improving intestinal inflammation and
abnormal lipid metabolism.

The abundance of Desulfovibrio, a producer of LPS, was
positively correlated with inflammation and LMD. Danlou Tablet
(DLT) (Sun et al., 2020), DZSM (Guo et al., 2022), GQD (Liu, 2019),
SLBZ (Zhang et al., 2018), DG (Li Y. et al., 2018),
Chitooligosaccharide (COSM) (Feng et al., 2022), Rhizoma
Coptidis (RC) alkaloids (He et al., 2016), Baicalin (Liu, 2016),
Quercetin (Porras et al., 2017) and BBR (Xu, 2013) might
ameliorate LMD by decreasing the abundance of Desulfovibrio to
reduce LPS into the blood and inflammatory factors secretion.
Notably, DLT (Sun et al., 2020), Gastrodin (Liu F. Y. et al., 2021)
could downregulate the levels of inflammatory markers IL-1β,
ICAM-1 and TNF-α, favoring the reversal of periaortic
inflammation and reduction of plaque area in AS mice. By
reducing LPS levels, EGCG (Li, 2020; Zuo, 2020), Citrus Peel
Powder extract (CPP) (Wang H. et al., 2022), HGQZ (Tang
et al., 2018), Si Ni San (SNS) (Zhu et al., 2019), Rosa Laevigata
Michx. Fruits Polysaccharides (RLPs) (Zhang X. J., 2020), Honokiol
(Ding Y. et al., 2019), Fucoidan (Huang J. L., 2021) and ST (Luo
et al., 2021) were found to inhibit the excessive production of
inflammatory cytokines (mainly TNF-α, IL-6, IL-1β and MCP-1).
In contrast, Alisma orientalis Beverage (AOB) (Zhu, 2021), Chaihu
Shugan san (CHSG) (Xie et al., 2021), RSV (Chen, 2019), ST (Luo
et al., 2021), Zhibitai Capsule (ZBT) (Pan et al., 2020), Xiaoyao San
(XYS) (Zhou, 2020), JGJZ (Zhao Z. et al., 2022), Qinghua Fang
(QHF) (Wang Y. et al., 2021), RTFP (Zhang p. et al., 2022), LBPs
(Gao et al., 2021), Noni fruit polysaccharide (NFP) (Yang et al.,
2020), Inulin (Bao, 2021; Wang L. J. et al., 2021), Quercetin (Wu
et al., 2019), BBR (Wu et al., 2020), GP (Shen et al., 2020), CPP (Hu
et al., 2021), Paeonol (Pae) (Jiang, 2019) and Blackberry leaf and
fruit extracts (BLF) (Park et al., 2019) had effective antagonistic
effects on the secretion of pro-inflammatory factors (e.g., IL-6, IL-1β
and TNF-α) although the effects on LPS levels were not mentioned.
In addition to this, some natural medicine extracts also have a
promoting effect on anti-inflammatory cytokines IL-10, such as
RSV, LBPs, NFP, COSM, BBR and Inulin.

Numerous experimental studies have demonstrated that TCMs
achieve improvement of LMD by down-regulating inflammation-
related signaling pathways (Li, 2015). Huazhi-Rougan formula
(HZRG) (Li C. et al., 2022), DZSM (Guo et al., 2022), mAPS
(Zhong M. et al., 2022), Luteolin (Liu, 2022) and Myricetin (Sun
et al., 2021) markedly reduced metabolic endotoxemia and chronic
hypo-inflammation associated with LPS, downregulated
TLR4 mRNA and protein expression, inhibited IKKβ
phosphorylation, and prevented p65 NF-κB translocation to the
nucleus by modulating the TLR4/NF-κB pathway. CA (Mu et al.,
2021) decreased LPS/TLR4, an LPS-mediated inflammatory
pathway, and reduced TNF-α, IL-6 levels, thereby inhibiting
dysregulation of lipid metabolism. LBPs (Gao et al., 2021) and
COSM (Feng et al., 2022) inhibited indicators related to hepatic
LPS/TLR4/NF-κB signaling pathway and attenuated the level of
inflammation. HQT (Tang, 2019) and Compound Danshen
Dripping Pills (Zhang Y. Y., 2020) selectively targeted TLR4 and

Frontiers in Pharmacology frontiersin.org08

Liu et al. 10.3389/fphar.2023.1134430

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1134430


inhibited LPS-induced inflammatory mediator production by
attenuating the LPS/TLR4/MyD88 pathway. SLBZ (Zhang et al.,
2018) and polyphenol-rich loquat fruit extract (LFP) (Li W. et al.,
2019) also exhibited downregulation of the TLR4/MyD88 pathway
and its downstream molecules, thereby inhibiting the
overproduction of serum lipids. While, Qiang Gan formula
extract (QGE) (Li et al., 2020), GLP (Sang et al., 2021) and
EGCG (Zuo, 2020) regulated lipid metabolism-related processes
by reducing the expression of LPS, LBP, and CD14, inhibiting TLR4/
MyD88/NF-κB signaling pathway, reducing inflammatory factors
secretion, and improving endotoxemia. Si Miao Formula (SMF)
(Han et al., 2021), TXL (Qi et al., 2022) and Pae (Liu, 2021) inhibited
the expression of NLRP3 inflammatory vesicles and their
downstream factors including IL-18, IL-1β and caspase-1,
alleviated the inflammatory response and reduced lipid levels.
Furthermore, MC also inhibited LPS intestinal leakage, elevated
intestinal tight junction protein expression, and protected intestinal
mucosal integrity, which was associated with inhibition of the
intestinal NF-κB/JNK/MAPKs pathway (Bai, 2019). Notably,
Luffa cylindrica (L.) Roem [Cucurbitaceae; Luffa aegyptiaca
Miller] (LC) (Zhang et al., 2019) and Berberrubine (BRB) (Yang
S. et al., 2022) resulted in genes associated with hepatic lipid
metabolism expression reduction, including fatty acid synthase
(FAS), fatty acid synthesis protein (FABP), fatty acid transport
protein (FATP), SREBP-1c and CD36, thus acting to reduce lipid
levels.

3.3 TCM modulates the level of SCFAs to
improve LMD

Although the strong connection between intestinal flora, SCFAs
and LMDs are still unclear, an increasing number of studies have shown
that LMDs are directly correlated with both the number of SCFA-
producing bacteria and the level of SCFAs. To play its part in treating
LMDs, TCMcan control the prevalence of bacteria that produce SCFAs
and encourage the generation of SCFAs. LC (Zhang et al., 2019), DLT
(Sun et al., 2020), NXT (Lu et al., 2022), IPTS (Ba et al., 2022), LJP
(Zhang et al., 2021d), LBPs (Gao et al., 2021),Zanthoxylum bungeanum
Maxim. [Rutaceae; Zanthoxyli pericarpium] (ZB) (You, 2016), Ginkgo
biloba extract (GbE) (Wang Y. et al., 2022), Inulin (Bao, 2021; Wang L.
J. et al., 2021), NFP (Yang et al., 2020), TP (Wang et al., 2018), Bilberry
anthocyanins (Nakano et al., 2020) and COSM (Feng et al., 2022)
significantly improved serum lipid levels (TC, TG) as well as reducing
lipid accumulation, which may be associated with modifying intestinal
flora and increasing SCFAs levels. In-depth research revealed that
Compound Danshen Dripping Pills (Zhang Y. Y., 2020) and JZG
(Wang R. R. et al., 2021) intervention elevated the abundance of
Lachnospiraceae; Qingxin Jieyu Granule (QXJY) (Wang, 2019) and
water insoluble polysaccharide WIP (Sun et al., 2019) intervention
increased Clostridium abundance; Macroalgae Laminaria japonica
(MLJ) (Zhang Q. et al., 2020), Quercetin (Porras et al., 2017),
Myricetin (Sun et al., 2021), MC (Bai, 2019) and GLP (Sang et al.,
2021) administration improved the abundance of Allobaculum; Erchen
decoction (ECD) (Liu H. et al., 2021) and EGCG (Zuo, 2020)
administration enhanced the abundance of Roseburia; HGQZ
(Tang, 2019) and DG (Li Y. et al., 2018) treatment increased the
abundance of Ruminococcaceae; SLBZ (Hong, 2021) and DZSM (Guo

et al., 2022) administration enriched the abundance of Bifidobacterium,
Lactobacillus; Guanxinning Tablet (GXNT) (YangQ. et al., 2022), Black
tea polyphenols (BTP) (Henning et al., 2018) and RLPs (Zhang X. J.,
2020) treatment all increased the relative abundance of Prevotella; G.
pentaphyllum saponins (GPS) (Zhong F.W. et al., 2022) administration
enriched the abundance of Bacteroides. The above mentioned
Ruminococcaceae, Lachnospiraceae, Clostridium, Allobaculum,
Bifidobacterium, Lactobacillus, Prevotella, Roseburia, Bacteroides are
all SCFAs-producing bacteria. In addition, TCM can promote the
synthesis of key synthetic enzymes of SCFAs to elevate the level of
SCFAs, or mediate SCFAs to regulate energy metabolism and
inflammation-related pathways to improve LMD. GXNT treatment
was also found to promote the production of butyrate kinase,
propionate kinase, the key synthetic enzymes of SCFAs, thereby
increasing the levels of butyric acid and propionic acid (Yang Q.
et al., 2022). BTP treatment increased the level of SCFAs and
activated the AMPK signaling pathway to increase energy
expenditure, thus exerting a fat-lowering and weight-reducing effect
(Henning et al., 2018). WIP treatment enhanced intestinal butyric acid
levels, improved intestinal mucosal integrity, and regulated PPAR-γ
pathway in the intestine (Sun et al., 2019). Dingxin Recipe IV (DXR)
intervention promoted acetate, butyrate, propionate production,
inhibited LXR-α/SREBP1 pathway and improved lipid metabolism
(Zhang et al., 2021c). The mechanism through which GLP intervention
ameliorated LMD may be indirectly engaged in regulating lipid
metabolism by promoting the production of acetate and butyrate,
activating the GPR43 receptor and modulating the intestinal barrier
and inflammatory response (Sang et al., 2021).

3.4 TCM regulates BAs metabolism to
improve LMD

Studies have shown that GXNT (Yang Q. et al., 2022) and
Quercetin (Nie et al., 2019) can reduce serum or intestinal BAs
levels. HYQT (Sui et al., 2021b), HZRG (Li C. et al., 2022),
Proanthocyanidin (Fu et al., 2013), Theabrownins (Huang et al.,
2019), Radix scutellariae water extract (Zhao et al., 2021), ZB (You,
2016), GbE (Wang Y. et al., 2022), QGE (Li et al., 2020) and Pae (He,
2021) promoted the conversion of cholesterol to BA and significantly
increased the excretion of BA in feces. In-depth studies have revealed
that the hypolipidemic effects of TCM are closely related to the
modulation of BA synthesis and transport pathways. Among them,
HYQT can increase BA synthesis-related genes expression, upregulate
hepatic CYP7A1 expression, promote BA biosynthesis, and reduce
serum lipid levels (Sui et al., 2021b). XXD may be achieved
hypolipidemic effects by upregulating CYP8B1 expression (Lei,
2020), and Baicalein exhibited the same effects (Li P. et al., 2022).
HZRG aimed to reduce serum TC and TG levels mainly by decreasing
the expression of BA transporter-related genes ASBT andOSTβmRNA
and reducing the reabsorption of harmful BA such as LCA, DCA and
HCA (Li C. et al., 2022). QGE promoted BA transport in the liver by
increasing BSEP expression and hepatic TGR5 receptor expression to
attenuate the inflammatory response and regulate lipid metabolism in
the liver (Li et al., 2020). RC alkaloids reduced lipid and TBA levels
involving multiple BA receptor pathways, and were associated with
reduced ASBT expression and elevated CYP7A1 and TGR5 expression
(He et al., 2016). NXT decreased BSH enzyme activity, modulated the
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TABLE 1 Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Alisma orientalis
Beverage (AOB)

AS ApoE−/− mice 1. Serum TC, TG,
LDL-C↓

Firmicutes, Lactobacillus↓; Bifidobacterium,
Actinobacteria↑

1. Serum TMAO, FMO3↓; Zhu et al.
(2019)

2. Inflammatory: TNF-α, IL-
1β, L-6, IL-10, IL-17↓

Biejia Jian Wan (BJJW) NAFLD 1. Serum ALT,
AST, ALP↓

Bacteroidetes↓; Lactobacillus↑ 1. Intestinal barrier: Occludin
mRNA↑

Qiu et al.
(2017)

SD rats

Cangju Qinggan
Formula (CJQG)

NAFLD 1. Serum TC, TG, LDL-C,
ALT, AST↓, HLD-C↑;

Firmicutes↓; Verrucomicrobia,
Bacteroidetes↑

— Ling et al.
(2022)

SD rats 2. Hepatocyte fat
vacuoles, lipid droplet
deposition↓

Chaihu Shugan San
(CHSG)

NAFLD patients 1. BMI↓; Enterobacter, Enterococcus↓;
Bifidobacterium, Lactobacillus↑

1. Inflammatory: TNF-α, L-6,
IL-1β, TLR4, CAP, LSM↓

Xie et al.
(2021)

2. Serum TC, LDL-C,
ALT, AST↓, HDL-C↑

Danggui Shaoyao San
(DGSY)

NAFLD 1. Serum TC, TG, ALT,
AST↓, Liver TC, TG,
FFA↓;

F/B ratio, Firmicutes↓; Bacteroidetes↑ - Yu et al. (2021)

SD rats 2. Hepatocyte fat
vacuoles↓

Dingxin Recipe
IV (DXR)

AS ApoE−/− mice 1. Serum TC, TG, LDL-C,
HDL-C↑

Firmicutes, Erysipelotrichaceae,
Ileibacterium, Allobaculum↓; Bacteroides,
Muribaculaceae, Ruminococcaceae↑

1. SCFAs: Acetate, butyrate,
propionate, valerate, choline↑;

Zhang et al.
(2021)

2. BCAAs: alanine, glutamate
succinate↑;

3. Signaling pathway: LXR-α/
SREBP1↓

Erchen
Decoction (ECD)

NAFLD 1. BW↓; Firmicutes, Proteobacteria↓; Bacteroidetes,
Cyanobacteria, Verrucomicrobia,
Akkermansia, Alloprevotella, B. fragills,
Clostridium XIVa, Coprococcus, Prevotella,
Ruminococcus, Roseburia↑

1. Inflammatory: Serum LPS,
hepatic TLR-4, IL-1β, TNF-α,
NF-κB↓;

Liu et al. (2021)

C57BL/6J mice 2. Serum TC, TG, FFA,
ALT, AST↓;

2. Intestinal barrier: ZO-1,
Occludin, Claudin-3↑;

2. Liver lipid deposition↓ 3. Fecal SCFAs↑;

4. Signaling pathway: LPS/
TLR-4↓

Gegen Qinlian
Decoction (GGQL)

Hyperlipidemia 1. BW, Lee index↓; Tyzzerella, Anaerotruncus↓ - Jiang et al.
(2021)

SD rats 2. Serum TC, TG↓

Gegen Qinlian
Decoction (GGQL)

NAFLD 1. Serum TG, TC, LDL-
C↓;

Firmicutes, Proteobacteria, Desulfovibrio,
Butyricicoccus, Ruminococcaceae↓;
Bacteroidetes, Bacteroides↑

1. Inflammatory: LPS↓; Liu et al. (2021)

C57BL/6 mice 2. Hepatic steatosis↓ 2. Intestinal barrier: ZO-1,
Occludin, Claudin-1,
CX3CR1↑

Guizhi Tang (GZT) AS ApoE−/− mice 1. Atherosclerotic plaque
area↓

Firmicutes, Proteobacteria, F/B ratio↓,
Bacteroidetes, Verrucomicrobia↑

1. Inflammatory: TLR4,
CD36↓, Ly6C++, Ly6C−↑

Yuan et al.
(2021)

Huanglian Jiedu
Decoction (HLJD)

AS ApoE−/− mice 1. Hepatic steatosis,
Atherosclerotic plaque
area↓

Firmicutes, Proteobacteria, F/B ratio↓,
Bacteroidetes, Verrucomicrobia↑

1. Serum and liver MAO↓ Jiang et al.
(2021)

Huangqin
Decoction (HQD)

NAFLD 1. BW↓; Actinobacteria, Lactobacillus,
Bifidobacterium↓; unclassified-f-
Lachnospiraceae, Blautia, Eubacterium,
coprostanoligenes group, Ruminococcus↑

1. Signaling pathway: Amino
acid metabolism, carbohydrate
metabolism

Yang et al.
(2022)

SD rats 2. Serum TC, TG, LDL-C,
ALT, AST↓, HDL-C↑;

3. Hepatic steatosis↓

(Continued on following page)
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TABLE 1 (Continued) Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Huayu Qutan Formula
(HYQT)

AS ApoE−/− mice 1. Hepatocyte fat
vacuoles, lipid droplet
deposition↓

g_Eubacterium_xylanophilum_group, g
_Lachnospiraceae_UCG-006,
g_Rikenellaceae_RC9_gut_group,
Roseburia↓, Citrobacter, Bacteroides,
Shigella, Parabacteroides, Staphylococcus↑

1. Serum TMA, TMAO↓,
FMO3 mRNA and protein
expression↓

Sui et al.
(2021a)

Huayu Qutan Formula
(HYQT)

AS ApoE−/− mice 1. Serum TC, TG,
LDL-C↓

Lactobacillus↓, Bacteroides, Clostridium↑ 1. BAs: Fecal BAs↑, ileal BAs↓,
ileal CA, DCA, TCA, TDCA↓;

Sui et al.
(2021b)

2. Signaling pathway: ileal FXR,
FGF-15 mRNA↓, Liver
CYP7A1 mRNA↑

Huayu Qutan Formula
(HYQT)

AS ApoE−/− mice - Bacteroidaceae, Staphylococcaceae, Bacillales,
Enterococcaceae, Lactobacillales, Bacilli,
Enterobacteriaceae, Enterobacteriales,
Gammaproteobacteria↑

1. Inflammatory: LPS↓; Zheng et al.
(2022)

2. Intestinal barrier: ZO-1,
Occludin, Claudin1 mRNA
and protein expression↑

Huazhi-Rougan
Formula (HZRG)

NAFLD C57BL/6J
mice

1. Liver TG, serum ALT
and AST levels↓

Lactobacillaceae, Bifidobacteriaceae,
Clostruduaceae, Chostridiales VadinBB60,
Corynebacteriaceae, Solanales,
Propionibacteriaceae, Micrococcaceae, and
Satphylococcaceae↑

1. Inflammatory: serum TNF-
α↓, liver p-P65, F4/80↓, liver
TNF-α, IL-1β mRNA↓;

Li et al. (2022)

2. BAs: Fecal LCA, HCA,
βDCA↑; serum LCA, DCA,
HCA↓;

3. BA-related receptor e
expression: ASBT, OSTβ
mRNA↓;

4. Intestinal barrier: ZO-1,
Occludin, Claudin-2↑;

5. Signaling pathway: BA
biosynthesis; BA transporters,
TLR4/NF-kB p65 pathway

Jian Pi Tiao Gan Yin
(JPTGY)

Obesity C57BL/
6 mice

1. Serum TC, TG, LDL-
C↓, HDL-C↑

Proteobacteria, F/B ratio↓; Lachnospiraceae
NK4A136 group, Oscillibacter, Turicibacter,
Clostridium sensu stricto 1, Clostridiaceae 1,
Erysipelotrichia, Erysipelotrichales,
Erysipelotrichaceae, Parvibacter,
gut_metagenome, Intestinimonas↑

1. Signaling pathway: linoleic
acid metabolism paths, alpha-
linolenic acid metabolism
paths, glycerophospholipid
metabolism paths, arachidonic
acid metabolism paths,
pyrimidine metabolism paths

Dong et al.
(2022)

Jiangzhi
Granules (JZG)

NAFLD C57BL/
6 mice

1. BW↓; F/B ratio, Desulfovibrionaceae↓; S24_7,
Lachnospiraceae, Bifidobacteriaceae↑

1. Inflammatory: Hepatic
CD14, TLR2, TLR4, NLRC4,
MCP-1↓

Wang et al.
(2021)

2. Serum TC, TG, FFA,
ALT↓;

2. Oxidative stress: SOD↑,
MDA↓;

2. Hepatic steatosis, liver
lipid deposition↓

3. Intestinal barrier: ZO-1,
Occludin, Muc5↑;

4. SCFAs: Total SCFAs↑;

5. Signaling pathway: BA
secretion, PPAR↑

Jiangzhi Ligan
Decoction (JZLG)

NAFLD 1. BW, liver weight, liver
index↓

Escherichiacoli↓, Lactobacillus↑ — Tang et al.
(2016)

SD rats

Jianpi Huazhuo
Tiaozhi Granule
(JPHZTZ)

AS ApoE−/− mice 1. Atherosclerotic
plaques area↓;

Turicibacter, Desulfovibrio, Alistipes↓ 1. Serum TMAO↓; Huang et al.
(2019)

2. Serum TC, TG,
LDL-C↓

2. Inflammatory: TNF-α, L-6↓;

3. Signaling pathway: FXR/
FGF15 Axis↓, CYP7A1↑

(Continued on following page)
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TABLE 1 (Continued) Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Liqi Huatan Quyu
Decoction (LQHTQY)

Hyperlipidemia 1. Serum TC, TG, LDL-
C↓;

Firmicutes↓; Bacteroidia, Actinobacteria,
Clostridia, Paraprevotella↑

— Ding et al.
(2019)

Golden hamster 2. Hepatic steatosis↓

Modfied Yinchen
Wuling San (MYCWL)

NAFLD patients 1. Serum ALT, AST↓ Escherichiacoli, Staphylococcus↓;
Bifidobacterium, Lactobacillus,
Bacteroidetes↑

— Xu et al. (2019)

Modified Xiongdan
yinchen Granules
(MXYG)

NAFLD 1. Serum TC, TG, LDL-C,
ALT, AST↓, HDL-C↑

Verrucomicrobia, Phascolarctobacterium,
Brautella↓; Clostridium, Lactobacillus,
Bacteroides, Lachnospira↑

1. Intestinal barrier: Intestinal
permeability, FITC-D↓

Wu et al.
(2021)

SD rats

Qiang Gan Formula
extract (QGE)

NAFLD 1. Liver weight↓; Bacteroides, Clostridia↑ 1. Inflammatory: IL-1β, TNF-α
mRNA↓;

Li et al. (2020)

C57BL/6 mice 2. Serum TC, AST, ALT↓ 2. BAs: Serum and liver BA↓,
Serum TDCA, TLCA↓, fecal
α+ω MCA, LCA↑;

3. Signaling pathway: TLR4/
MyD88/NF-κB↓, TGR5, BSEP,
MRP2 mRNA↑

Qinggan Qushi Huoxie
Prescription
(QGQSHX)

NAFLD — Escherichiacoli, Enterococcus↓;
Bifidobacterium, Lactobacillus↑

— Zhang et al.
(2022)

SD rats

Qinghua Fang (QHF) NAFLD 1. BW↓; Clostridium glycyrrhizinilyticum↓;
Flintibacter butyricus, Blautia↑

1. Inflammatory: IL-6, IL-8,
TNF-α, IL-17↓

Wang et al.
(2021)

Wistar rats 2. Serum TG, AST, ALT↓;

3. Liver lipid deposition↓

Qingxin Jieyu Granule
(QXJY)

AS ApoE−/− mice 1. Atherosclerotic
plaques area↓;

Akkermansia, Lachnospiraceae, Blautia,
Clostridium↑

1. Inflammatory: IL-1β↓; Wang (2019)

2. Serum TC, TG, LDL-
C↓, HDL-C↑

2. SCFAs: Butyric acid, ISO-
VA, 4-MEVA in urine↑

Jieyu Qutan Huazhuo
Prescription
(JYQTHZ)

Hyperlipidemia 1. Serum TC, TG, LDL-
C↓, HDL-C↑;

Erysipelotrichales↓; Bacteroidia,
Ruminococcaceae, Bacteroides S24-7,
Rumencoccus UCG-005↑

— Li et al. (2021)

Wistsr rats 2. Hepatic steatosis↓, Ileal
structural integrity↑

Jieyu Qutan Huazhuo
Prescription
(JYQTHZ)

Hyperlipidemia 1. BW↓; F/B ratio↓; Bacteroidia↑ — Li et al. (2022)

Wistsr rats 2. Serum TC, TG, LDL-
C↓, HDL-C↑

Quyu Huatan Tongmai
Prescription
(QYHTTM)

Hyperlipidemia 1. Serum TC, TG, LDL-
C/HDL-C↓

Firmicutes, F/B ratio,
Coriobacteriaceae_UCG_002↓;
Proteobacteria, Deferribacteres,
Bacteroidetes, Bacteroidaceae,
Porphyromonadaceae, Rikenellaceae,
Clostridiales_vadinBB60_grou, Family_ⅩⅢ,
Lachnospiraceae, Desulfovibrionaceae,
Bacteroides, Barnesiella, Odoribacter,
Rikenellaceae_RC9_gut_group,
Family_ⅩⅢ_AD3011_group, Acetatifactor,
Coprococcus_1,
Lachnospiraceae_FCS020_group, Roseburia,
Oscillibacter, Ruminococcaceae_UCG_005,
Desulfovibrio, Anaerotruncus,
Ruminiclostridium_9,
Ruminococcaceae_NK4A214_group↑

— Miao et al.
(2022)

Golden hamster

Shenerjiangzhi
Formulation (SEJZ)

Hyperlipidemia 1. BW, serum TC, TG,
LDL-C↓, serum HDL-C↑

Firmicutes/Bacteroidetes (F/B) ratio,
Ruminococcus, and Oscillospira↓;
Akkermansia, Allobaculum, Prevotella,
Lactobacillus, Roseburia,
Phascolarctobacterium, Blautia,
Coprococcus↑

1. Signaling pathway: African
trypanosomiasis pathway↑

Zhang et al.
(2022)

SD rats

(Continued on following page)
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TABLE 1 (Continued) Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Shenling baizhu
Powder (SLBZ)

NAFLD 1. BW↓; Verrucomicrobia, Blautia, Roseburia,
Phascolarctobacterium, Desulfovibrio↓;
Actinobacteria, Cyanobacteria,
Bifidobacterium, Anaerostipes,
Akkermansia↑

1. Inflammatory: LPS, IL-1β,
TNF-α, TLR-4↓;

Zhang et al.
(2018)

SD rats 2. Serum TC, AST, ALT↓,
Hepatic TC, TG↓;

2. Signaling pathway: TLR4/
MyD88/TRAF6↓, NLRP3↓,
GPR43↑

2. Hepatic steatosis↓

Shenlingbaizhu
Powder (SLBZ)

NAFLD 1. Serum ALT, AST, TC,
TG, LDL-C, HDL-C,
TBIL↓

Helicobacter, Lachnospiraceae UCG-008↓;
Lachnospiraceae NK4A136 group,Dubosiella,
Bifidobacterium, Lactobacillus↑

1. SCFAs: propionic, butyric
acid↑

Hong (2021)

C57BL/6 mice

Si Miao
Formula (SMF)

NAFLD 1. BW, liver weight,
eWAT weight↓;

Firmicutes↓; Verrucomicrobia,
Proteobacteria, Akkermansia,
Bifidobacterium, Faecalibaculum↑

1. Inflammatory: IL-1β,
NLRP3↓

Han et al.
(2021)

C57BL/6 mice 2. Serum TC, LDL-C↓,
Liver TG↓;

3. Hepatic steatosis↓

Si Ni San (SNS) NAFLD 1. BW, Liver index↓; Oscillospira, Ruminococcaceae, Clostridiales,
Clostridia↑

1. Inflammatory: LPS, TNF-α↓ Zhu et al.
(2019)

C57BL/6 mice 2. Serum ALT↓,
Liver TC↓

Tanyutongzhi Formula
(TYTZ)

AS LDLr−/− mice 1. Atherosclerotic
plaques area↓;

— 1. Serum TMAO, sVCAM-
1↓, NO↑

Wang et al.
(2018)

2. Serum TC, TG, LDL-
C↓, HDL-C↑

Tian Huang
Formula (THF)

Hyperlipidemia
C57BL/6J mice

1. Serum and liver
TC, TG↓

Proteobacteria, Actinobacteria, Escherichia,
Enterobacteriaceae, Ruminococcaceae,
Lachnospiraceae↓, Akkermansia and
Bacteroides↑

1. BAs: DCA, CDCA, LCA↓,
T-βMCA↑;

Yang et al.
(2022)

2. BSH↓;

3. Signaling pathway: FXR/
FGF15, FXR/SHP↓, CYP7A1↑

Tian Huang
Formula (THF)

NAFLD 1. Serum TC, TG, LDL-
C↓, Liver AST, ALT↓

Lactobacillus↑ 1. Oxidative stress: GSH,
SOD↑, MDA↓; 2. Signaling
pathway: Nrf2↓

Pang (2021)

C57BL/6J mice

Tongmai Zhuyu
Decoction (TMZY)

AS Wistar rats 1. BW↓; Blautia↓, Allobaculum↑ 1. Inflammatory: IL-4↑, IFN-γ,
hs-CRP, IFN-γ/IL-4 ratio↓;

Ji et al. (2020)

2. Serum TC, TG, LDL-
C↓, HDL-C↑;

2. TMAO↓;

3. Platelet aggregation↓; 3. Immunoregulatory factors:
TGF-β, FOXP3↑, VCAM-1,
HMGB-1↓

4. Atherosclerotic plaque
area↓

Xiangsha Liujunzi
Decoction (XSLJZ)

Hyperlipidemia 1. Serum TC, TG, LDL-
C↓, serum HDL-C↑;

— 1. Serum TMA, TMAO↓; 2.
Signaling pathway: TMAO/
PERK/FOXO1 signaling
Pathway↓, FMO3, PERK,
FOXO1, MTP, Apoc-Ⅲ, ApoB,
VLDLr mRNA and protein
expression↓

Wang et al.
(2022)

SD rats 2. Hepatocyte steatosis,
fat vacuoles↓

Xiaoyao San (XYS) NAFLD 1. Serum ALT, TBIL↓,
AKP, TBA↑

Muribaculaceae↓; Faecalibaculum↑ 1. Inflammatory: TNF-α,
IL-1β↓

Zhou et al.
(2021)

C57BL/6J mice

(Continued on following page)
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TABLE 1 (Continued) Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Xiexin
Decoction (XXD)

AS ApoE−/− mice 1. BW↓; Desulfovibrio,
Lachnospiraceae_NK4A136 group,
Eubacterium_xylanophi lum group↑

1. Inflammatory: TNF-α↓; Chen et al.
(2020)

2. Atherosclerotic
plaques area↓;

2. Intestinal barrier: Occludin
mRNA↑;

3. Serum TC, LDL-C↓ 3. BAs: UDCA, TCDCA↓;

4. BAs -related receptor e
expression: CYP8B1, LXR
mRNA↑

Xiexin
Decoction (XXD)

AS ApoE−/− mice 1. Atherosclerotic
plaques area↓;

Erysipelotrichaceae, Coriobacteriaceae↓;
Ruminococcaceae↑

1. Inflammatory: TLR4 mRNA,
IL-12↓

Lei (2020)

2. Serum TC, LDL-C↓

Yinchenhao Decoction NAFLD SD rats — Firmicutes, Actinobacteria, Proteobacteria,
Aggregatibacter, Clostridium, Prevotella,
Staphylococcus, Streptococcus↓; Bacteroidetes,
Bifidobacterium, Christensenella,
Desulforibrio, Dorea, Faecalibacterium,
Oscillospira, Paraprevotella, Psychrobacter,
Rothia, Ruminococcus, Sutterella↑

1. Signaling pathway:
Glycerophospholipid
metabolism, purine
metabolism, glutathione
metabolism

Li et al. (2019)

Yunpi Huazhuo
Granules (YPHZ)

NAFLD patients 1. Serum TC, TG, LDL-
C↓, HDL-C↑

Escherichiacoli, Enterococcus↓;
Bifidobacterium, Lactobacillus↑

— Kou et al.
(2022)

Zexie Tang (ZXT) Hyperlipidemia 1. Serum TC, TG,
LDL-C↓

Firmicutes, Phascolarctobacterium,
Morganella, Proteus, Providencia↓;
Bacteroidetes, Bifidobacterium↑

— Xu et al. (2017)

SD rats

Compound Danshen
Dripping Pills

NAFLD 1. Liver lipid deposition↓ F/B ratio↓; norank-f-Lachnospiraceae↑ 1. Inflammatory: LPS, TNF-α,
IL-6, IL-1β↓;

Zhang et al.
(2020)

KKAy mice 2. SCFAs: Hexanoic acid,
isohexanoic acid, butyric acid↑;

3. Signaling pathway: TLR4/
MyD88/NF-κB↓

Danlou Tablet (DLT) AS ApoE−/− mice 1. Serum TC, TG, LDL-
C↓;

Bacteroidetes, F/B ratio, Desulfovibrio,
Lachnoclostridium, Alistipes, Lactococcus↑

1. Inflammatory: LPS↓, TLR4,
TNF-α, ICAM-1, IL-1β
mRNA↓;

Sun et al.
(2020)

2. Hepatic steatosis,
Atherosclerotic plaque
area↓

2. SCFAs: Butyric acid↑

Dengzhan Shengmai
Capsules (DZSM)

NAFLD Golden
hamsters

1. Serum CHO, TG, LDL-
C, ALT↓, Liver TG↓;

Firmicutes, Desulfobacterota,
Lachnospiraceae, Desulfovibrionaceae,
Oscillospiraceae, Desulfovibrio,
Oscillibacter↓; Bacteroidota,
Actinobacteriota, Muribaculaceae,
Lactobacillaceae, Bifidobacteriaceae,
Lactobacillus, Bifidobacterium,
Allobaculum↑

1. SCFAs: Acetic acid,
propionic acid, butyric acid↑;

Guo et al.
(2022)

2. Intestinal barrier: ZO-1,
Occludin↑;

2. Hepatocyte fat
vacuoles, lipid droplet
deposition↓

3. Inflammatory: LPS, TLR4,
Ikkβ↓;

4. Signaling pathway: TLR4/
NF-κB↓

(Continued on following page)
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TABLE 1 (Continued) Therapeutic effects of Chinese herbal formulas and proprietary Chinese medicines on LMD.

Intervention Model Outcome Changes in intestinal flora Potential mechanism References

Guanxinning Tablet
(GXNT)

AS Tibetan
minipigs

1. Serum TC, LDL-C↓,
HDL-C↑;

Proteobacteria, Enterobacteriaceae,
Escherichia↓; Prevotellaceae, Prevotella↑

1. Inflammatory: ox-LDL,
CRP, TNF-α, IL-1β, NF-κB,
MMP-9↓;

Yang et al.
(2022)

2. Oxidative stress: SOD↑,
MDA↓;

3. SCFAs: Fecal propionic acid,
butyric acid↑;

2. Lipid deposition,
atherosclerotic plaques
area↓

4. BAs: CDCA↓;

5. Fecal TMA, TMAO↓;

6. Signaling pathway: BA
metabolism, acetate kinase
production, lipopolysaccharide
biosynthesis↓, SCFA transport,
butyrate kinase production,
propionate kinase production↑

Hugan Qingzhi Tablet
(HGQZ)

NAFLD 1. Serum TC, TG, LDL-
C↓, HDL-C↑

F/B ratio, Staphylococcus, Streptococcus,
Holdemanella, Blautia↓;
norank_f_Bacteroidales_S24_7_group,
Ruminococcaceae, Bifidobacterium, Alistipes,
Cronobacter, Anaeroplasma, Bilophila↑

1. Inflammatory: LPS, TNF-α,
IL-6, IL-1β↓

Tang et al.
(2018)

C57BL/6J mice

Hugan Qingzhi Tablet
(HGQZ)

NAFLD C57BL/6J
mice

1. Serum TC, TG, LDL-
C↓, HDL-C↑

F/B ratio, Cronobacter, Streptococcus,
Holdemanella, Blautia↓;
norank_f_Bacteroidales_S24_7_group,
Ruminococcaceae, Bifidobacterium, Alistipes,
Anaeroplasma↑

1. Inflammatory: LPS, TNF-α,
IL-6, IL-1β↓;

Tang et al.
(2018)

2. Intestinal barrier: claudin-1,
ZO-1↑;

3. SCFAs: Total SCFAs, Acetic,
propionic, isobutyric, butyric,
valeric, isovaleric, capric acid↑;

4. Signaling pathway: TLR4/
MyD88/NF-κB↓

Jiangan Jiangzhi Pill
(JGJZ)

NAFLD SD rats 1. Serum TC, TG, ALT,
AST↓; 2. Liver lipid
deposition↓

F/B ratio↓ 1. Inflammatory: IL-6, IL-1β,
TNF-α↓

Zhao et al.
(2022)

Naoxintong
Capsule (NXT)

Hyperlipidemia
SD rats

1. BW, serum TC, TG,
LDL-C, liver TC, TG and
liver index↓, serum
HDL-C↑

Firmicute, F/B ratio, [Ruminococcus]
gauvreauii group, Collinsella, Romboutsia,
Romboutsia ilealis↓; Bacteroidetes↑

1. SCFAs: Fecal total SCFAs,
acetic acid, Propionic acid,
Butyric acid↑;

Lu et al. (2022)

2. BSH↓;

3. BAs: Fecal unconjugated
BAs, Total BAs↓;

4. Signaling pathway: pentose
phosphate pathway↑

Shanmei Capsule (SM) Hyperlipidemia 1. Serum TC, TG,
LDL-C↓

F/B ratio, Lachnospiraceae NK4A136 group,
Lachnospiraceae NK4B4 group↓

- Du et al. (2022)

C57BL/6 mice

Tongxinluo
Capsules (TXL)

AS New Zealand
white rabbits

1. Abdominal aorta
plaques vulnerability
index↓

F/B ratio, Ruminococcus, albus↓; Bacteroides,
Alistipes, Campylobacter, Rikenella,
indistinctus, viscericola, nordii,
subantarcticus↑

1. Inflammatory: NLRP3,
caspase-1, TNF-α, IL-1β, IL-
18↓;

Qi et al. (2022)

2. Other metabolite: trans-
ferulic acid↑;

3. Signaling pathway:
NLRP3 inflammatory
pathway↓

Zhibitai Capsule (ZBT) NAFLD patients 1. Serum TC, TG,
ALT, AST↓

Escherichiacoli, Enterococcus,
Staphylococcus↓; Bifidobacterium,
Lactobacillus, Bacteroidetes↑

1. Intestinal barrier: ET, DAO,
PCT↓;

Pan et al.
(2020)

2. Inflammatory: TNF-α, IL-6↓
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TABLE 2 Summary of TCM prescriptions used in clinical trials.

Name Dosage
form

Research
design

Grouping and number of
people

Treatment method Treatment Quality control
reported

References

Treatment
group

Control
group

Treatment group Control group Duration

Chaihu Shugan
San (CHSG)

Granules Randomized
controlled trial

40 40 BYHWD (1 prescription/day,
twice/day)

Placebo (1 prescription/day,
twice/day)

12 weeks Prepared according to China
Pharmacopoeia

Xie et al.
(2021)

Modfied Yinchen
Wuling San
(MYCWL)

Decoction Randomized
controlled trial

56 57 MYCWL (1 prescription/day, twice/
day) + Polyene Phosphatidylcholine
Capsules (3 times/day, 2 capsules for
each time) + Live Combined Bacillus
Subtilis and Enterococcus Faecium
Enteric-coated Capsules (3 times/
day, 2 capsules for each time)

Polyene Phosphatidylcholine
Capsules (3 times/day, 2 capsules for
each time) + Live Combined Bacillus
Subtilis and Enterococcus Faecium
Enteric-coated Capsules (3 times/
day, 2 capsules for each time)

12 weeks Prepared according to China
Pharmacopoeia

Xu et al. (2019)

Yunpi Huazhuo
Granules (YPHZ)

Granules Randomized
controlled trial

50 50 YQHZ (1 prescription/day) +
Metformin (3 times/day, 250 mg for
each time)

Metformin (3 times/day, 250 mg for
each time)

2 months Prepared according to China
Pharmacopoeia

Kou et al.
(2022)

Zhibitai
Capsule (ZBT)

Capsule Randomized
controlled trial

38 38 ZBT (twice/day, 2 capsules for each
time)

Polyene Phosphatidylcholine
Capsules (3 times/day, 2 capsules for
each time)

4 months Purchased from Chengdu
Diao Jiuhong
Pharmaceutical Factory

Pan et al.
(2020)
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TABLE 3 Summary of TCM prescriptions used in animal experiments.

Name Dosage
form

Model Treatment method and sample size Treatment Quality control
reported

Chemical
analysis

References

Treatment group Negative control
group

Positive control
group

Duration

Alisma orientalis
Beverage (AOB)

Decoction AS mice induced by HFD
(8 weeks)

AOB (3.25/6.5 g/kg/day)
by gavage (n = 10/10)

The same volume of
saline by gavage
(n = 10)

Atorvastatin (1.3 mg/kg/day)
by gavage (n = 10)

8 weeks Prepared according to
China Pharmacopoeia

HPLC Zhu et al.
(2019)

Biejia Jian Wan (BJJW) Powder NAFLD rats induced by
HFD (7 weeks) +
CCl4 olive oil solution
(7th weeks)

BJJW (0.6/1.2/2.4 g/kg/
day) by gavage (n = 10/
10/10)

0.5% CMC-Na
(0.01 mL/g/day) by
gavage (n = 10)

Rosiglitazone (3 mg/kg) by
gavage (n = 10)

4 weeks Prepared according to
China Pharmacopoeia

- Qiu et al.
(2017)

Cangju Qinggan
Formula (CJQG)

Decoction NAFLD rats induced by
HFD (8 weeks)

CJQG (30.34/60.68/
121.38 mg/kg/d) by
gavage (n = 5/5/5)

The same volume of
saline by gavage (n = 5)

Probiotic (107.32 mg/kg/d)
by gavage (n = 5)

4 weeks Prepared according to
China Pharmacopoeia

- Ling et al.
(2022)

Danggui Shaoyao San
(DGSY)

Granules NAFLD rats induced by
HFD (8 weeks)

DGSY (2.44/4.88/
9.76 g/kg/d) by gavage
(n = 10/10/10)

Distilled water
(10 mL/kg/d) by gavage
(n = 10)

Polyene Phosphatidylcholine
Capsules (144 mg/kg/d) by
gavage (n = 10)

8 weeks Prepared according to
China Pharmacopoeia

- Yu et al. (2021)

Dingxin Recipe
IV (DXR)

Decoction AS mice induced by HFD
(12 weeks)

DXR IV (0.45/0.9/
1.8 g/kg/day) by gavage
(n = 10/10/10)

The same volume of
saline by gavage
(n = 10)

- 12 weeks Prepared according to
China Pharmacopoeia

- Zhang et al.
(2021)

Gegen Qinlian
Decoction (GGQL)

Decoction Hyperlipidemia rats by
HFD (5 weeks)

GGQL (1.65/4.95/
14.85 mg/kg/day) by
gavage (n = 6/6/6)

The same volume of
saline by gavage (n = 6)

Simvastatin (10 mg/kg/day)
by gavage (n = 6)

11 weeks Prepared according to
China Pharmacopoeia

HPLC Jiang et al.
(2021)

Gegen Qinlian
Decoction (GGQL)

Decoction NAFLD mice by HFD +
DSS (12 weeks)

GGQL (8/16 mg/kg/day)
by gavage (n = 14/14)

The same volume of
saline by gavage
(n = 14)

- 12 weeks Prepared according to
China Pharmacopoeia

HPLC Liu et al. (2021)

Guizhi Tang (GZT) Decoction AS mice induced by HFD
(4 weeks)

GZT (7.89 g/kg/day) by
gavage (n = 10)

The same volume of
double-distilled water
by gavage (n = 10)

Atorvastatin (3.33 mg/kg/
day) by gavage (n = 10)

4 weeks Prepared according to
China Pharmacopoeia

- Yuan et al.
(2021)

Huanglian Jiedu
Decoction (HLJD)

Decoction AS mice induced by HFD
(4 weeks)

HLJD (5 g/kg/day) by
gavage (n = 10)

The same volume of
saline by gavage
(n = 10)

Atorvastatin (3 mg/kg/day)
by gavage (n = 10)

4/18 weeks Prepared according to
China Pharmacopoeia

- Jiang et al.
(2021)

Huangqin
Decoction (HQD)

Decoction NAFLD rats induced by
HFD (9 weeks)

HQD (5/20 g/kg/day) by
gavage (n = 6/6)

The same volume of
saline by gavage (n = 6)

Polyene Phosphatidylcholine
Capsules (8 mg/kg/d) by
gavage (n = 6)

5 weeks Prepared according to
China Pharmacopoeia

UPLC-TQ-MS Yang et al.
(2022)

Huayu Qutan Formula
(HYQT)

Decoction AS mice induced by HFD
(8 weeks)

HYQT (20 g/kg/day) by
gavage (n = 8)

The same volume of
saline by gavage (n = 8)

Simvastatin (2.275 mg/kg/
day) by gavage (n = 8)

4 weeks Prepared according to
China Pharmacopoeia

UHPLC-
MS/MS

Sui et al.
(2021a)

Huayu Qutan Formula
(HYQT)

Decoction AS mice induced by HFD
(8 weeks)

HYQT (20 g/kg/day) by
gavage (n = 8)

The same volume of
saline by gavage (n = 8)

Simvastatin (2.275 mg/kg/
day) by gavage (n = 8)

4 weeks Prepared according to
China Pharmacopoeia

UHPLC-
MS/MS

Sui et al.
(2021b)

(Continued on following page)
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TABLE 3 (Continued) Summary of TCM prescriptions used in animal experiments.

Name Dosage
form

Model Treatment method and sample size Treatment Quality control
reported

Chemical
analysis

References

Treatment group Negative control
group

Positive control
group

Duration

Huayu Qutan Formula
(HYQT)

Decoction AS mice induced by HFD
(30 days)

HYQT (10/20/40 g/kg/
day) by gavage (n = 10/
10/10)

The same volume of
saline by gavage
(n = 10)

- 30 days Prepared according to
China Pharmacopoeia

- Zheng et al.
(2022)

Huazhi-Rougan
Formula (HZRG)

Granules NAFLD mice induced by
HFD (4 weeks)

HZRG (3/6 g/kg/day) by
gavage (n = 10/10)

The same volume of
0.5% CMC-Na by
gavage (n = 10)

- 4 weeks Prepared according to
China Pharmacopoeia

UPLC-Q-
TOF/MS

Li et al. (2022)

Jian Pi Tiao Gan Yin
(JPTGY)

Decoction Obesity mice induced by
HFD (12 weeks)

JPTGY (12 g/kg/day) by
gavage (n = 10)

The same volume of
double-distilled water
by gavage (n = 10)

- 12 weeks Prepared according to
China Pharmacopoeia

LC-MS Dong et al.
(2022)

Jiangzhi Granules (JZG) Granules NAFLD rats induced by
HFD (16 weeks)

JZG (497/994 mg/kg/
day) by gavage (n = 8/8)

The same volume of
0.5% CMC-Na by
gavage (n = 8)

- 8 weeks Prepared according to
China Pharmacopoeia

UPLC-MS Wang et al.
(2021)

Jiangzhi Ligan
Decoction (JZLG)

Decoction NAFLD rats induced by
HFD (12 weeks)

JZLG (4.6 g/kg/day) by
gavage (n = 10)

The same volume of
saline by gavage
(n = 10)

- 4 weeks Prepared according to
China Pharmacopoeia

- Tang et al.
(2016)

Jianpi Huazhuo Tiaozhi
Granule (JPHZTZ)

Decoction AS mice induced by 1%
choline (16 weeks)

JPHZTZ (9.49/18.98/
37.96 g/kg/day) by
gavage (n = 10/10/10)

The same volume of
purified water by
gavage (n = 10)

- 16 weeks Prepared according to
China Pharmacopoeia

- Huang et al.
(2019)

Liqi Huatan Quyu
Decoction (LQHTQY)

Decoction Hyperlipidemia hamsters
induced by HFD
(2 weeks)

LQHTQY (6.3/12.6/
25.2 g/kg/day) by gavage
(n = 8/8/8)

The same volume of
saline by gavage (n = 8)

Fenofibrate (150 mg/kg/d) by
gavage (n = 8)

6 weeks Prepared according to
China Pharmacopoeia

- Ding et al.
(2019)

Modified Xiongdan
yinchen Granules
(MXYG)

Granules NAFLD rats induced by
HFD (6 weeks)

MXYG (4.73/9.46/
18.92 g/kg/day) by
gavage (n = 10/10/10)

The same volume of
saline by gavage
(n = 10)

- 4 weeks Prepared according to
China Pharmacopoeia

- Wu et al.
(2021)

Qiang Gan Formula
extract (QGE)

Decoction NAFLD rats induced by
HFD (4 weeks)

QGE (400 mg/kg/day)
by gavage (n = 12)

The same volume of
saline by gavage
(n = 12)

vitamin E (120 mg/kg/day)
by gavage (n = 12)

4 weeks Prepared according to
China Pharmacopoeia

HPLC Li et al. (2020)

Qinggan Qushi Huoxie
Prescription (QGQSHX)

Decoction NAFLD rats induced by
HFD (30 days)

QGQSHX (5.63/11.25/
22.5 g/kg/day) by gavage
(n = 15/15/15)

The same volume of
distilled water by
gavage (n = 15)

- 30 days Prepared according to
China Pharmacopoeia

- Zhang et al.
(2022)

Qinghua Fang (QHF) Decoction NAFLD rats induced by
HFD (10 weeks)

QHF (0.2/0.4/0.8 g/kg/
day) by gavage (n = 10/
10/10)

The same volume of
distilled water by
gavage (n = 10)

- 10 weeks Prepared according to
China Pharmacopoeia

- Wang et al.
(2021)

Qingxin Jieyu Granule
(QXJY)

Granules AS mice induced by HFD
(12 weeks)

QXJY (1.52/4.55 g/kg/
day) by gavage (n =
10/10)

The same volume of
saline by gavage
(n = 10)

- 12 weeks Prepared according to
China Pharmacopoeia

LC-MS Wang et al.
(2018)

(Continued on following page)
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TABLE 3 (Continued) Summary of TCM prescriptions used in animal experiments.

Name Dosage
form

Model Treatment method and sample size Treatment Quality control
reported

Chemical
analysis

References

Treatment group Negative control
group

Positive control
group

Duration

Jieyu Qutan Huazhuo
Prescription (JYQTHZ)

Decoction Hyperlipidemia rats
induced by HFD
(12 weeks)

JYQTHZ (0.4/0.8/
1.2 g/kg/day) by gavage
(n = 10/10/10)

The same volume of
distilled water by
gavage (n = 10)

Atorvastatin (2 mg/kg/day)
by gavage (n = 10)

8 weeks Prepared according to
China Pharmacopoeia

- Li et al. (2021)

Jieyu Qutan Huazhuo
Prescription (JYQTHZ)

Decoction Hyperlipidemia rats
induced by HFD
(12 weeks)

JYQTHZ (0.4/0.8/
1.2 g/kg/day) by gavage
(n = 10/10/10)

The same volume of
distilled water by
gavage (n = 10)

Atorvastatin (2 mg/kg/day)
by gavage (n = 10)

8 weeks Prepared according to
China Pharmacopoeia

- Li et al. (2022)

Quyu Huatan Tongmai
Prescription
(QYHTTM)

Decoction Hyperlipidemia hamsters
induced by HFD
(4 weeks)

QYHTTM (1.33 g/kg/
day) by gavage (n = 8)

The same volume of
distilled water by
gavage (n = 8)

- 6 weeks Prepared according to
China Pharmacopoeia

- Miao et al.
(2022)

Shenerjiangzhi
Formulation (SEJZ)

Decoction Hyperlipidemia rats
induced by HFD
(4 weeks)

SEJZ (30 g/kg/day) by
gavage (n = 8)

The same volume of
saline by gavage (n = 8)

- 4 weeks Prepared according to
China Pharmacopoeia

HPLC Zhang et al.
(2022)

Shenling baizhu Powder
(SLBZ)

Powder NAFLD rats induced by
HFD (16 weeks)

SLBZ (30 g/kg/day) by
gavage (n = 11)

The same volume of
distilled water by
gavage (n = 12)

Probiotics (0.6 g/kg/day) by
gavage (n = 12)

16 weeks Prepared according to
China Pharmacopoeia

HPLC-MS Zhang et al.
(2018)

Shenlingbaizhu Powder
(SLBZ)

Powder NAFLD rats induced by
HFD (8 weeks)

SLBZ (2.34/4.68/
9.36 g/kg/day) by gavage
(n = 8/8/8)

The same volume of
saline by gavage (n = 8)

Probiotics (8.4 g/kg/day) by
gavage (n = 8)

4 weeks Prepared according to
China Pharmacopoeia

HPLC-MS Hong (2021)

Si Miao Formula (SMF) Decoction NAFLD rats induced by
high fat/high sucrose diet
(16 weeks)

SMF (10/20 g/kg/day) by
gavage (n = 8/8)

The same volume of
purified water by
gavage (n = 8)

- 16 weeks Prepared according to
China Pharmacopoeia

LC-MS Han et al.
(2021)

Si Ni San (SNS) Decoction NAFLD rats induced by
HFD (12 weeks)

SNS (5 g/kg/day) by
gavage (n = 8)

The same volume of
distilled water by
gavage (n = 8)

- 12weeks Prepared according to
China Pharmacopoeia

HPLC Zhu et al.
(2019)

Tanyutongzhi Formula
(TYTZ)

Powder AS mice induced by HFD
(8 weeks)

TYTZ (637 mg/kg/day)
by gavage (n = 6)

The same volume of
distilled water by
gavage (n = 6)

Atorvastatin (1 mg/kg/day)
by gavage (n = 6)

8 weeks Prepared according to
China Pharmacopoeia

- Wang et al.
(2018)

Tian Huang
Formula (THF)

Decoction Hyperlipidemia rats
induced by HFD
(14 weeks)

THF (100 mg/kg/day) by
gavage (n = 10)

The same volume of
distilled water by
gavage (n = 10)

- 10 weeks Prepared according to
China Pharmacopoeia

UPLC-TOF/MS Yang et al.
(2022)

Tian Huang
Formula (THF)

Decoction NAFLD rats induced by
HFD (12 weeks)

THF (60/120 mg/kg/
day) by gavage (n =
10/10)

The same volume of
ultrapure water by
gavage (n = 10)

Atorvastatin (1.5 mg/kg/day)
by gavage (n = 10)

10 weeks Prepared according to
China Pharmacopoeia

- Pang (2021)

Tongmai Zhuyu
Decoction (TMZY)

Decoction AS rats induced by HFD
(8 weeks)

TMZY (1.224 g/kg/day)
by gavage (n = 8)

The same volume of
saline by gavage (n = 8)

Atorvastatin (2 mg/kg/day)
by gavage (n = 8)

8 weeks Prepared according to
China Pharmacopoeia

HPLC Ji et al. (2020)

(Continued on following page)
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TABLE 3 (Continued) Summary of TCM prescriptions used in animal experiments.

Name Dosage
form

Model Treatment method and sample size Treatment Quality control
reported

Chemical
analysis

References

Treatment group Negative control
group

Positive control
group

Duration

Xiangsha Liujunzi
Decoction (XSLJZ)

Decoction Hyperlipidemia rats
induced by HFD
(14 weeks)

XSLJZ (11.34 g/kg/d) by
gavage (n = 8)

The same volume of
saline by gavage (n = 8)

- 4 weeks Prepared according to
China Pharmacopoeia

- Wang et al.
(2022)

Xiaoyao San (XYS) Granules NAFLD rats induced by
HFD (8 weeks)

XYS (0.6 g/kg/d) by
gavage (n = 6)

The same volume of
saline by gavage (n = 9)

Atorvastatin (0.9 mg/kg/day)
by gavage (n = 6)

2 weeks Prepared according to
China Pharmacopoeia

- Zhou et al.
(2021)

Xiexin Decoction (XXD) Decoction AS mice induced by HFD
(12 weeks)

XXD (1.3 g/kg/d) by
gavage (n = 8)

The same volume of
deionized water by
gavage (n = 8)

- 12 weeks Prepared according to
China Pharmacopoeia

- Chen et al.
(2020)

Xiexin Decoction (XXD) Decoction AS mice induced by HFD
(3 months)

XXD (1.3 g/kg/d) by
gavage (n = 5)

The same volume of
ultrapure water by
gavage (n = 5)

- 3 months Prepared according to
China Pharmacopoeia

- Lei (2020)

Yinchenhao Decoction Decoction NAFLD rats induced by
HFD (14 weeks)

Yinchenhao Decoction
(3.6 g/kg/d) by gavage
(n = 10)

The same volume of
saline by gavage
(n = 10)

- 2 weeks Prepared according to
China Pharmacopoeia

LC-MS Li et al. (2019)

Zexie Tang (ZXT) Decoction Hyperlipidemic rats
induced by HFD
(4 weeks)

ZXT (2.2 g/kg/day) by
gavage (n = 10)

The same volume of
saline by gavage
(n = 10)

Simvastatin (2.1 mg/kg/day)
by gavage (n = 10)

4 weeks Prepared according to
China Pharmacopoeia

- Xu et al. (2017)

Compound Danshen
Dripping Pills

Pills NAFLD mice induced by
HFD (12 weeks)

Compound Danshen
Dripping Pills (13.5/27/
40.5 mg/kg/d) by gavage
(n = 8/8/8)

The same volume of
distilled water by
gavage (n = 8)

- 12 weeks Prepared according to
China Pharmacopoeia

- Zhang et al.
(2020)

Danlou Tablet (DLT) Pills AS mice induced by HFD
(24 weeks)

DLT (0.55 g/kg/d) by
gavage (n = 15)

The same volume of
saline by gavage
(n = 15)

- 8 weeks Purchased from Jilin
Conair Pharmaceutical
Co., Ltd.

- Sun et al.
(2020)

Dengzhan Shengmai
Capsules (DZSM)

Capsules NAFLD rats induced by
HFD (6 weeks)

DZSM (720 mg/kg/d) by
gavage (n = 10)

The same volume of
0.25% CMC-Na by
gavage (n = 10)

- 6 weeks Purchased from Yunnan
Biogu Pharmaceutical
Co., Ltd.

- Guo et al.
(2022)

Guanxinning Tablet
(GXNT)

Pills AS minipigs induced by
HFD (28 weeks)

GXNT (162 mg/kg/d) by
gavage (n = 12)

The same volume of
saline by gavage
(n = 12)

- 12 weeks Purchased from Chiatai
Qinchunbao
Pharmaceutical co., Ltd.

- Yang et al.
(2022)

Hugan Qingzhi Tablet
(HGQZ)

Pills NAFLD rats induced by
HFD (12 weeks)

HGQZ (1.08 g/kg/d) by
gavage (n = 8)

The same volume of
purified water by
gavage (n = 8)

- 12 weeks Prepared according to
China Pharmacopoeia

UHPLC-
QqQ-MS

Tang et al.
(2018)

Hugan Qingzhi Tablet
(HGQZ)

Pills NAFLD rats induced by
HFD (12 weeks)

HGQZ (1.08 g/kg/d) by
gavage (n = 8)

The same volume of
purified water by
gavage (n = 8)

- 12 weeks Prepared according to
China Pharmacopoeia

UHPLC-
QqQ-MS

Tang et al.
(2018)

(Continued on following page)
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BA profile in the intestine, and reduced lipid deposition, but the exact
mechanism has not been elucidated (Lu et al., 2022). It was found that
treatment with THF (Yang L. et al., 2022), WESB (Zhao et al., 2021),
HQF (Sui et al., 2021b), TB (Huang et al., 2019), Pae (He, 2021),
Naringin (Wang F. et al., 2020) and Penthorum chinense Pursh. (PCP)
extract (Li X. et al., 2022) decreased the abundance of intestinal flora
that produces BSH and BSH enzyme activity, leading to a weakened
hydrolysis of BAs, increased the level of FXR antagonist T-βMCA,
decreased FXR agonist CDCA and LCA levels, inhibited FXR/
FGF15 axis in the intestine, activated CYP7A1 and
CYP7B1 expression in the liver, and promoted hepatic BA
synthesis, thereby reducing serum and hepatic TC levels. In
addition, RSV enhanced BSH enzyme activity via boosting the
number of BSH-producing bacteria, including Bifidobacterium and
Lactobacillus, to promote BA catabolism and fecal excretion in the
intestine, downregulated OSTα, OSTβ expression to reduce BA
reabsorption transport, and reduced CDCA content to suppress
enterohepatic FXR/FGF15 axis in order to promote hepatic BA
synthesis (Chen et al., 2016).

3.5 TCM adjusts TMAO production to
improve LMD

It was found that serum lipid and TMAO levels were
significantly decreased in HFD-induced AS model animals after
treatment with Ginkgolide B (GB) (Lv et al., 2021), Eucommia
ulmoides extract (Sun, 2020), HYQT (Sui et al., 2021a) and AOB
(Zhu, 2021). The possible mechanism is to reduce TMA
production, decrease hepatic FMO3 expression and inhibit the
oxidation of TMA to TMAO by adjusting intestinal flora, which
is a process consistent with the study of Xiangsha Liujunzi
Decoction (XSLJZ) for the treatment of hyperlipidemia model
rats (Wang J. et al., 2022). BBA reduces TMAO biosynthesis by
decreasing the abundance of TMAO-related enzymes, such as
carnitine oxygenase (CntA), choline-trimethylamine lyase
(CutC), FMO and betaine reductase, effectively reducing serum
TMAO levels (Wu et al., 2020; Li X. et al., 2021; Ma et al., 2022). The
content of TMAO in the blood was shown to be associated to the
severity of AS. Treatment with Tongmai Zhuyu decoction (TMZY)
(Ji et al., 2020) or Tanyutongzhi Formula (TYTZ) (Wang, 2016) led
to the reduction of TMAO levels as well as the decrease of
atherosclerotic plaque area in AS model animals, and its anti-AS
effect may be connected with TMAO reduction and the reduction
of endothelial damage and inflammation levels. Another study
showed that GXNT treatment was effective in reducing the
production of TMAO, a TMA metabolite, lowering ox-LDL
levels and inhibiting macrophage foaminess, while reducing NF-
κB expression in AS plaques and alleviating the inflammatory
response, thus preventing and preventing the formation of AS,
which was correlated with reduced Escherichia abundance (Yang Q.
et al., 2022). Furthermore, Jianpi Huazhuo Tiaozhi Granule
(JPHZTZ) (Huang Q., 2021) and RSV (Chen et al., 2016) also
exerted significant efficacy in anti-AS by a mechanism that may be
achieved by inhibiting the enterohepatic FXR/FGF15 pathway,
upregulating hepatic CYP7A1 expression, promoting BA
biosynthesis, reducing TMAO production, and maintaining
cholesterol metabolic homeostasis.TA
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TABLE 4 Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

Baicalein NAFLD mice
induced by HFD
(5 weeks)

Baicalein (100/
200 mg/kg/day) by
gavage (n = 10/10)

The same
volume of saline
by gavage
(n = 10)

Silymarin (200 mg/kg/
day) by gavage (n = 10)

5 weeks - Li et al. (2022)

Berberine (BBR) Hyperlipidemia
rats induced by
HFD (8 weeks)

BBR (260 mg/kg/day)
by gavage (n = 8)

The same
volume of
purified water by
gavage (n = 8)

- 8 weeks - Xu et al. (2017)

NAFLD rats
induced by HFD
(8 weeks)

BBR (150 mg/kg/day)
by gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

- 4 weeks - Li et al. (2019)

AS mice induced by
HFD (14 weeks)

BBR (0.5 g/kg/day)
by gavage (n = 6)

The same
volume of
purified water by
gavage (n = 6)

- 14 weeks - Zhu et al.
(2018)

AS mice induced by
HFD (13 weeks)

BBR (50/100 mg/kg/
day) by gavage (n =
12/12)

The same
volume of saline
by gavage
(n = 12)

- 13 weeks - Wu et al.
(2020)

AS hamsters
induced by HFD
(10 months)

BBR (100/200 mg/kg/
day) by gavage (n =
7/7)

The same
volume of saline
by gavage (n = 7)

- 3 months - Ma et al. (2022)

AS mice induced by
choline diet
(16 weeks)

BBR (100/200 mg/kg/
day) by gavage (n =
10/10)

The same
volume of
purified water by
gavage (n = 10)

- 16 weeks - Li et al. (2020)

Berberrubine (BRB) NAFLD mice
induced by HFD
(10 weeks)

BRB (10/20/
40 mg/kg/day) by
gavage (n = 10/10/10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

Metformin (40 mg/kg/
day) by gavage (n = 10)

4 weeks - Yang et al.
(2022)

Rhizoma Coptidis (RC)
alkaloids

Hyperlipidemia
mice induced by
HFD (10 weeks)

RC alkaloids
(140 mg/kg/day) by
gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

Palmatine (140 mg/kg/
day) by gavage (n = 8)

5 weeks HPLC He et al. (2016)

Alisma orientale extract Hyperlipidemia
rats induced by
high fat/high
sucrose diet
(4 weeks)

Alisma orientale
extract (1.05 g/kg/
day) by gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

Metformin (250 mg/kg/
day) by gavage (n = 8)

4 weeks - Li et al. (2019)

Blackberry leaf and fruit
extracts (BLF)

NAFLD rats
induced by HFD
(12 weeks)

BLF (150 mg/kg/day)
by gavage (n = 10)

The same
volume of saline
by gavage
(n = 10)

Milk thistle extracts
(150 mg/kg/day) by
gavage (n = 10)

12 weeks MS Park et al.
(2019)

Eucommia ulmoides
extract

AS mice induced by
HFD (12 weeks)

Eucommia ulmoides
extract (0.046 g/kg/
day) by gavage
(n = 10)

The same
volume of saline
by gavage
(n = 10)

Rosuvastatin
(0.45 mg/kg/day, once/
day) by gavage (n = 10)

8 weeks LC-MS Sun et al.
(2020)

Ginkgolide B (GB) AS mice induced by
HFD (6 weeks)

GB (20/30 mg/kg/
day) by gavage (n =
10/10)

The same
volume of saline
by gavage
(n = 10)

Atorvastatin
(1.3 mg/kg/day) by
gavage (n = 10)

6 weeks Lv et al. (2021)

Green Brick Tea NAFLD mice
induced by HFD
(14 weeks)

Green Brick Tea (75/
300 mg/kg/day) by
gavage (n = 12/12)

The same
volume of
purified water by
gavage (n = 12)

Xuezhikang Capsule
(90 mg/kg/day) by
gavage (n = 12)

14 weeks - Zhou et al.
(2021)
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TABLE 4 (Continued) Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

Gynostemma
pentaphyllum (Thunb.)
Makino [Cucurbitaceae;
Gynostemmatis
herba] (GP)

Hyperlipidemia
rats induced by
HFD (8 weeks)

GP (6/9 g/kg/day) by
gavage (n = 10/10)

The same
volume of
distilled water by
gavage (n = 10)

- 8 weeks HPLC Huang et al.
(2018)

NAFLD rats
induced by HFD
(4 weeks)

GP (1.5/3/6 g/kg/day)
by gavage (n = 10/
10/10)

The same
volume of
distilled water by
gavage (n = 10)

dilinoleoyl
phosphatidylcholine
(DLPC) (22.8 mg/kg/
day) by gavage (n = 10)

4 weeks HPLC-MS Shen et al.
(2020)

Luffa cylindrica (L.)
Roem [Cucurbitaceae;
Luffa aegyptiaca
Miller] (LC)

Obesity mice
induced by HFD
(14 weeks)

LC (2 g/kg/day) by
gavage (n = 12–15)

The same
volume of saline
by gavage (n =
12–15)

- 14 weeks - Lu et al. (2016)

Macroalgae Laminaria
japonica (MLJ)

Hyperlipidemia
rats induced by
HFD (8 weeks)

MLJ (2.5 g/kg/day) by
gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

- 8 weeks - Zhang et al.
(2020)

Momordica charantia L.
[Cucurbitaceae; Fructus
momordicae] (MC)

Obesity rats
induced by HFD
(8 weeks)

MC (400 mg/kg/day)
by gavage (n = 10)

The same
volume of
purified water by
gavage (n = 10)

- 8 weeks GC Bai (2019)

Paeonol (Pae) NAFLD rats
induced by HFD
(9 weeks)

Pae (100/200/
300 mg/kg/day) by
gavage (n = 7/7/7)

The same
volume of 0.5%
CMC-Na by
gavage (n = 7)

Silibinin (25 mg/kg/
day) by gavage (n = 7)

4 weeks - Jiang et al.
(2021)

AS mice induced by
HFD (14 weeks)

Pae (10/20 mg/kg/
day) by gavage (n =
10/10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

- 14 weeks - Liu et al. (2021)

AS mice induced by
HFD (20 weeks)

Pae (20 mg/kg/day)
by gavage (n = 6)

The same
volume of 0.5%
CMC-Na by
gavage (n = 6)

- 20 weeks - He (2021)

Radix scutellariae water
extract

Hyperlipidemia
rats induced by
HFD (4 weeks)

Radix scutellariae
water extract
(2.5 g/kg/d) by
gavage (n = 9)

The same
volume of
distilled water by
gavage (n = 9)

Metformin (200 mg/kg/
day) by gavage (n = 9)

4 weeks UPLC/
Q-TOF-MS

Zhao et al.
(2021)

Senna tora (L.) Roxb.
[Fabaceae; Cassiae
semen] (ST)

NAFLD mice
induced by HFD
(17 weeks)

ST (10 g/kg/d) by
gavage (n = 10)

The same
volume of saline
by gavage
(n = 10)

- 3 weeks HPLC Luo et al.
(2021)

Usnea diffracta Vain.
[Usneaceae; Usnea
diffracta] (UD)

AS rats induced by
HFD +
intraperitoneal
VD3 (4 weeks)

UD (0.7/1.4/2.8 g/kg/
d) by gavage (n = 8/
8/8)

The same
volume of
distilled water by
gavage (n = 8)

Simvastatin (4 mg/kg/
d) by gavage (n = 8)

4 weeks - Zhang et al.
(2021)

Zanthoxylum
bungeanum Maxim.
[Rutaceae; Zanthoxyli
pericarpium] (ZB)

Hyperlipidemia
rats induced by
HFD (6 weeks)

ZB (3/6/9 g/kg/d) by
gavage (n = 8/8/8)

The same
volume of
soybean oil by
gavage (n = 8)

- 6 weeks - You (2016)

Kaempferol Obesity mice
induced by HFD
(8 weeks)

Kaempferol
(200 mg/kg/d) by
gavage (n = 10)

The same
volume of
purified water by
gavage (n = 10)

- 8 weeks - Wang et al.
(2020)

Baicalin Hyperlipidemia
mice induced by
HFD (8 weeks)

Baicalin (25/
50 mg/kg/day) by
gavage (n = 8/8)

The same
volume of saline
by gavage (n = 8)

- 4 weeks - Liu et al. (2021)
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TABLE 4 (Continued) Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

Bilberry anthocyanins NAFLD mice
induced by HFD
(13 weeks)

2% Bilberry
anthocyanins by
gavage (n = 5)

The same
volume of
distilled water by
gavage (n = 5)

- 13 weeks - Nakano et al.
(2020)

Ethyl Acetate Extract of
Eleutherococcus
senticosus (Rupr. &
Maxim.) Maxim.
[Araliaceae,
Acanthopanacis senticosi
radix et rhizoma seu
caulis]

AS mice induced by
HFD (8 weeks)

Ethyl Acetate Extract
of Eleutherococcus
senticosus (Rupr. &
Maxim.) Maxim.
[Araliaceae,
Acanthopanacis
senticosi radix et
rhizoma seu caulis]
(25/75 mg/kg/day,
once/day) by gavage
(n = 8/8)

The same
volume of 0.5%
CMC-Na by
gavage (n = 8)

Rosuvastatin
(10 mg/kg/day, once/
day) by gavage (n = 8)

8 weeks - Jia et al. (2022)

Luteolin NAFLD rats by
HFD (8 weeks)

Luteolin (50/
100 mg/kg/day) by
gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

Polyene
Phosphatidylcholine
Capsules (200 mg/kg/
day) by gavage (n = 8)

4 weeks - Liu et al. (2021)

Myricetin NAFLD rats
induced by HFD
(12 weeks)

HFD supplemented
with 0.5% (w/w)
Myricetin (n = 8)

A normal chow
diet (n = 8)

- 12 weeks - Sun et al.
(2021)

Naringin AS mice induced by
HFD (16 weeks)

Naringin
(100 mg/kg/day) by
gavage (n = 8)

The same
volume of 0.5%
CMC-Na by
gavage (n = 8)

Atorvastatin (10 mg/kg/
day) by gavage (n = 8)

16 weeks - Wang et al.
(2020)

Quercetin NAFLD mice by
HFD (16 weeks)

HFD supplemented
with 0.05% (w/w)
Quercetin (n = 10)

A normal chow
diet (n = 10)

- 16 weeks - Porras et al.
(2017)

AS mice induced by
high cholesterol
diet (12 weeks)

Quercetin
(100 mg/kg/day) by
gavage (n = 6)

The same
volume of saline
by gavage (n = 6)

- 12 weeks - Wu et al.
(2019)

AS mice induced by
HFD (12 weeks)

Quercetin (100 ug/kg/
day) by gavage
(n = 12)

The same
volume of
purified water by
gavage (n = 12)

- 12 weeks - Nie et al.
(2019)

Gastrodin AS mice induced by
HFD (12 weeks)

Gastrodin (50/100/
200 mg/kg/day) by
gavage (n = 8/8/8)

The same
volume of saline
by gavage (n = 8)

- 8 weeks - Liu et al. (2021)

Chitooligosaccharide
(COSM)

NAFLD mice
induced by high fat/
high sucrose diet
(8 months)

COSM (425/850/
1700 mg/kg/day) by
gavage (n = 6/6/6)

The same
volume of
ultrapure water
by gavage (n = 6)

Metformin (50 mg/kg/
day) by gavage (n = 6)

12 weeks - Feng et al.
(2022)

Porphyran-derived
oligosaccharides (PYOs)

NAFLD mice
induced by HFD
(6 months)

PYOs (100/
300 mg/kg/day) by
gavage

The same
volume of saline
by gavage

- 6 weeks UPLC-MS/MS Wang et al.
(2021)

Caffeic acid NAFLD rats
induced by HFD
(8 weeks)

0.08%/0.16% (w/w)
Caffeic acid (n =
10/10)

A normal chow
diet (n = 10)

- 8 weeks - Mu et al.
(2021)

Black tea
polyphenols (BTP)

Obesity mice
induced by high fat/
high sucrose diet
(4 weeks)

High fat/high sucrose
diet supplemented
with BTP
(320 mg/kg/day)
(n = 12)

A low-fat diet
(n = 12)

- 4 weeks HPLC and
LC-MS/MS

Henning et al.
(2018)
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TABLE 4 (Continued) Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

Burdock inulin NAFLD mice
induced by HFD
(16 weeks)

Naringin
(100 mg/kg/day) by
gavage (n = 8)

The same
volume of saline
by gavage
(n = 10)

Simvastatin (20 mg/kg/
d) by gavage (n = 10)

4 weeks Phenol-
sulfuric acid

Wang et al.
(2020)

Citrus Peel Powder
extract (CPP)

NAFLD rats
induced by HFD
(12 weeks)

CPP (1 g/kg/day) by
gavage (n = 8)

The same
volume of
phosphate-
buffered saline
(PBS) by gavage
(n = 8)

- 12 weeks UPLC-MS/MS Hu et al. (2021)

Epigallocatechin gallate
(EGCG)

NAFLD mice
induced by HFD
(14 weeks)

HFD supplemented
with 0.4% (w/w)
EGCG (n = 12)

A low-fat diet
(n = 12)

- 14 weeks - Li et al. (2020)

NAFLD rats
induced by HFD
(8 weeks)

EGCG (100/
200 mg/kg/day) by
gavage (n = 8/8)

The same
volume of
distilled water by
gavage (n = 8)

- 8 weeks - Zuo (2020)

Fucoidan Hyperlipidemia
mice induced by
HFD (5 weeks)

Fucoidan (50/
250 mg/kg/day) by
gavage (n = 10/10)

The same
volume of saline
by gavage
(n = 10)

- 5 weeks - Huang et al.
(2019)

Honokiol Obesity mice
induced by HFD
(8 weeks)

Honokiol (200/400/
800 mg/kg/day) by
gavage (n = 24)

The same
volume of
purified water by
gavage (n = 24)

- 8 weeks - Ding et al.
(2019)

Inulin NAFLD mice
induced by HFD
(14 weeks)

Inulin (5 g/kg/day) by
gavage (n = 15)

The same
volume of
purified water by
gavage (n = 15)

- 14 weeks - Bao (2021)

NAFLD mice
induced by HFD
(8 weeks)

HFD supplemented
with 10% (w/w)
Inulin (n = 10)

A normal chow
diet (n = 10)

- 8 weeks - Perez-Monter
et al. (2022)

AS mice induced by
HFD (12 weeks)

Inulin (10 g/kg/day)
by gavage (n = 15)

The same
volume of
purified water by
gavage (n = 15)

- 12 weeks - Wang et al.
(2021)

L. caerulea L. berry
polyphenols (LCBP)

NAFLD mice by
HFD (45 days)

0.5%/1% (w/w) LCBP
by gavage (n = 4/4)

The same
volume of
purified water by
gavage (n = 4)

- 45 days HPLC Wu et al.
(2018)

Noni fruit
polysaccharide (NFP)

NAFLD mice by
HFD (4 weeks)

NFP (100 mg/kg/d)
by gavage (n = 9)

The same
volume of saline
by gavage (n = 9)

- 5 weeks - Yang et al.
(2020)

polyphenol-rich loquat
fruit extract (LFP)

NAFLD mice
induced by 30%
high-fructose water
(8 weeks)

LFP (25/50 mg/kg/d)
by gavage (n = 10/10)

The same
volume of
distilled water by
gavage (n = 10)

- 8 weeks UHPLC-
QqQ-MS/MS

Li et al. (2019)

Proanthocyanidin Hyperlipidemia
rats induced by
HFD (8 weeks)

Proanthocyanidin
(25/100/150 mg/kg/
d) by gavage (n = 10/
10/10)

The same
volume of
distilled water by
gavage (n = 10)

Fenofibrate (80 mg/kg/
d) by gavage (n = 10)

8 weeks - Fu et al. (2013)

Resveratrol (RSV) NAFLD mice
induced by HFD
(6 weeks)

RSV (50/100 mg/kg/
d) by gavage (n =
10/10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

Simvastatin (10 mg/kg/
d) by gavage (n = 10)

4 weeks - Chen et al.
(2019)
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TABLE 4 (Continued) Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

NAFLD mice
induced by HFD
(24 weeks)

RSV (45 mg/kg/d) by
gavage (n = 12)

The same
volume of 0.5%
CMC-Na by
gavage (n = 12)

- 6 weeks - Yao (2017)

NAFLD mice
induced by HFD
(6weeks)

RSV (100 mg/kg/d)
by gavage (n = 10)

The same
volume of saline
by gavage
(n = 10)

- 6 weeks - Chen et al.
(2020)

AS mice induced by
1% choline

HFD supplemented
with 0.4% (w/w) RSV
(n = 10)

A normal chow
diet (n = 10)

- 4 months - Chen et al.
(2016)

Theabrownins Hyperlipidemia
mice induced by
HFD (26 weeks)

Theabrownins
(450 mg/kg/d) by
gavage (n = 8)

The same
volume of
distilled water by
gavage (n = 8)

- 26 weeks - Huang et al.
(2019)

Ganoderma lucidum
polysaccharide (GLP)

Obesity mice
induced by HFD
(12 weeks)

GLP (100/300 mg/kg/
d) by gavage (n = 6/6)

The same
volume of
distilled water by
gavage (n = 6)

- 12 weeks GC Sang et al.
(2021)

Ganoderma lucidum
polysaccharide and
chitosan (PC)

Hyperlipidemia
hamsters induced
by HFD (8 weeks)

PC (150 mg/kg/d) by
gavage (n = 6)

The same
volume of saline
by gavage (n = 6)

Silymarin (150 mg/kg/
d) by gavage (n = 6)

8 weeks - Tong et al.
(2020)

Laminaria japonica
polysaccharide (LJP)

NAFLD mice
induced by HFD
(8 weeks)

HFD supplemented
with 2.5%/5% (w/w)
LJP (n = 10/10)

A normal chow
diet (n = 10)

- 8 weeks HPLC Zhang et al.
(2021)

Lycium barbarum
polysaccharide (LBPs)

NAFLD rats
induced by HFD
(8 weeks)

LBPs (50 mg/kg/d) by
gavage (n = 10)

The same
volume of saline
by gavage
(n = 10)

- 8 weeks HPLC Gao et al.
(2021)

Procyanidin B2 (PB2) NAFLD rabbits
induced by HFD
(12 weeks)

PB2 (150 mg/kg/d)
by gavage (n = 8)

The same
volume of saline
by gavage (n = 8)

- 12 weeks - Xing et al.
(2019)

Rosa Laevigata Michx.
Fruits Polysaccharides
(RLPs)

NAFLD mice
induced by HFD
(12 weeks)

RLPs (200/
800 mg/kg/d) by
gavage (n = 10/10)

The same
volume of 5%
gum Arabic
solution by
gavage (n = 10)

- 12 weeks HPLC Zhang et al.
(2020)

Rosa roxburghii Tratt
polysaccharide (RTFP)

NAFLD mice
induced by HFD
(9 weeks)

RTFP (200/
400 mg/kg/d) by
gavage (n = 10/10)

The same
volume of saline
by gavage
(n = 10)

- 7 weeks HPLC Zhang et al.
(2022)

water insoluble
polysaccharide (WIP)
from the sclerotium of
Poria cocos (Schw.) Wolf
[Polyporaceae; Poria]

Hyperlipidemia
mice induced by
HFD (4 weeks)

WIP (0.5/1 g/kg/d)
by gavage (n = 10/10)

The same
volume of
purified water by
gavage (n = 10)

Inulin (5 g/kg/day) by
gavage (n = 15)

4 weeks HPLC Sun et al.
(2019)

Gynostemma
pentaphyllum
saponins (GPS)

NAFLD rats
induced by HFD
(8 weeks)

GPS (50/100/
150 mg/kg/d) by
gavage (n = 8/8/8)

The same
volume of
purified water by
gavage (n = 8)

- 8 weeks HPLC Zhong et al.
(2022)

Ilex pubescens
triterpenoid saponins
(IPTS)

AS rats induced by
HFD (8 weeks) +
intraperitoneal
VD3 (3rd day)

IPTS (60 mg/kg/d) by
gavage (n = 10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

- 8 weeks Colorimetric
method

Bai (2019)
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4 Discussion

Lipid metabolism, which is an essential component of an
organism’s fundamental metabolism, and LMD is linked
inextricably to numerous illnesses and their consequences. With
the rapid development of sequencing technology, significant
advancements in our study of intestinal flora have been achieved,
and it is also clear that lipid metabolism is closely related to intestinal
flora. When LMD occur, the structure and composition of intestinal
flora are abnormal, while dysbiosis of intestinal flora can further
aggravate LMD. Therefore, the relationship between intestinal flora
metabolites and LMD (hyperlipidemia, obesity, NAFLD and AS)
can provide new perspectives for understanding LMD, and promote
the development of research and treatment methods of metabolism
disorders.

In this review, we systematically analyzed the previous related
literature and found that intestinal flora and its metabolites may be
major targets of TCM for treating LMD (Tables 1, Supplementary
Table S1). The composition of Chinese herbal formulas and
proprietary Chinese medicines is shown in the Supplementary
Table S2. TCM can reshape the composition and structure of
intestinal flora by enhancing the abundance of beneficial
intestinal bacteria, for example, increasing the abundance of
Akkermansia to repair intestinal barrier function (Park et al.,
2019); upregulating Prevotella, a bacteria that produces SCFAs, to
improve lipid metabolism of the host and alleviate inflammatory
responses (Tong et al., 2020); promoting the growth of Lactobacillus
and Bifidobacterium, and enhancing BSH enzyme activity to
promote BA catabolism and fecal excretion in the intestine to
accelerate cholesterol excretion (Yang L. et al., 2022). At the
same time, TCM can also reduce the abundance of harmful
bacteria by inhibiting the growth of pathogenic bacteria such as
Escherichiacoli and Enterococcus, down-regulating the number of
Desulfovibrio, bacteria that produces LPS, alleviating low chronic
inflammatory response and metabolic endotoxemia in the intestine,
and maintaining intestinal microecological health (Zhang et al.,
2018; Kou et al., 2022). Notably, TCM also reduces the risk of
abnormal lipid metabolism diseases by lowering the F/B ratio,
reducing fat accumulation in the body and accelerating fat
metabolism. For example, Luteolin modulated intestinal flora
(decreased F/B ratio, elevated Bifidobacterium, Lactobacillus)
against liver fatty lesions in rats (Liu, 2022), while BBR successful
in boosting Akkermansia abundance, it also enhanced intestinal

tight junction protein expression and colonic mucus layer thickness,
reduced HFD-induced metabolic endotoxemia and decreased
expression of pro-inflammatory factors and chemokines (Zhu
et al., 2018). After SLBZ supplementation treatment, the
abundance of Desulfovibrio was reduced in NAFLD rats, and LPS
production as well as the secretion of inflammatory factors were
inhibited, resulting in improvement of LMD (Hong, 2021). NXT
reduced BSH enzyme activity in hyperlipidemic rats and modulated
the BA profile in the intestine to reduce lipid levels in serum and
liver (Lu et al., 2022). RLPs increased the relative abundance of
Prevotella, promoted the production of SCFAs such as Propionic
acid and butyric acid, and reduced lipid levels in NAFLD mice
(Zhang X. J., 2020). In addition, TCM can also modulate intestinal
flora metabolites to play a role in correcting LMD, including LPS,
SCFAs, BAs and TMAO. Among them, LPS and SCFAs-mediated
inflammatory pathways are key aspects of herbal agents for lipid
lowering. BAs have a vital part in maintaining lipid metabolism
homeostasis, involving lipid synthesis, transport, and excretion.
TMAO is positively correlated with visceral obesity index and is
not only involved in the biosynthesis of BAs, but also serves as a
biomarker for AS (Barrea et al., 2018). Given its multi-component
and multi-target of action characteristics, TCM often also affects
MAPK or TLR4/NF-κB pathway-mediated chronic inflammatory
responses and FXR/FGF15 pathway-mediated metabolism of BAs to
regulate lipid metabolism. For instance, Quercetin reduced LPS
translocation, promoted SCFA production, increased intestinal
Occludin, Claudin-1 expression, repaired intestinal barrier
function, and inhibited TLR4 pathway to improve inflammation
levels by regulating NAFLD intestinal flora (Porras et al., 2017).
Myricetin significantly reduced LPS-induced metabolic
endotoxemia and systemic inflammation, corrected dyslipidemia
and restored liver function in NAFLD rats by regulating the TLR4/
NF-κB signaling pathway (Sun et al., 2021). After treatment with
BTP, it can effectively increase the level of SCFAs in obese mice, and
at the same time activate AMPK signaling pathway to increase
energy consumption for weight loss (Henning et al., 2018). QGE
promoted BA transport in the liver by increasing BSEP expression,
in addition to upregulating hepatic TGR5 receptor expression,
attenuating hepatic inflammatory response and regulating lipid
metabolism in NAFLD mice (Li et al., 2020). RSV regulated lipid
levels mainly by regulating BA metabolism, which not only promoted
the catabolism of BA in the intestine and fecal excretion, but also
downregulated OSTα, OSTβ expression and reduced BA reabsorption

TABLE 4 (Continued) Summary of natural medicine extracts used in animal experiments.

Intervention Model Treatment method and sample size Treatment Chemical
analysis

References

Treatment
group

Negative
control
group

Positive control
group

Duration

AS rats induced by
HFD (8 weeks) +
intraperitoneal
VD3 (3rd day)

IPTS (30/60/
120 mg/kg/d) by
gavage (n = 10/10/10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

Simvastatin (5 mg/kg/
d) by gavage (n = 10)

8 weeks Colorimetric
method

Bai (2019)

Tea seed saponins Hyperlipidemia
rats induced by
HFD (4 weeks)

Tea seed saponins
(50/100/150 mg/kg/
d) by gavage (n = 10/
10/10)

The same
volume of 0.5%
CMC-Na by
gavage (n = 10)

Simvastatin (10 mg/kg/
d) by gavage (n = 10)

4 weeks - Lin et al. (2020)
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transport (Chen et al., 2016). HYQT may reduce TMA production,
decrease hepatic FMO3 expression and inhibit TMAO synthesis by
altering the structure of the intestinal flora; meanwhile, it can inhibit
the intestinal and hepatic FXR/FGF15 axis, promote the synthesis
and excretion of BAs and maintain the balance of cholesterol
metabolism, and finally achieve the purpose of preventing and
treating AS (Sui et al., 2021a; Sui et al., 2021b). It can be seen that
TCM and its effective ingredients can improve the metabolic
indexes of blood lipids directly or indirectly by acting on
intestinal flora and its metabolites, thus playing a
comprehensive role in preventing and treating LMD.

The study of the interaction between TCM and intestinal
microorganisms has an important prospect, and the in-depth
study of the interaction between TCM and intestinal flora is
conducive to the elucidation of the potential mechanisms of
TCM in preventing and treating LMD, as well as to the
enrichment of TCM theory. In recent years, a few reviews have
been reported on the regulation of intestinal flora by TCM to
improve metabolic diseases, but there are shortcomings such as few
included studies and few diseases involved (Zhang H. Y. et al.,
2021; Li Y. et al., 2021). Based on previous studies, this review
enriches the number of included literature and adds the amount of
LMD, including hyperlipidemia, obesity, NAFLD and AS. Also, we
illustrate potential mechanisms of TCM for regulating intestinal
flora to improve LMD by category, which helps to minimize the
issue of biased reporting. In this review, we have conducted a full
quality assessment of the included original literature, which
includes the dosage, periodicity and quality control of the use
of TCM prescriptions (Chinese herbal formulas and proprietary
Chinese medicines) and natural medicine extracts in animal
experiments and clinical trials (Tables 2–4). However, there are
some limitations in the included studies. 1) The impact of TCM on
LMD based on intestinal flora has gained attention in the scientific
community, and the number of related clinical studies is growing.
However, there are issues such as small sample sizes, poor quality
of single studies, as well as few reports of large-scale clinical trials.
2) There were differences in the specific content of the control
group between the included original literature, and although the
experimental groups were Chinese herbal formulas or natural
medicine extracts that could regulate intestinal flora, the specific
groups were different, which was also a source of heterogeneity and
may have affected the results of the review assessment. 3) The
majority of the original literature that was considered did not
mention any allocation concealment, blinding, or other concerns,
which made the results less reliable. 4) Despite the extensive
search, the currently included literature is mainly in English
and Chinese, which may have regional bias and language bias.
5) The current research on the treatment of diseases related to
LMD by TCM is mainly focused on obesity, hyperlipidemia and
NAFLD, while there are fewer studies on diseases like AS, which
may be related to the bioavailability of TCM and to the stage and
severity of the disease. 6) The number of research on various
intestinal metabolites is significantly skewed. Most studies of TCM
against LMD have taken the chronic low levels of inflammation as
their entry point, focusing mainly on the regulation of LPS levels
and the levels of SCFAs in stool, while fewer studies have been
conducted on BAs and TMAO, which are lipid metabolism-related
risk factors. 7) Studies on intestinal flora are mostly correlational,

while relatively few studies on causality are available. 8) Most of the
research is focused on natural medicine extracts, but there is still
considerable opportunity for research on proprietary Chinese
medicines and Chinese herbal formulas. Therefore, Future
research should focus on how the effective ingredients of TCM
are bio-transformed by intestinal flora, and whether these
biotransformation metabolites have synergistic or antagonistic
effects on the treatment of LMD in TCM, which will help
discover new favorable metabolites of intestinal flora.
Furthermore, it is necessary to conduct more high-quality
studies to verify the safety of TCM in modulating intestinal
flora to improve LMD, so as to promote clinical application
and provide new ways and references for the intervention
targets of TCM in preventing and treating LMD.

In summary, intestinal microecology plays a significant part in
the development of LMD, and the regulation of intestinal flora and
its metabolites is a potential new therapeutic target for LMD. TCM
has obtained some achievements in improving lipid metabolism
disorder diseases, probably by regulating intestinal flora and its
metabolites, but in order to clarify the precise mechanism of action,
more extensive research will still be required in the future.
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