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Background: Soft-tissue sarcoma (STS) is amassive threat to human health due to its
high morbidity and malignancy. STS also represents more than 100 histologic and
molecular subtypes, with different prognosis. There is growing evidence that anoikis
play a key role in the proliferation and invasion of tumors. However, the effects of
anoikis in the immune landscape and the prognosis of STS remain unclear.

Methods: We analyzed the genomic and transcriptomic profiling of 34 anoikis-
related genes (ARGs) in patient cohort of pan-cancer and STS from The Cancer
Genome Atlas (TCGA) database. Single-cell transcriptome was used to disclose
the expression patterns of ARGs in specific cell types. Gene expression was further
validated by real-time PCR and our own sequencing data. We established the
Anoikis cluster and Anoikis subtypes by using unsupervised consensus clustering
analysis. An anoikis scoring system was further built based on the differentially
expressed genes (DEGs) between Anoikis clusters. The clinical and biological
characteristics of different groups were evaluated.

Results: The expressions of most ARGs were significantly different between STS and
normal tissues. We found some common ARGs profiles across the pan-cancers.
Network of 34 ARGs demonstrated the regulatory pattern and the association with
immune cell infiltration. Patients from different Anoikis clusters or Anoikis subtypes
displayed distinct clinical and biological characteristics. The scoring system was
efficient in prediction of prognosis and immune cell infiltration. In addition, the
scoring system could be used to predict immunotherapy response.

Conclusion:Overall, our study thoroughly depicted the anoikis-related molecular
and biological profiling and interactions of ARGs in STS. The Anoikis score model
could guide the individualized management.
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Introduction

Soft-tissue sarcoma (STS) is rare and accounts for approximate
1% of all adult malignancies (Gamboa et al., 2020), most commonly
occurring in the extremities. In 2022, 13,190 people were newly
diagnosed with STS and 5,130 people died of STS in United States
(Siegel et al., 2022). STS was known as its heterogeneity which
includes at least 100 different histologic and molecular subtypes.
Genomic study has indicated that STS was mainly characterized by
copy number variations but low mutation loads (Cancer Genome
Atlas Research Network. Electronic address and Cancer Genome
Atlas Research Network, 2017). However, a few genes (TP53, ATRX,
RB1) showed highly recurrent mutations across different sarcoma
types. These findings highlighted the importance of genetic
alterations in STS, corresponding to its heterogeneity. Meanwhile,
transcriptomic profiling of STS enhanced our understanding of STS
biology and provided potential therapeutic targets. Transcriptomics
can identify patients among different histological subtypes (Nielsen
et al., 2002; Linn et al., 2003). Expression of some gene signatures
were associated with prognosis of STS, such as hypoxia-inducible
factor alpha (HIFA) and its targets (Francis et al., 2007).

In recent years, multiple molecular processes have been
introduced to cancer biology and treatment such as the anoikis.
Anoikis is a programmed cell death manner, happening when cells
detached from appropriate extracellular matrix, which is a crucial
mechanism in maintenance of plastic cell growth and attachment
(Taddei et al., 2012). Cancer cells are characterized by insensitivity to
anoikis since its survival and proliferation do not rely on adhesion to
extracellular matrix (Cai et al., 2015). Thus, cancers represent a
feature of anoikis resistance. In this scenario, figuring out the anoikis
regulators of cancers contributes to the discovery of novel
therapeutics, especially for cancer metastasis (Sakamoto and
Kyprianou, 2010). For instance, in LKB1-deficient lung cancer,
the PLAG1-GDH1 axis was reported to accelerate anoikis
resistance through the CamKK2-AMPK pathway (Jin et al.,
2018). Nuclear MYH9-induced CTNNB1 expression could
facilitate gastric cancer cell anoikis resistance and induce
metastasis. Similarly, it was reported that anoikis resistance in
gastric cancer was regulated by TCF7L2 through transcriptionally
activating PLAUR (Zhang et al., 2022), resulting in enhancement of
metastasis. IQGAP1, a scaffolding protein that regulates cellular
motility and extracellular signals, also reported to modulate the
anoikis resistance and metastasis of hepatocellular carcinoma by
accumulation of Rac1-dependent ROS and activation of Src/FAK
signaling (Mo et al., 2021). These researches highlighted the critical
role of anoikis profiling in various cancers.

Specifically, anoikis resistance also participate in the biology
of STS. Recently, a study has conducted proteomic screens to
identify suppressors of anoikis in Ewing sarcoma. The result
indicated that the upregulation of IL1 receptor accessory
protein (IL1RAP) significantly suppressed anoikis, which
could be a new cell-surface target in Ewing sarcoma (Zhang
et al., 2021). In a previous study, E-cadherin cell-cell adhesion
was demonstrated to mediate suppression of anoikis by
activating the ErbB4 tyrosine kinase in Ewing sarcoma (Kang
et al., 2007).

Together, these findings have depicted a potential but limited
role of anoikis in STS. More comprehensive studies are required to

reveal the muti-omic profiling, regulator networks,
microenvironments, targetable molecules, and prognostic
predictors for STS. Further genotyping based on anoikis-related
genes would help to understand the heterogeneity of STS, which is
important to the personalized medicine. Therefore, in this study, we
comprehensively analyzed the cross-talk of the anoikis-related genes
(ARGs) and their molecular profiling in STS. We also focused on the
impact of ARGs on tumor microenvironment, especially on the
immune cell infiltration. Meanwhile, the stratification system and
prognostic scoring model were established based on ARGs to guide
the therapeutics for STS.

Materials and methods

Data collection and processing

The gene expression matrices of STS were downloaded from
UCSC Xena (https://xenabrowser.net/) and GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Normal adipose and
muscle tissue sample from Genotype-Tissue Expression
(GTEx) database were used as normal control (https://
gtexportal.org/home/). UCSC Xena has co-analyzed the TCGA
data and GTEx data using UCSC bioinformatic pipeline (TOIL
RNA-seq) for gene expression comparison. The copy number
variations (CNVs), somatic mutation, and clinical information
were downloaded from TCGA-SARC cohort. For pan-cancer
analysis, data was derived from the TARGET Pan-Cancer
(PANCAN) cohort. In GEO database, we identified two cohort
of STS (GSE17674 and GSE63157) with prognosis data and one
dataset of single-cell RNA-seq for STS (GSE131309). Moreover,
we introduced a cohort of immunotherapy, in which the patients
were treated with the combination of anti-PD-1 and anti-CTLA-
4 therapy (Gide et al., 2019). By using this cohort, we analyzed the
association between immunotherapy response and Anoikis score.

Unsupervised clustering of ARGs

We identified the ARGs from GOBP_ANOIKIS term of Gene
Set Variation Analysis (GSVA) database (http://www.gsea-
msigdb.org/gsea/msigdb/cards/GOBP_ANOIKIS).
Chromosome location of ARGs was plotted by the package
“Rcircos” (version 1.2.1). Next, we conducted unsupervised
clustering analysis using the 34 ARGs to define distinct
clusters of patients. We set the key parameters of maxK =
9 and repetitions = 1,000 for algorithm packaged in
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010).
Further, we recognized the differentially expressed genes
(DEGs) (log2|FC|≥3, adjp <0.05) between Anoikis clusters by
using the R package “limma” (version 3.48.3). Univariate COX
regression analysis was utilized to recognize DEGs with
significant prognostic relevance in STS.

As the prognostic DEGs were identified, we further input them
into unsupervised clustering analysis and stratified patients into
different Anoikis subtypes. These subtypes were more applicative
and accurate since the DEGs reflected more comprehensive and
common gene profiling.
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GSVA and Gene Ontology (GO) annotation

For the above defined clusters or subtypes, GSVA analysis was
conducted to probe their biological characteristics by using the R
package “GSVA” (version 1.40.1) (Hanzelmann et al., 2013).
Meanwhile, biological differences between subgroups with high
and low Anoikis score were also analyzed by GSVA. The
h.all.v7.5.1 and c2.cp.kegg.v7.4 gene sets were downloaded from
the Molecular Signatures Database (MSigDB). The R package
“limma” (version 3.48.3) was utilized when comparing the
differential expressed hallmark gene sets and tested using
moderated t-statistics. The results were plotted using the R
package “ggplot2” (version 3.3.5). Additionally, the R package
“clusterProfiler” (version 4.0.5) was adopted for GO annotation.
The significant enrichment was determined by false discovery rate
(FDR) < 0.05.

Evaluation of tumor immune infiltration

To assess the immune cell infiltration in tumor
microenvironment, we applied the single-sample gene set
enrichment analysis (ssGSEA), the marker genes of multiple
types of immune cells were downloaded from previous study
(Bindea et al., 2013). Infiltration level was normalized ranging
from 0 to 1. Tumor mutation burden (TMB) signatures from
published data (Mariathasan et al., 2018) were utilized to
estimate the association between tumor microenvironment and
biological processes. Moreover, we extracted signatures related to
immunotherapy-predicted pathways and cancer-immunity cycles as
previously reported (Chen and Mellman, 2013; Hu et al., 2021).
Specifically, the cancer-immunity cycles containing seven steps: step
one and two: cancer antigen release and presentation, step three:
T-cell priming and activation, step four: immune cell recruitment,
step five: immune cell infiltration into tumors, step six: T-cell
recognition of cancers, step seven: killing of cancer cells. These
cycles were applied to guide frameworks for immunotherapy. We
used GSVA to calculate the signatures scores of immunotherapy-
predicted pathway and cancer-immunity cycles as previously
described. The associations between Anoikis score and GSVA
scores of different gene sets were compared by using the R
package “ggcor” (version 0.9.4.3).

Establishment of the anoikis scoring model

In order to applied the above findings in more patients, we next
generated the anoikis scoring system based on our previous
established Anoikis clusters. DEGs between Anoikis cluster
C1 and C2 were identified and Univariate COX regression
analysis was conducted to recognize prognosis relevant DEGs.
The prognostic DEGs were then analyzed using principal
component analysis (PCA) and calculated for signature scores.
This method was advantageous in identification of the score of
the set with most significant correlation and elimination of unrelated
blocks. To calculate the Anoikis score, the formula of Σ(PC1i + PC2i)
was applied where i was the expression of the enrolled prognostic
DEGs. On this basis, patients were divided into the high and low

Anoikis score group according to a cut-off value determined by the
algorithm.

Single-cell transcriptome analysis

In this study, we used a single-cell RNA-seq dataset
(GSE131309) from published study (Jerby-Arnon et al., 2021).
The data were analyzed following standard pipeline of the
package “Seurat” (version 4.0.5). Gene expression was normalized
by LogNormalize (scale factor = 10,000). 2,000 highly variable genes
(HVGs) were then recognized within the function of
FindVariableGenes. 25 PC were picked up based on the result of
ElbowPlot. Subsequently, we performed the cell clustering and
t-distributed stochastic neighbor embedding (t-SNE) to figure out
the cell subpopulations. The same labels from the data resource were
used for specific cell cluster annotation, as described in previous
study (Jerby-Arnon et al., 2021). Expression of specific genes was
illustrated in t-SNE plots.

Prediction of chemotherapeutic sensitivity

Drug response data were retrieved from the Genomics of Drug
Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/
downloads/anova). The GDSC database provides the drug
sensitivity data and genetic correlation for more than
1,000 genetically characterized human cell lines (Yang et al.,
2013). Drug response data of 518 compounds targeting
24 pathways were identified. IC50 and drug sensitivity score were
utilized to assess the chemotherapeutic sensitivity, as calculated by
the R packages “pRRophetic” (version 0.5) and “oncoPredict”
(version 0.2) (Iorio et al., 2016; Maeser et al., 2021).

Cell lines and real-time PCR

The human synovial sarcoma (SW-982) and liposarcoma cell line
(SW-872) were purchased from the Procell Life Science & Technology
Co., Ltd. Primary human skin fibroblast cell line (HSF) was acquired
from Fenghui Biotechnology Co., Ltd. The primary hSS-005R cell line
was established by our laboratory. They were cultured in Dulbecco’s
modified Eagle medium (DMEM) completed with 10% fetal bovine
serum (FBS) and 1% Penicillin-Streptomycin at 37 °C and 5% CO2.

For real-time PCR analysis of mRNA expression, 2×105 cells were
cultured in six well plates for 24 h and the RNA Express Total RNA Kit
(M050, NCM Biotech, China) was used for subsequent total RNA
extraction. RevertAid First Strand cDNA Synthesis kit (K1622, Thermo
Fisher Scientific, United States) was utilized for cDNA synthesis. For
each sample, 50 ng cDNA was mixed with Hieff® qPCR SYBR Green
Master Mix (11201ES03, YEASEN, China) and gene specific primers
following the manufacturer’s protocol. Reactions were performed on
the Applied Biosystems QuantStudio (Thermo Fisher Laboratories).
Real-time PCR experiments were repeated using three biological
replicates. The primer sequences were as follow: GAPDH, 5′- CAG
GAGGCATTGCTGATGAT -3’ (forward), 5′- GAAGGCTGGGGC
TCATTT-3’ (reverse); E2F1, 5′- ACGTGACGTGTCAGGACCT -3’
(forward), 5′- GATCGGGCCTTGTTTGCTCTT -3’ (reverse); SNAI2,
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5′- TGTGACAAGGAATATGTGAGCC -3’ (forward), 5′- TGAGCC
CTCAGATTTGACCTG -3’ (reverse); DAPK2, 5′- GGGACGCCG
GAATTTGTTG -3’ (forward), 5′- TTCCTGCTTCGTGTCTCCCA
-3’ (reverse).

Full-length transcriptome analysis

We performed full-length mRNA-seq on four STS samples and
four paired normal tissues (GSE198568). Total RNA was extracted
from fresh frozen samples for full-length transcriptome analysis.
The sequencing was performed by Biomarker Technologies
(Biomarker Technologies Ltd., Beijing, China) following the
operation protocols of Oxford Nanopore Technologies (Oxford
Nanopore Technologies, Oxford, United Kingdom). Data were
analyzed in accordance with the pipeline provided by Biomarker
Technologies Ltd.

Statistical analysis

R software (version 4.1.0) was used for statistical analysis. We
conducted the spearman correlation test when calculating the

correlations of ARGs. Student’s t-tests andWilcoxon signed-rank
test were conducted for parametric comparisons and non-
parametric comparisons. Multiple groups comparisons were
tested by one-way ANOVA or Kruskal–Wallis test. Log-rank
test was applied in survival analysis. The prognostic factors were
determined by Univariate and multivariate Cox regression. To
assess the accuracy of model, Receiver operating characteristic
(ROC) curves were plotted and area under the curve (AUC) was
calculated by using R package “timeROC” (version 0.4). The
optimal cut-off value of Anoikis scores was determined by using
the package “survminer” (version 0.4.9). Besides, chi-square or
Fisher exact tests was adopted to compare clinical characteristics
in different groups. p-value <0.05 was defined as statistical
significance.

Results

Pan-cancer analysis of ARGs

We first analyzed the profiling of ARGs in pan-cancer level.
Copy number variance (CNV) analysis of ARGs indicated CNV
gain of CVA1, E2F1, MCL1, PDK4, PIK3CA, PTK2, SNAI2, and

FIGURE 1
Pan-cancer analysis of Anoikis-related genes (ARGs) in pan-cancer TCGA data. (A) The illustration of somatic copy number variance (SCNV) of ARGs
in different cancer types. The percentage of amplification and deletion was annotated. (B) The correlation of SCNV and expression of ARGs within
different cancer types. (C) The prognostic effects of the expression of ARGs across different cancer types. Red indicates the risk factor, and blue indicated
the protective factor. (D) Themutation frequency of ARGs in different cancer types. (E) The expression patterns of ARGs between tumor and normal
samples in different cancer types. The upper histograms illustrate the number of significantly differentially upregulated (red) and downregulated (blue)
genes.
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SRC in various cancer types (Figure 1A). Significant correlation
between SCNV and expression of PTK2 was found in different
cancer types (Figure 1B). As reveled by survival analysis, high
expression of most ARGs suggested high risk effect for LGG,
LIHC, ACC and KICH but protective effect for KIRC
(Figure 1C). Besides, ITGA5 and ITGB1 were risk factors for
multiple cancer types (Figure 1C). Among the 34 ARGs, PIK3CA
showed the highest mutation frequency in different cancer types
(Figure 1D). E2F1 and CHEK2 were highly expressed across
most cancer types compared to normal samples, while PDK4 and
NTRK2 were decreased in various cancers (Figure 1E).

Genomic and transcriptional landscapes of
ARGs in STS

More specifically, the ARGs were analyzed in STS cohort. Only
32 (13.5%) of 237 samples showed ARGs-related mutations,
concentrating within 18 ARGs (Figure 2A). Most ARGs located
in chromosome 1, 9, 17, 19 (Figure 2B). The SCNV frequency of
ARGs were depicted in Figure 2C. Notably, the expression profiling
of 34 ARGs could discriminate against tumor and normal tissues
(Figure 2D) since most of them showed significant differential
expression (Figure 2E). In order to specialize the expression

FIGURE 2
Genomic and transcriptional landscapes of ARGs in soft-tissue sarcoma (STS) in TCGA database. (A) The mutation frequency of ARGs (Top 18) in
237 patients with STS in TCGA database. (B) The specific location of ARGs on the human chromosomes. (C) The SCNV of ARGs in patients with STS in
TCGA database. Red indicates CNV gain, and green indicates CNV loss. (D) The principal component analysis (PCA) of ARGs expression to identify tumor
among normal samples based on the TCGA-GTEx database. Red indicates tumor samples, blue indicate normal tissues. (E) The expression of ARGs
between tumor (red) and normal samples (blue) based on the TCGA-GTEx database. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001; ****,
p < 0.0001; ns, p ≥ 0.05.
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FIGURE 3
Validation of expression patterns of ARGs at single-cell resolution. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot showing
specific cell types of STS. (B) The t-SNE plots showing the expression of ARGs in different cell types. (C) The violin plots illustrating expression levels of
ARGs across different cell types. (D–F) Validation of expression of ARGs between STS cell lines and the control cell line by the real-time PCR. Real-time
PCR experiments were repeated using three biological replicates. (G–I) The box plots illustrating the expression of ARGs between STS andmatched
adjacent normal tissues based on our own sequencing data. *, 0.01 ≤ p < 0.05; ***, 0.0001 ≤ p < 0.001; ****, p < 0.0001.
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FIGURE 4
Cross-talk of ARGs and identification of Anoikis clusters. (A) The correlation analysis of the expression of ARGs and signatures of immune cells. Red
indicated positively associated and blue indicated negatively associated. (B) The correlation network of ARGs in the TCGA-SARC cohort. The significance
of the prognostic effects was illustrated by the circle size. (C) The Kaplan-Meier curve comparing the survival between different Anoikis clusters. (D) The
heatmap of ARGs between different Anoikis clusters. (E)The gene set variation analysis (GSVA) illustrating pathways significantly enriched between
different Anoikis clusters. (F) The infiltrations of different immune cells between different Anoikis clusters. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***,
0.0001 ≤ p < 0.001; ****, p < 0.0001; ns, p ≥ 0.05.
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FIGURE 5
Identification of distinct Anoikis subtypes and related biological characteristics. (A) The volcano plot showing significantly differentially expressed
genes (DEGs) between different Anoikis clusters (C2 versus C1). Genes significantly upregulated were marked in red, while genes significantly
downregulated were marked in blue. (B) The Kaplan-Meier curve comparing the survival between different Anoikis subtypes. (C) Gene Ontology (GO)
enrichment analysis of DEGs identified in the above resulted. BP, biological process; CC, cellular component; MF, molecular function. (D) The
unsupervised clustering of TCGA-SARC cohort based on the ARGs-related DEGs. (E, F) The GSVA comparing pathways significantly enriched among
distinct Anoikis subtypes.
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FIGURE 6
Establishment and validation of Anoikis score. (A) Alluvial diagram showing the relations among Anoikis clusters, Anoikis subtypes and
Anoikis score groups. (B, C) The box plots illustrating the Anoikis score in different Anoikis clusters and Anoikis subtypes. (D–F) The Kaplan-Meier
curves comparing the survival between low (blue) and high (red) Anoikis score groups in TCGA-SARC cohort (D), GSE17674 (E) and GSE63157 (F).
(G) The time-dependent receiver operating characteristic curve (ROC) assessing the predictive performance of Anoikis score in TCGA-SARC
cohort. (H) The correlation analysis between Anoikis score and signatures of immune cells. Red indicated positively associated and blue indicated
negatively associated. (I) The box plot of tumor mutation burden (TMB) between low and high Anoikis score groups in TCGA-SARC cohort. (J) The
pie plots showing proportions of different clinical characteristics between low and high Anoikis score groups in TCGA-SARC cohort. (K) The
forest plot illustration multi-variate Cox analysis including clinical information and Anoikis score. *, p < 0.05.
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FIGURE 7
The genomic and transcriptional characteristics between Anoikis score groups. (A, B) The differences in mutation frequency between high (A) and
low (B) Anoikis score groups. (C) The GSVA illustrating significantly differently enriched pathways between Anoikis score groups. (D) The correlation
analysis of Anoikis scorewith immunotherapy-predicted pathways and cancer immunity cycles. (E) The frequency of arm-level amplification and deletion
between Anoikis score groups. (F) The Kaplan-Meier curve comparing the survival between low and high Anoikis score groups in an immunotherapy
cohort. (G) The rates of clinical response between Anoikis score groups in an immunotherapy cohort. (H) The box plots showing significant differences in
the estimated IC50 of several drugs between Anoikis score groups in TCGA-SARC cohort. *, p < 0.05.
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pattern of ARGs, we next visualized their expression in single cell
transcriptomics from GSE131309 (Figures 3A, B). We noticed that
ITGB1, MCL1, and SIK1 broadly expressed in all cell types while
TLE1, TSC2, and SNAI2 were mainly clustered in malignant
subtypes (Figures 3B, C; Supplementary Figure S1). As validated
by real-time PCR, the expression of E2F1 and SNAI2 were
significantly higher in STS cell lines including SW-982, hss-005R,
and SW-872 compared to HSF cell line, while DAPK2 was lower in
STS cell lines (Figures 3D–F). Additionally, the consistent results
were identified in our own sequencing data of four pairs of STS and
normal samples (Figures 3G–I).

Cross-talk of ARGs and identification of
anoikis clusters

Tumor immune microenvironment is a key regulator of
tumor progression, in which the immune cells cross-talk with
other cell types and impact their predestination. Through
correlation analysis of the expression pattern of ARGs and
signatures of immune cells, we found that expression of
MCL1, DAPK2, PDK4, and BRMS1 were positively correlated
with most immune cells (Figure 4A). The network of 34 ARGs
displayed a comprehensive landscape of the interactions
(Figure 4B). Among them, most ARGs such as BMF, BCL2,
ANKRD13C, AKT1, ZNF304, TSC2 showed positive
correlation with other genes, but BRMS1 negatively correlated
with most ARGs (Figure 4B). These findings indicated the
interactive patterns of ARGs.

Further, we conducted unsupervised consensus clustering to
identify distinct expression patterns of ARGs in different patients
(Supplementary Figure S2). Consequently, 258 patients were
clustered into two clusters by using K = 2 as the optimal
index based on elbow method (Krolak-Schwedt and Eckes,
1992), named as C1 and C2 containing 147 and 111 patients
respectively. The two clusters showed distinct prognosis (p =
0.016), ARGs expression patterns, and pathway enrichment
patterns (Figures 4C–E), indicating the different characteristics
between them. Specifically, patients of cluster C1 showed better
survival and improved immune infiltration patterns (Figures 4C,
F). GSVA showed that Cluster C1 were positively enriched in
chemokine signaling and JAK-STAT signaling pathways
(Figure 4E).

Identification of distinct anoikis subtypes
and related biological characteristics

In order to further identify distinct patient groups based on the
characteristic of Anoikis clusters, we performed unsupervised
consensus clustering using DEGs between cluster C1 and C2
(Figure 5A; Supplementary Figures 3A–F). As a result, three
subtypes (S1, S2, S3) were identified, with the patient number of
49, 96, 113 respectively. Patients of the three subtypes were
significantly different in survival (Figure 5B). Besides, the DEGs
were enriched in GO terms of ribonucleoprotein complex
biogenesis, RNA splicing, focal adhesion, cell-subtract junction,
cadherin binding, etc. (Figure 5C). Gene expression patterns of

three subtypes were distinct but the clinical characteristics were
irregular (Figure 5D). Pathway analysis of different subtypes were
conducted to identify corresponding characteristics. GSVA
suggested the enrichment of hedgehog signaling, basal cell
carcinoma, and glycosaminoglycan biogenesis in S3 subtype
(Figure 5E), while the pathways of cytosolic DNA sensing,
natural killing cell mediated cytotoxicity, and cytokine-cytokine
receptor interaction were enriched in S2 subtype (Figure 5F).
Interestingly, subtype S2 showed higher infiltration of most
immune cells compared to S1 and S2 (Supplementary Figure S3G).

Establishment and validation of anoikis
score

As displayed above, the identification of Anoikis clusters (C1,
C2) and Anoikis subtypes (S1, S2, S3) helped to classify patients with
different gene expression patterns. Nevertheless, they were limited
within the TCGA-SARC cohort. Therefore, we further established
the Anoikis score based on DEGs between Anoikis clusters C1 and
C2 to apply this model in external cohorts. The flow diagram was
illustrated in Figure 6A. The Anoikis score was significantly different
among Anoikis clusters or Anoikis subtypes (Figures 6B, C). Patients
were then divided into the high Anoikis score and low Anoikis score
group by an algorithm calculated cut-off value. Patients with high
Anoikis score showed poor prognosis in TCGA-SARC cohort (p <
0.001) (Figure 6D). External validation using GSE17674 (p = 0.019)
and GSE63157 (p = 0.045) data further confirmed this result (Figures
6E, F). The AUC also suggested the reliability of Anoikis score in 1-,
3-, and 5-year survival prediction, with the values of 0.907, 0.883,
and 0.832 respectively (Figure 6G). Notably, the Anoikis score was
negatively correlated with multiple types of innate immune cells and
adoptive immune cells including B cells, Macrophages, and various
subtypes of T cells (Figure 6H), suggesting the potential of Anoikis
score in STS immune infiltration prediction. There was a slight
difference in TMB between high and low Anoikis score group
(Figure 6I). Additionally, groups with high and low Anoikis score
showed differences in clinical characteristics including survival
status (p < 0.001), gender (p < 0.001), and histology (p < 0.001),
but not in age and tumor site (Figure 6J). Multivariate Cox
regression analysis indicated that high Anoikis score was a
significant risk factor for STS (Figure 6K; Supplementary Figure
S4). Together, these findings demonstrated the reliability of our
Anoikis score model in prognostic prediction for STS.

The genomic and transcriptional
characteristics between anoikis score
groups

Next, we interrogated the genomic and transcriptional profiling
between high and low Anoikis score groups. We observed a higher
frequency of mutation in high Anoikis score group with alteration in
66 (75.86%) of 87 samples (Figure 7A), compared with low Anoikis
score group with mutations in 92 (62.59%) of 147 samples
(Figure 7B). Noteworthily, the frequency of arm-level
amplification and deletion seems to be higher in high Anoikis
score group compared to low group (Figure 7E). Considering the
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enriched pathways in different Anoikis score groups, we found
positive enrichment of pathways including G2M checkpoint,
MYC targets, and E2F targets in high Anoikis score group but
negative enrichment of pathways including interferon alpha
response, inflammation response, and interferon gamma response
(Figure 7C). This result was consistent with previous finding
(Figure 6H) that high Anoikis score indicated poor immune
infiltration. Moreover, we analyzed the correlation of Anoikis
score with immunotherapy-predicted pathways and cancer
immunity cycles. As a result, the Anoikis score was significantly
negative associated with various immune cells including B cell, CD4+

T cells, CD8+ T cells, dendritic cells, etc. Meanwhile, Anoikis score
was positively correlated with most immunotherapy-predicted
pathways such as Base excision repair, cell cycle, and DNA
replication (Figure 7D).

Because of the close relationship of Anoikis score and immune
status, we further analyzed the Anoikis score in an immunotherapy
cohort. Interestingly, patients with high Anoikis score showed poor
survival (p = 0.002) (Figure 7F) and poor response to immunotherapy
(p < 0.001) (Figure 7G). Additionally, we utilized the GDSC database to
screen for drugs with different response in high and low Anoikis score
groups. Surprisingly, we identified three drugs with higher IC50 in high
Anoikis score group compared to low score group, namely, erlotinib
(p < 0.001), GNF.2 (p < 0.001) and LFM.A13 (p < 0.001) (Figure 7H).
These findings could provide potential methods for individualized
immunotherapy of STS patients.

Discussion

STS is an uncommon and heterogeneous tumor with limited
treatment currently (Linch et al., 2014). Several studies have explored
the genomic and transcriptomic characteristics of STS to uncover the
molecular profiling and find new therapeutic targets. Anoikis, a critical
process of cell death, has shown great impact on STS biology,
predominantly through a mechanism of anoikis resistance, which
could create a microenvironment suitable for tumor metastasis (Kang
et al., 2007; Zhang et al., 2021). Although the intriguing conclusions have
been made, there is a lack of comprehensive analysis and applicable
predictive model for ARGs in STS. The interactions between ARGs and
tumor microenvironment, especially the immune cell infiltration, have
not been recognized for STS. In the present study, we conducted
comprehensive analysis of the 34 ARGs in STS.

In spite of the fact that all cancers are molecularly distinct, many of
them share commondrivermutations or characteristics of transcriptional
regulation (Ciriello et al., 2013).We first analyzed the profiles of ARGs at
pan-cancer level. Several ARGs showed gain of CNVs such as E2F1,
MCL1, and PIK3CA across multiple cancers. CNVs of E2F1 were
reported previously in various type of cancers to be associated with
cancer susceptibility (Nelson et al., 2006; Rocca et al., 2017; Rocca et al.,
2019; Rocca et al., 2021). MCL1 also displayed CNVs in non-small lung
cancer and uterine cervix adenocarcinoma and impact on survival of
patients (Yin et al., 2016; Lin et al., 2020). Similarly, PIK3CA acquired
CNVs in a wide-range of cancers which regulated the cancer progression
and prognosis (Yamamoto et al., 2008; Brauswetter et al., 2016;Migliaccio
et al., 2022). Interestingly, PIK3CA showed the highest frequency of
mutations among all ARGs in different cancers, which was consistent
with previous studies (Mei et al., 2016; Mosele et al., 2020).

In STS, mutation frequency of PIK3CA was also at the top of
ARGs list, indicating its critical role in STS biology. Despite this, the
overall mutation burden of ARGs in STS was relatively low. The
expression of most ARGs were differentially expressed so that the
expression pattern could discriminate between STS and normal
tissues. Differential expression of some ARGs was further confirmed
by real-time PCR and our own sequencing data. For unbiased high-
resolution snapshots of gene expression programs, single-cell RNA
sequencing is the preferred method. Single-cell resolved gene
expression profiles offer several key advantages over bulk
population sequencing (Kanev et al., 2021). Notably, by single-
cell transcriptomic analysis, we found that the expression of
ARGs showed cell-type specificity, e.g., ITGB1, MCL1, and
SIK1 highly expressed in multiple cell types while TLE1, TSC2,
and SNAI2 were predominantly identified in malignant subtypes.
This characteristic could help guiding the discovery of new
therapeutic targets. Single-cell transcriptomics in prostate cancer
revealed the high expression of MCL1 in persistent senescent tumor
cells, a kind of metabolically active cell that promoted tumor
proliferation and metastatic dissemination (Troiani et al., 2022).
Hence, MCL1 maybe a potential indicator for cancer malignancy.

Next, we established the clustering system for STS based on
34 ARGs by using unsupervised consensus clustering. Two clusters
were recognized (C1 and C2), in which the cluster C1 was characterized
by better prognosis and improved immune cell infiltration. We
speculated that the distinct ARGs patterns in cluster C1 resulted in
a tumor microenvironment suitable for immune cell response. As
expected, pathway analysis indicated the enrichment of chemokine
signaling and JAK-STAT signaling in cluster C1. Increase of chemokine
contributed to the improvement of immune cell engraftment, such as
T cells (Dangaj et al., 2019). The IFNγ-JAK-STAT signaling was also a
determinant for chemokine expression (Xu et al., 2019). To further
classify patients based on Anoikis clusters, we performed unsupervised
consensus clustering based onDEGs between C1 and C2. Subsequently,
three Anoikis subtypes with different characteristics were established
(S1, S2, S3). We noticed that S1 showed the best prognosis while S2 was
characterized by optimal immune infiltration. Compared with S3, the
S1 subtype was enriched in several metabolic pathways such as histidine
metabolism, tryptophan metabolism, butanoate metabolism, and
adipocytokine signaling pathway. Among them, the histidine
metabolism was associated with good response of cancer therapy
(Frezza, 2018). However, the tryptophan metabolism and
adipocytokine signaling pathway could promote cancer progression
in other cancers (Rose et al., 2004; Platten et al., 2019). This inconsistent
conclusion may be explained by the heterogeneity in different cancer
types, further studies are required for exploration of the metabolism-
related mechanisms and the cancer suppression metabolic niche in
specific STS subtype. Not surprisingly, we also observed the enrichment
of cytokine-cytokine receptor interaction in S2. It was reported that
higher level of TMB was associated with poorer in cancer patients, and
the risk scores of STS patients with higher risk score were also higher in
our study, which needs further research (Valero et al., 2021).

Moreover, we built an anoikis scoring system according to the
prognostic DEGs between cluster C1 and C2. The anoikis scoring
system could be utilized to calculate specific score of individual patients.
The system was effective in prediction of prognosis in multiple cohort
which was of great potential in clinical guidance. The group of low
Anoikis score showed better prognosis and immune infiltration.
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Similarly, the low Anoikis score group was enriched in immune-related
pathway such as IL6 JAK-STAT3 signaling, TNFA signaling,
complement, INFγ response, INFα response, and inflammatory
response. Further, the Anoikis score may also serve as an indicator
for the response of immunotherapy. Similar findings were also reported
in other cancer types, as ARGs were significantly associated with TME
(Guizhen et al., 2022; Zhang et al., 2023). Although the anoikis scoring
system achieved good predictive performance, high intratumor
heterogeneity between samples may limit further application of this
tool. Besides, larger sample size is needed to validate results in the future.

Conclusion

Taken together, this study comprehensively analyzed the anoikis
profiles in STS for the first time. We unraveled the profiling and
interactions of ARGs in both the pan-cancer levels and STS, figuring
out the critical role of ARGs in tumor biology. The establishment of
Anoikis subtypes reflected the heterogeneity of ARGs between
patients regarding the prognosis and immune cell infiltration.
The Anoikis scoring system further provided individualized
assessment for prognosis and immune response, which could
guide personalized treatment for STS.
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SUPPLEMENTARY FIGURE S1
The t-SNE plots of the expression of ARGs in different cell types.

SUPPLEMENTARY FIGURE S2
The identification of Anoikis clusters. (A-E) Consensus clustering based on
ARGs (K = 2-6). (F) Consensus cumulative distribution function (CDF) Plot
based on ARGs.

SUPPLEMENTARY FIGURE S3
The identification of Anoikis subtypes. (A-E) Consensus clustering based on
ARGs-realted DEGs (K = 2-6). (F) Consensus cumulative distribution
function (CDF) Plot based on ARGs-realted DEGs. (G) The infiltrations of
different immune cells between different Anoikis subtypes. ***, 0.0001 ≤
p <0.001.

SUPPLEMENTARY FIGURE S4
Subgroup analysis of Anoikis score based on clinical characteristics. The
Kaplan-Meier curves comparing the survival between low and high Anoikis
score groups in different genders (A-B), ages (C-D), histology (E-I) and
tumor sites (J-K).
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