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Human epidermal growth factor receptor 2 (HER2)-positive metastatic breast
cancer (MBC) is the leading cause of cancer death in women. For patients with
HER2-positive MBC, after the failure of multiple lines of treatment, there is no
optimal line of therapy. A series of clinical trials confirmed that treatment with
irreversible pan-HER tyrosine kinase inhibitors (TKIs) in combination with
chemotherapy significantly improves patients’ survival outcomes. This review
focuses on the pathogenesis of HER2-positive breast cancer, current standard
treatments, mechanisms of approved irreversible TKIs, and key clinical trials. The
available findings suggest that irreversible pan-HER TKIs, such as pyrotinib and
neratinib, in combination with chemotherapy, represent a beneficial salvage
therapy for patients with HER2-positive MBC with manageable toxicity.
However, further studies are needed to assess the efficacy and safety of this
combination therapy.
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GRAPHICAL ABSTRACT

Introduction

Breast cancer (BC) is the malignancy with the highest
incidence, and it represents the leading cause of cancer death
in women (Nader-Marta et al., 2022). Approximately
297,790 females in the United States will be diagnosed with
breast cancer in 2023, and more than 115 people die each day
from breast cancer (Siegel et al., 2023). As women’s social status
is increasing, so are the physical and psychological pressures
they are under, which is one of the reasons for the rising
incidence of breast cancer. Human epidermal growth factor
receptor 2 (HER2)-positive breast cancer accounts for about
15%–20% of all breast tumors (Choong et al., 2020). Patients
with HER2-positive BC are more likely to experience recurrence
and metastasis, especially brain metastasis, leading to poor
survival outcomes (Oliveira et al., 2020; Olga Mart ´ınez-S ´
aez and Aleix Prat, 2021). HER2-positive metastatic breast
cancer (MBC), after failure of multiple lines of treatment, has
no effective solution.

Standard anti-HER2 drugs, especially those large in
molecular size (pertuzumab, trastuzumab, etc.), show limited
diffusion into the brain parenchyma due to the tight junctions
of the blood-brain barrier (BBB) and its heterogeneous
permeability to small and large molecules (Arvanitis et al.,
2020; Bailleux et al., 2021). Numerous clinical trials have

confirmed that tyrosine kinase inhibitors (TKIs), which are
small molecules, are promising anti-HER2 agents for MBC,
having the advantages of oral administration, multi-targeting,
and low toxicity (Xuhong et al., 2019). For instance, lapatinib,
the first reversible pan-HER TKI, has been approved for HER2-
positive MBC, but it is toxic and results in limited
improvement outcomes (Oliveira et al., 2020; Schlam and
Swain, 2021).

Efforts are underway to develop irreversible pan-HER TKIs,
such as pyrotinib, neratinib, and afatinib, to overcome drug
resistance partially caused by HER2 receptor mutations.
Patients with HER2-positive MBC are usually treated with
chemotherapy-based regimens. The PHOEBE trial (Xu et al.,
2021) and NALA trial (Saura et al., 2020) showed that
treatment with pyrotinib or neratinib combined with
capecitabine significantly prolongs progression-free survival
(PFS) of patients with HER2-positive MBC compared with the
use of lapatinib plus capecitabine, making these some of the
current options after failure of multiple lines of anti-HER2
therapy. This review focuses on the pathogenesis of HER2-
positive breast cancer, current standard treatments, the
mechanisms of approved irreversible TKIs, key clinical trials,
and the activity of irreversible TKIs in brain metastases to
provide scientific evidence on the regimen of irreversible pan-
HER TKIs plus chemotherapy for HER2-positive MBC patients.
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FIGURE 1
Mechanism of HER2 targeted drugs and EGFR family in breast cancer. Homo- or heterodimers of HER2 lead to the phosphorylation of tyrosine
kinase residues in domain IV and regulate various downstream signaling pathways. HER, Human epidermal growth factor receptor. EGFR, epidermal
growth factor receptor. T-DM1, trastuzumab emtansine.

FIGURE 2
Recommendations for HER2-positive MBC (Giordano et al., 2022). After the failure of multiple lines of treatment, there is insufficient evidence to
recommend one regimen over another due to the lack of head-to-head trials. HER2, Human epidermal growth factor receptor 2. T-DM1, trastuzumab
emtansine. T-Dxd, trastuzumab deruxtecan.
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Overview of the market

HER2-positive breast cancer

Breast cancer overexpressing HER2 has aggressive behavior and
is associated with a poor prognosis. HER2(ErbB2) is a
transmembrane protein encoded by the oncogene ErbB2 and
located on the long arm of chromosome 17 (Spector and
Blackwell, 2009; Xuhong et al., 2019). HER2 is part of the
epidermal growth factor receptor (EGFR/Erb) family of tyrosine
kinase receptors, which consists of four members-EGFR/HER1/
ErbB1, HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4-and is
closely related to cell proliferation, differentiation, migration, and
cancer development (Roskoski, 2019; Sabbah et al., 2020). The
extracellular domains of these receptors consist of four
components (I-IV). Domains I and III are involved in ligand
binding (except ErbB2/HER2), domain II takes part in dimer
formation, and domain IV (the carboxyterminal tail) contains
several tyrosine phosphorylation sites (Roskoski, 2019). It is
generally believed that the HER2 extracellular domain has no
known ligand due to its constitutively active conformation and is
activated primarily through forming homo- or heterodimers. These
dimers lead to phosphorylation of tyrosine kinase residues in
domain IV, which regulate various downstream signaling
pathways, for example, by activating phosphoinositide 3-kinase
(PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) pathways (Figure 1) (Butti et al., 2018; Xuhong et al.,
2019; Schlam and Swain, 2021). Activation of these downstream
signal leads to cancer cell proliferation, survival, angiogenesis,
cancer stem cell properties, metastasis, and drug resistance (Butti
et al., 2018; Wen et al., 2019; Shao et al., 2021).

Current standard treatments

HER2-positive BC patients are more likely to experience
metastasis, but at the same time, they have access to targeted
therapies. According to the CLEOPATRA (Swain et al., 2020)
and PERUSE trials (Bachelot et al., 2019), the combination of
taxane, trastuzumab, and pertuzumab is the current standard
first-line treatment for trastuzumab-sensitive, HER2-positive
MBC patients. The long-term safety and cardiac safety of
docetaxel, trastuzumab, and pertuzumab were demonstrated in
the overall population after a median 8-year follow-up period
(Swain et al., 2020). After progression on first-line trastuzumab
therapy, continued inhibition of the HER2 pathway may provide a
survival benefit, and therefore, it is recommended that second-line
anti-HER2-targeting agents continue to be used, with trastuzumab
deruxtecan (T-Dxd) being the preferred regimen (Giordano et al.,
2022). Other options include trastuzumab emtansine (T-DM1), and
the combination of TKIs with chemotherapy (Li and Jiang, 2022).
Based on a pivotal phase-III trial, the use of lapatinib in combination
with capecitabine improves PFS in patients with HER2-positive
MBC but has no significant impact on OS compared with using
capecitabine alone (Geyer et al., 2006). The results of the influential
EMILIA trial (Dieras et al., 2018) confirm the significant PFS and OS
benefits with single-agent T-DM1 compared with lapatinib in

combination with capecitabine, making this regimen one of the
standard international second-line anti-HER2 treatment options.
For those with HER2-positive, hormone receptor (HR)-positive
recurrent MBC, priority is given to anti-HER2 in combination
with chemotherapy or endocrine therapy (Figure 2) (Hua X.
et al., 2022).

Although first- and second-line treatment regimens based on
phase-III randomized controlled trials (RCTs) are well established,
there is still no standard regimen for patients with HER2-positive
advanced breast cancer who progress during or after second-line or
later HER2-targeted therapy (resistant to trastuzumab/pertuzumab
and T-DM1). The latest ASCO guidelines recommend that
clinicians should recommend anti-HER2-based therapy as third-
line, or further deprioritized, treatment (Giordano et al., 2022).
Some reversible pan-HER TKIs, such as lapatinib and tucatinib, will
lose their therapeutic effect and encounter resistance when
HER2 loses its cytoplasmic antibody binding site for its mutation
or truncation (Huang et al., 2020). Overall, after the failure of
multiple lines of treatment, there is insufficient evidence to
recommend one regimen over another due to the lack of head-
to-head trials.

Based on the significant phase-III clinical trials (PHOEBE (Xu
et al., 2021) and NALA (Saura et al., 2020)), irreversible pan-HER
TKIs, such as pyrotinib and neratinib, in combination with
capecitabine, may provide a survival benefit for patients with
HER2-positive MBC, making this an option after failure of
multiple lines of anti-HER2 therapy. Therefore, this paper
explores the implications of using irreversible TKIs in
combination with chemotherapy for the treatment of HER2-
positive MBC. Next, attention is first focused on the mechanisms
of irreversible TKIs currently approved for HER2-positive MBC.

Mechanisms of approved irreversible
TKIS

Three irreversible pan-HER TKIs are currently approved for the
treatment of HER2-positive MBC: pyrotinib, neratinib, and afatinib.

Pyrotinib

Pyrotinib (SHR-1258), an oral irreversible pan-HER TKI, was
first conditionally approved in China in 2018 in combination with
capecitabine for the treatment of patients with HER2-positive
advanced or metastatic BC (Xuhong et al., 2019). It is a small
molecule with activity against HER1(IC50: 5.6 nM), HER2(IC50:
8.1 nM), and HER4 (Ma et al., 2017). Studies have suggested that
pyrotinib is a potent and selective EGFR/HER2 dual inhibitor that
can effectively inhibit the proliferation of HER2+ BC cells in vivo/
in vitro (Li et al., 2017). By binding with the ATP-binding site of the
intracellular kinase region, pyrotinib inhibits the formation and
autophosphorylation of the ErbB family homodimers or
heterodimers (Xuhong et al., 2019). Another in vitro experiment
confirmed that pyrotinib significantly inhibits the proliferation,
invasion, and migration of breast cancer cells. It induces
G1 phase cell cycle arrest and downregulates the expression of
p-p65, p-Akt, and FOXC1. That is, pyrotinib primarily exerts its
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potent anti-tumor effects by blocking the activation of the Ras/
MAPK and PI3K/AKT signaling pathways (Wang C. et al., 2021).

Neratinib

Neratinib (HKI-272) is an oral, irreversible inhibitor of
HER1, HER2 and HER4 (Schlam and Swain, 2021). Neratinib
is the only TKI currently approved by the US FDA for early-stage
HER2+ BC and was approved in 2017 (Deeks, 2017). The
SUMMIT trial (Hyman et al., 2018) demonstrates that
neratinib exhibits maximum activity in patients with
HER2 mutant breast cancer, with missense mutations
involving extracellular and kinase domains, as well as kinase
domain insertions. Based on NEfERT-T (Awada et al., 2016),
NALA (Saura et al., 2020), and TBCRC022 (Freedman et al.,
2016) trials, neratinib was approved by the US FDA, in
combination with capecitabine, for patients with HER2+ MBC
who received at least two lines of anti-HER2 therapy (Schlam and
Swain, 2021). By covalently binding to Cys-773/805, a cysteine
residue in the ATP-binding pocket of the ErbB family (HER1/2/
4), neratinib inhibits the activation of the extracellular signal-
regulated kinase (ERK)/MAPK and PI3/Akt pathways and
reduces the expression of cyclin D1, while upregulating the
level of p27, ultimately leading to cell-cycle arrest and
decreased proliferative viability of cancer cells (Booth et al.,
2020; Smith et al., 2021). The IC50 values of neratinib
required to inhibit the receptor kinase EGFR, HER2 and
HER4 activity were 92, 59, and 19 nM, respectively (Kourie
et al., 2016). Neratinib can also inactivate PI3K and ERK
signaling by degrading MST4 through autophagy (Dent et al.,

2020). Neratinib not only effectively blocks the dimers of
HER2 receptors that have not yet formed, it also disrupts the
dimers of those that have already formed, thus enhancing the
anticancer activity (Oliveira et al., 2020). The reversible TKI
lapatinib is sensitive and resistant to the proliferation of some
cells that lack HER2 gene amplification but carry HER2 somatic
mutations. Neratinib can inhibit the growth of these cells (Xu
et al., 2017). In addition, neratinib has the ability to reverse
multidrug resistance. Furthermore, neratinib is considered to be
a sensitive substrate of CYP3A and is eliminated mainly by
hepatic metabolism (Yu et al., 2019).

Afatinib

Afatinib (BIBW2992) is the first oral irreversible EGFR family
blocker that can potently inhibit HER2, HER1(EGFR) and HER4.
It blocks signal initiated by ErbB family members from all homo-
and heterodimers (Harbeck et al., 2016; Hickish et al., 2022).
Afatinib monotherapy was approved by the US FDA for the first-
line treatment of patients with EGFR-mutant, metastatic non-
small-cell lung cancer (NSCLC) in July 2013 (Dungo and Keating,
2013). Afatinib is a transported substrate and inhibitor of the
ABC efflux transporters ABCB1 and ABCG2 (van Hoppe et al.,
2017). Although afatinib has been approved for NSCLC
treatment, it might be also beneficial for other tumors
containing the EGFR mutations as well. Preclinical data
suggest that afatinib shows activity in HER2+ MBC breast
cancer models (Hurvitz et al., 2014; Collins et al., 2021). The
IC50 of afatinib required to inhibit EGFR was found to be 1.6 nM
(Tu et al., 2016).

TABLE 1 Pharmacologic characteristics of three irreversible TKIs.

Drug Pyrotinib Neratinib Afatinib

Brand name Irene Nerlynx Gilotrif

Targets HER1; HER2; HER4 HER1; HER2; HER4 HER1, HER2, HER4

IC50(nM) 5.6; 8.1 92; 59; 19 1.6

Route of administration Oral oral oral

Recommended dose 400 mg once daily 240 mg once daily 40 mg once daily

Metabolism CYP3A4 CYP3A4 ABCB1, ABCG2

Molecular formula C32H31CIN6O3 C30H29CIN6O3 C24H25ClFN5O3

PubChem CID 51039030 9915743 10184653

3D-chemical structure

Note: HER, Human epidermal growth factor receptor; TKIs, tyrosine kinase inhibitors.
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TABLE 2 Key clinical trials of irreversible TKIs in combination with chemotherapy.

References ClinicalTrials.gov Study type Sample size Treatment mPFS (months) mOS (months) ORR (%) Location

irreversible TKIs + chemotherapy vs. reversible TKIs + chemotherapy

Xu et al. (2021) NCT03080805 III 267 Pyrotinib + capecitabine vs Lapatinib + capecitabine 12.5 vs 5.6 not reached vs 26.9 67.2 vs 51.5 China

Jacobson (2022) (PHOEBE) (134/133) HR: 0.48 (0.37, 0.63) HR: 0.69 (0.48, 0.98)

Ma et al. (2019) NCT02422199 II 128 (65/63) Pyrotinib + capecitabine vs Lapatinib + capecitabine 18.1 vs 7.0 not reached vs 29.9 78.5 vs 57.1 China

HR: 0.36 (0.23, 0.58)

Xie et al. (2021) NCT04850625 RCT 224 (92/132) Pyrotinib + vinorelbine vs Lapatinib + capecitabine 8.3 vs 5.0 not reached NR China

HR: 0.47 (0.34,0.65)

Yang and Wang (2021) NR RCT 164 (68/96) Pyrotinib + chemotherapy vs Lapatinib + chemotherapy 9.0 vs 6.2 NR 60.3 vs 34.4 China

HR: 0.58 (0.41, 0.83)

Saura et al. (2020) NCT01808573 (NALA) III 621 (307/314) Neratinib + capecitabine vs Lapatinib + capecitabine 8.8 vs 6.6 24.0 vs 22.2 32.8 vs 26.7 28 countries

HR: 0.76 (0.63, 0.93) HR: 0.88 (0.72, 1.07)

Martin et al. (2013) NCT00777101 II 233 (117/116) Neratinib vs Lapatinib + capecitabine 4.5 vs 6.8 19.7 vs 23.6 29.0 vs 40.5 multinational

HR: 1.19 (0.89, 1.60) HR: 1.25 (0.83, 1.86)

irreversible TKIs + chemotherapy vs other regimens

Yan et al. (2020) NCT02973737 (PHENIX) III 279 (185/94) Pyrotinib + capecitabine vs placebo + capecitabine 11.1 vs 4.1 not reached 68.6 vs 16.0 China

HR: 0.18 (0.13, 0.26)

Tian et al. (2022) NR RCT 20 (10/10) Pyrotinib + capecitabine vs capecitabine 18.5 vs 6.5 NR 80.0 vs 40.0 China

Pellerino et al. (2022) NR observational study 20 (10/10) Neratinib + capecitabine vs intrathecal ARA-C/+ WBRT 4.0 vs 1.0 10.0 vs 2.0 30.0 vs NR Italy

HR: 0.21

Cunningham et al. (2022) Ref. SE768 RCT 72 (45/27) Neratinib + capecitabine vs Neratinib 7.2 vs 2.9 18.9 vs 7.7 46.6 vs 25.9 London

HR: 0.38 (0.23, 0.65) HR: 0.42 (0.24, 0.72)

Awada et al. (2016) NCT00915018 (NEfERT-T) III 479 (242/237) Neratinib + paclitaxel vs trastuzumab + paclitaxel 12.9 vs 12.9 HR: 1.05 (0.76, 1.45) 74.8 vs 77.6 multinational

HR: 1.02 (0.81, 1.27)

Harbeck et al. (2016) NCT01125566 (LUX-Breast 1) III 508 (339/169) Afatinib + vinorelbine vs trastuzumab + vinorelbine 5.5 vs 5.6 20.5 vs 28.6 46.1 vs 47.0 multinational

HR: 1.10 (0.86, 1.41) HR: 1.48 (1.12, 1.95)

(Continued on following page)
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TABLE 2 (Continued) Key clinical trials of irreversible TKIs in combination with chemotherapy.

References ClinicalTrials.gov Study type Sample size Treatment mPFS (months) mOS (months) ORR (%) Location

Cortés et al. (2015) NCT01441596 (LUX-Breast 3) II 81 (38/43) Afatinib + vinorelbine vs treatment of physician’s choice 12.3 vs 18.4 37·3 vs 52.1 NR multinational

HR: 0.94 (0.57, 1.54) HR: 1.60 (0.93, 2.76)

irreversible TKIs + chemotherapy(single-arm)

Li et al. (2019) NCT02361112 I 28 Pyrotinib + capecitabine 22.1 (9.0, 26.2) NR 78.6 China

Yin et al. (2022) NR RWS 172 Pyrotinib + capecitabine 8.8 (6.47, 11.19) NR 61.0 China

Yan et al. (2022) NCT03691051 (PERMEATE) II 78 Pyrotinib + capecitabine 11.3 (7.7, 14.6) not reached 66.7 China

Hua et al. (2022b) NCT04899128 RWS 50 Pyrotinib + capecitabine/vinorelbine 8.0 (5.1, 10.9) not reached 17.1 China

Chen et al. (2020) NR RWS 133 Pyrotinib + capecitabine/abraxane 8.7 (7.04, 9.10) not reached 40.5 China

Zhang et al. (2021) ChiCTR1900021819 RWS 69 Pyrotinib + capecitabine 15.1 (10.0, 18.8) not reached 38.6 China

Wang and Huang (2022) NCT03876587 (PANDORA) II 79 Pyrotinib + docetaxel 15.0 (10.54, 19.53) NR 79.2 China

Li et al. (2021) NCT04517305 retrospective study 97 Pyrotinib + vinorelbine 7.8 (4.7, 10.8) not reached 34.3 China

Freedman et al. (2019) NCT01494662 (TBCRC022) II 49 Neratinib + capecitabine 5.5 (0.8, 18.8) 13.3 (2.2, 27.6) 44.9 multinational

Wang et al. (2021b) NCT03377387 Ib/II 34 Neratinib + capecitabine NR NR 27.3 United States

Saura et al. (2014) NCT00741260 I/II 105 Neratinib + capecitabine 9.8 (8.2, 16.8) NR 63.2 multinational

Chow et al. (2013) NCT00445458 I/II 110 Neratinib + paclitaxel 13.3 (11.1, 19.0) NR 72.7 multinational

Awada et al. (2013) NCT00706030 I/II 91 Neratinib + vinorelbine 11.2 (7.2, 15.2) NR 35.3 multinational

Hickish et al. (2022) NCT01271725 (LUX-Breast 2) II 87 Afatinib + vinorelbine/paclitaxel 8.9 (6.9, 12.0) NR 30.8 Asia & Europe

Note: TKIs, tyrosine kinase inhibitors; mPFS, median progression-free survival; mOS, median overall survival; ORR, objective response rate; RCT, randomized controlled trial; RWS, real-world study; NR, No report; HR, hazard ratio.
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The mechanisms of action of several TKIs are shown
schematically in Figure 1, and the pharmacological characteristics
of three HER2-targeted irreversible TKIs are shown in Table 1.

Key clinical trials

The mechanisms of action of the three irreversible TKIs were
previously briefly described, the paper next reviews a selection of
published clinical trials that used irreversible TKIs in combination
with chemotherapy for HER2-positive MBC to drive changes in
treatment patterns. The basic details of the key clinical trials and
common treatment-related adverse events (AEs) (Grade ≥3) are
shown in Table 2 and Table3, respectively.

Irreversible TKIs plus chemotherapy vs
reversible TKIs plus chemotherapy

The comparative efficacy of irreversible TKIs and reversible
TKIs is a point of interest for researchers. Five studies comparing the
efficacy and safety of irreversible TKIs plus chemotherapy with
reversible TKIs plus chemotherapy in patients with HER2-positive
MBC have been conducted.

The PHOEBE trial (Xu et al., 2021) (NCT03080805) is a well-
known phase-III trial assessing the efficacy of pyrotinib or lapatinib
plus capecitabine in patients with HER2-positive MBC who have
been previously treated with taxanes and trastuzumab. A total of
267 patients are enrolled. At the time of interim analysis, the results
showed that the median PFS (mPFS) was significantly improved in
the pyrotinib group compared with the lapatinib group (12.5 vs
6.8 months). The hazard ratio (HR) was 0.39 (95% CI [0.27, 0.56]),
which means that the risk of disease progression was reduced by
approximately 61% in the pyrotinib group. The most common-
treatment-related AEs classified as grade 3 or worse were diarrhea
(31% vs 8%) and hand–foot syndrome (16% vs 15%). In the
pyrotinib and lapatinib groups, one and two patients had died
from AEs, respectively, irrespective of their relations to
treatment. In the updated analysis (Jacobson, 2022), the 1-year
OS rates for the two groups were 66.6% and 58.8%, respectively.
Ma et al. also assessed the efficacy and tolerability of pyrotinib or
lapatinib plus capecitabine in HER2-positive MBC patients: the
objective response rates (ORRs) for the two arms were 78.5%
and 57.1%, respectively, and the mPFS values were 18.1 and
7.0 months (HR, 0.36; p < 0.001). T); the most frequent
treatment-related AEs were hand–foot syndrome (24.6% vs
20.6%), diarrhea (15.4% vs 4.8%), and a decreased neutrophil
count (9.2% vs 3.2%) (Ma et al., 2019). Based on the initial
findings from these trials, pyrotinib plus capecitabine significantly
improves the PFS and OS in patients with HER2-positive MBC
compared with lapatinib plus capecitabine, and both have a
manageable level of toxicity. This regimen was approved in
China as a second-line treatment for patients with HER2-positive
MBC in 2020.

In addition to capecitabine, vinorelbine, taxanes, and
gemcitabine are also commonly used chemotherapeutic agents in
this combination regimen. A multicenter, retrospective study (Xie
et al., 2021) screened 224 patients treated with pyrotinib plus

vinorelbine or lapatinib plus capecitabine. The pyrotinib group
exhibited a significant improvement in mPFS compared with the
lapatinib group (8.3 vs 5.0 months; HR, 0.47; p < 0.001), and the
mOS was not reached at the time of analysis. The most frequent
treatment-related AEs were diarrhea (23.9% vs 8.3%), hand–foot
syndrome (0% vs 4.5%), and increased alanine aminotransferase
(0% vs 2.3%). Yang and Wang (Yang and Wang, 2021)
retrospectively analyzed 164 patients with HER2-positive
metastatic or recurrent breast cancer. After unsuccessful first-line
trastuzumab treatment, these patients were re-treated with either
pyrotinib or lapatinib in combination with chemotherapy. At the
time of interim analysis, the pyrotinib group showed a significant
improvement in ORR compared with the lapatinib group (60.3% vs
34.4%), and the mPFS was also prolonged (9.0 months vs
6.2 months). The incidence of diarrhea was high in both groups
(81.5% vs 72.2%) but was mainly classified as grade 1 to 2, and the
incidence of hand–foot syndrome was higher in the lapatinib group
(20% vs 46.7%).

The NALA trial (Saura et al., 2020) (NCT01808573) is a
multinational phase-III trial comparing the efficacy of neratinib
or lapatinib plus capecitabine in 621 patients with HER2-positive
MBC previously treated with at least two HER2-targeted
regimens. At the cutoff date, the mPFS was significantly
improved in the neratinib group, the mean difference being
2.2 months (HR, 0.76; p = 0.0059). Although a longer OS was
observed in the neratinib arm (24.0 vs 22.2 months), the difference
was not statistically significant (HR, 0.88; p = 0.2086). The ORRs
for the two groups were 32.8% and 26.7%, respectively (p =
0.1201). Diarrhea (24.4% vs 12.5%), hand–foot syndrome (9.6%
vs 11.3%), and vomiting were the most common AEs. The results
of the pan-Asian subgroup analysis in the NALA trial were
consistent with the efficacy observed in the overall study
population (Dai et al., 2021). Based on the NALA trial, Saura
et al. (Saura et al., 2021) explored the correlation between
biomarkers and PFS. The results confirmed that both PIK3CA
mutations and HER2 expression were associated with PFS, with
the former being negatively correlated and the latter positively
correlated. Notably, back in 2013, Martin et al. (Martin et al.,
2013) compared the efficacy of treatment with neratinib alone
compared with the use of lapatinib plus capecitabine in patients
with HER2+MBC. The results of this study were considered
inconclusive, as the non-inferiority of neratinib was not
significant (HR, 1.19). However, it provided preliminary
confirmation of the clinical activity and tolerability of neratinib
in patients with recurrent HER2-positive MBC.

To further validate the results of the above clinical trials, the
combined effect sizes for the primary endpoints mPFS, ORR, and the
most frequent grade ≥3 AEs (diarrhea and hand–foot syndrome)
were calculated by stata14.0 software for the five RCTs described
above. The combined effect size of HR for mPFS was 0.53 (95% CI
[0.46, 0.6]; p = 0.007) (Supplementary Figure S1), implying a
reduction in the risk of disease progression of approximately 47%
in the irreversible TKI groups compared with the reversible TKI
groups. The combined effect size of HR for mPFS for the four
pyrotinib-related studies was 0.47 (95% CI [0.39, 0.55]), which
seems to suggest that pyrotinib has better efficacy than neratinib
in terms of improving mPFS. The risk ratio (RR) for ORR was 1.31
(95% CI [1.16, 1.49]) (Supplementary Figure S2), meaning that the
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ORR of the irreversible TKI groups was approximately 31% higher
than the ORR of the reversible TKI groups. The RR for diarrhea and
hand-foot syndrome (grade ≥3) was 2.29 (95% CI [1.77, 2.95]) and
0.82 (95% CI [0.61, 1.11]), respectively (Supplementary Figures S3,
S4). These results suggest that diarrhea is a common adverse event
for pyrotinib and neratinib, with an incidence approximately two
times higher than that of lapatinib. Numerically, pyrotinib and
neratinib are less toxic to the skin of the hands and feet than
lapatinib, but there does not appear to be a significant difference.

In summary, the use of irreversible TKIs combined with
chemotherapy is more advantageous for the treatment of HER2-
positive MBC than reversible TKIs combined with chemotherapy
and it has a manageable level of toxicity. The most frequent
treatment-related AEs are diarrhea and hand–foot syndrome.
Treatment with irreversible TKIs reduces the risk of disease
progression by approximately 47% and improves the ORR by
approximately 31% compared with reversible TKIs. However, the
incidence of diarrhea with these is approximately twice that of

TABLE 3 Common treatment-related AEs (Grade ≥3) (%).

References Diarrhea Hand–foot syndrome Vomiting Neutropenia Leukopenia

irreversible TKIs + chemotherapy vs. reversible TKIs + chemotherapy

Xu et al. (2021) 31.0 vs 8.0 16.0 vs 15.0 6.0 vs 2.0 7.0 vs 5.0 8.0 vs 2.0

Ma et al. (2019) 15.4 vs 4.8 24.6 vs 20.6 4.6 vs 1.6 9.2 vs 3.2 7.7 vs 1.6

Xie et al. (2021) 23.9 vs 8.3 1.1 vs 0 1.1 vs 0.8 7.6 vs 5.3 4.3 vs 7.6

Yang and Wang (2021) 13.8 vs 12.2 3.1 vs 15.6 0 vs 4.4 1.5 vs 3.3 NR

Saura et al. (2020) 24.4 vs 12.5 9.6 vs 11.3 4.0 vs 1.9 NR NR

Martin et al. (2013) 28.0 vs 10.0 0 vs14.0 4.0 vs 2.0 2.0 vs 4.0 NR

irreversible TKIs + chemotherapy vs other regimens

Yan et al. (2020) 30.8 vs 12.8 15.7 vs 5.3 2.2 vs 1.1 3.8 vs 2.1 3.8 vs 2.1

Tian et al. (2022) 20.0 vs 20.0 10.0 vs 10.0 10.0 vs 10.0 NR NR

Pellerino et al. (2022) 20.0 vs NR 0 vs NR 10.0 vs.NR NR NR

Cunningham et al. (2022) 7.0 vs 11.0 4.4 vs 3.7 8.8 vs2.2 4.0 vs 0 4.0 vs 0

Awada et al. (2016) 30.4 vs 3.8 1.7 vs 3.8 2.5 vs 0.9 13 vs 14.5 8 vs 10.7

Harbeck et al. (2016) 19.0 vs 0 2.0 vs 0 3.0 vs 0 56.0 vs 60.0 19.0 vs 21.0

Cortés et al. (2015) 38.0 vs 10.0 0 vs 0 3.0 vs 0 81.0 vs 21.0 6.0 vs 5.0

irreversible TKIs + chemotherapy(single-arm)

Li et al. (2019) 10.7 3.6 3.6 3.6 3.6

Yin et al. (2022) 16.0 1.3 0.6 9.0 7.1

Yan et al. (2022) 24.0 8.0 2.0 14.0 14.0

Hua et al. (2022b) 14.5 0 1.3 0 NR

Chen et al. (2020) 19.6 6.5 7.7 NR 7.7

Zhang et al. (2021) 4.7 0 0.8 2.4 0

Wang and Huang (2022) 21.5 NR NR 27.8 29.1

Li et al. (2021) 22.7 NR 1.0 7.2 4.1

Freedman et al. (2019) 29.0 0 4.0 0 0

Wang et al. (2021b) 4.5 0 NR NR NR

Saura et al. (2014) 23.0 12.0 0 NR NR

Chow et al. (2013) 29.0 3.0 2.0 20.0 18.0

Awada et al. (2013) 28.0 NR 39.0 46.0 17.0

Hickish et al. (2022) 8.0 4.0 4.0 38.0 0

Note: TKIs, tyrosine kinase inhibitors; NR, no report.
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reversible TKIs. There is no significant increase in toxicity to the skin
of the hands and feet.

Irreversible TKIs plus chemotherapy vs
other regimens

In addition to comparisons with reversible TKIs, some RCTs
involving the comparison of irreversible TKIs plus chemotherapy
with other regimens were collected. Two trials (Yan et al., 2020; Tian
et al., 2022) evaluated the efficacy of treatment with pyrotinib plus
capecitabine for HER2-positive MBC, and the data show that
patients treated with pyrotinib plus capecitabine had better
survival outcomes than those treated with capecitabine alone
(mPFS: HR, 0.18; ORR: 68.6% vs 16.0%). In the PHENIX trial
(Yan et al., 2020), 71 patients in the placebo group also subsequently
received pyrotinib, and the mPFS and ORR were significantly
improved. In addition, an in vitro test showed that pyrotinib can
enhance the radiosensitivity of HER2-positive breast cancer cells
(Tian et al., 2022). In line with the previous findings, the most
frequent treatment-related AEs for pyrotinib were diarrhea and
hand–foot syndrome. Two trials reported that treatment with
neratinib plus capecitabine is useful for HER2-positive breast
cancer with brain metastases (Cunningham et al., 2022; Pellerino
et al., 2022). The results for PFS, OS, and AEs are similar to data
from previous trials. Moreover, treatment with neratinib plus
capecitabine significantly improves survival outcomes compared
with the use of intrathecal Ara-C or whole-brain radiotherapy
(WBRT) (Pellerino et al., 2022). Findings from the NEfERT-T
(Awada et al., 2016) trial indicate that although the overall
efficacy of neratinib-paclitaxel and trastuzumab-paclitaxel is
similar, the neratinib-paclitaxel combination may delay central
nervous system (CNS) progression.

The LUX-Breast 1 (Harbeck et al., 2016), LUX-Breast 3 (Cortés
et al., 2015), and LUX-Breast 2 (Hickish et al., 2022) trials evaluated
the efficacy and safety of using afatinib plus vinorelbine for HER2-
positive MBC. However, the results show that treatments containing
afatinib do not improve patients’ PFS or OS, and the frequency of
AEs is high (Table 3). For instance, LUX-Breast 1, an open-label
phase-III trial, demonstrated similar mPFS outcomes with afatinib
or trastuzumab plus vinorelbine (5.5 vs 5.6 months; HR, 1.10; p =
0.43). In other words, afatinib failed to show a significant effect in the
treatment of HER2-positive MBC.

Overall, the use of irreversible TKIs, such as pyrotinib or
neratinib, in combination with chemotherapy, provides a greater
survival benefit than other regimens for patients with HER2-positive
MBC, and the data are consistent with the results of previous clinical
trials. However, the efficacy of afatinib is yet to be validated. Due to
the high heterogeneity of the control group regimens, the combined
effect sizes for the primary endpoints were not calculated and
compared in this section.

Single-arm studies of irreversible TKIs plus
chemotherapy

Several representative single-arm studies were also
summarized here to further demonstrate the efficacy and

safety of irreversible TKIs in combination with chemotherapy
for HER2-positive MBC, including eight studies on pyrotinib (Li
et al., 2019; Chen et al., 2020; Li et al., 2021; Zhang et al., 2021;
Hua Y. et al., 2022; Wang and Huang, 2022; Yan et al., 2022; Yin
et al., 2022), five studies on neratinib (Awada et al., 2013; Chow
et al., 2013; Saura et al., 2014; Freedman et al., 2019; Wang R.
et al., 2021), and one study on afatinib (Hickish et al., 2022).
Similarly, the pooled effect sizes for mPFS and ORR were
statistically analyzed for these single-arm studies. The pooled
mPFS values of pyrotinib and neratinib are 10.69 months (95% CI
[8.67, 12.71]) and 11.14 months (95% CI [8.84, 13.43]),
respectively (Supplementary Figures S5, S6), and the pooled
ORRs are 51% (95% CI [37%, 66%]) and 49% (95% CI [32%,
67%]), respectively (Supplementary Figures S7, S8). These results
are largely consistent with the previous studies. However, the
quality of the evidence is low, as all of these were single-arm
studies with small sample sizes.

To summarize, the findings from the abovementioned
published clinical trials suggest that irreversible TKIs plus
chemotherapy are more beneficial than reversible TKIs plus
chemotherapy or other regimens for improving clinical
outcomes and survival rates in patients with HER2-positive
MBC. The most frequent AEs are diarrhea and hand-foot
syndrome, but the incidence of grade ≥3 is low with
manageable toxicity levels (Table 3). In addition, the most
well-established regimens are pyrotinib or neratinib, in
combination with capecitabine or other chemotherapeutic
agents such as vincristine and taxanes. In contrast, afatinib
failed to show significant activity in the treatment of HER2-
positive MBC. In the case of brain metastases, neratinib appears
to be superior to pyrotinib. And the activity of irreversible TKIs
against brain metastases will be further explored in the next
section.

FIGURE 3
Hematogenous metastasis of breast cancer cells to the brain.
Tumor cells cross the BBB and then proliferate around the blood
vessels, stimulating neoangiogenesis, disrupting the BBB, and
eventually forming the BTB. BBB, blood-brain barrier. BTB, blood
tumor barrier.
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Activity of irreversible TKIS in brain
metastases

Brain metastases occur in up to 50% of patients with HER2-
positive breast cancers. Due to the low penetration of the CNS,
the efficacy of many drugs is limited, resulting in an extremely
poor prognosis (Morgan et al., 2021; Schlam and Swain, 2021).
Mechanistically, after undergoing epithelial-mesenchymal
transition (EMT), breast cancer cells enter the bloodstream
where they survive, spread, exude, and implant into the CNS.
Tumor cells cross the blood-brain barrier (BBB) and then
proliferate around the blood vessels, stimulating
neoangiogenesis, disrupting the BBB, and eventually forming
the blood tumor barrier (BTB) (Figure 3) (Bailleux et al., 2021;
Corti et al., 2022).

Clinical data show that irreversible TKIs can be used against
CNS lesions in HER2-positive breast cancers. In a retrospective
study, the mPFS of patients with brain metastases in the pyrotinib
group was much longer than that in the lapatinib group
(6.5 months vs 3.5 months, p < 0.05) (Yang and Wang, 2021).
Furthermore, the use of pyrotinib together with radiotherapy can
significantly improve the PFS, ORR, and duration of response in
patients with HER2-positive breast cancer brain metastases
without causing serious AEs (Tian et al., 2022). Pellerino et al.
(Pellerino et al., 2022) demonstrated that HER2-positive breast
cancer patients with leptomeningeal metastases had a 70%
probability of receiving a neurological benefit after treatment
with neratinib plus capecitabine. Results from the CNS subgroup
analysis in NALA (Saura et al., 2020), TBCRC022 (Freedman
et al., 2019), and other trials (Hurvitz et al., 2021; Cunningham
et al., 2022) also showed that neratinib has an effect on CNS
lesions from HER2-positive MBC. The intervention probability
for CNS disease was lower in the neratinib group compared to the
lapatinib group (cumulative incidence, 22.8% vs 29.2%; p =
0.043)11. The mean PFS and OS were significantly longer in
the neratinib group than in the lapatinib group (HR: 0.66; 0.90).
Among patients with pre-existing CNS lesions at enrolment, the
confirmed intracranial ORRs were 26.3% (neratinib plus
capecitabine) and 15.4% (lapatinib plus capecitabine) (Hurvitz
et al., 2021). The NEfERT-T trial indicated that the neratinib-
paclitaxel combination reduced the incidence of CNS recurrences
(RR, 0.48; p = 0.002) and delayed brain metastasis (HR, 0.45; p =
0.004) (Awada et al., 2016).

By contrast, neratinib and pyrotinib appear to be numerically
more active than T-DM1 in the brain metastasis population. For
instance, the results of the KAMILLA trial, which investigated the
efficacy of T-DM1 in treating HER2-positive breast cancer with
brain metastases, showed that mPFS, mOS, and ORR were 5.5
(95% CI [5.3, 5.6]) months, 18.9 (95% CI [17.1, 21.3]) months, and
21.4% (95% CI [14.6, 29.6]), respectively (Montemurro et al.,
2020). The low response rate to the treatment of brain metastases
is due to the presence of BBB and BTB limiting the penetration of
anti-tumor drugs into the brain. As previously mentioned, there is
a difference in the permeability of the BBB and BTB to small and
large molecules, with larger molecule size of anti-HER2 drugs,
such as trastuzumab, being more difficult to diffuse into the brain
parenchyma than smaller molecule size of TKIs, such as neratinib
(Bailleux et al., 2021; Mo et al., 2021). Additionally, neratinib

promotes ferroptosis, a non-apoptotic form of cell death, and
potently inhibits tumor proliferation and brain metastasis
(Nagpal et al., 2019).

In short, irreversible TKIs, particularly neratinib, lead to better
survival outcomes for HER-positive breast cancer patients with
brain metastases without adding additional AEs. However, there
is a lack of basic research on the treatment of brain metastases with
irreversible TKIs.

Discussion

Here, we consider that irreversible pan-HER TKIs may be a
promising salvage therapy for patients with HER2-positive MBC
after the failure of multiple lines of treatment. According to the
results of statistical analysis in our paper, treatment with irreversible
TKIs for patients with HER2-positive MBC reduces the risk of
disease progression by approximately 47% and improves the ORR
by approximately 31% compared with reversible TKIs. Primary or
secondary resistance to anti-HER2 therapies is the cause of most
treatment failures. Mechanistically, in addition to amplification,
HER2 somatic mutation is another mechanism to activate
HER2 in breast cancer, with somatic mutations clustered in the
extracellular domain of HER2 protein (20%) and the tyrosine kinase
domain (68%) (Bose et al., 2013). The mutation sites identified,
L755S and del.755-759, are resistant to lapatinib while sensitive to
the irreversible inhibitor, neratinib (Bose et al., 2013; Cocco et al.,
2018). In addition, irreversible TKIs covalently interact with Cys
residues at the ATP binding site and are less likely to develop
therapeutic resistance (Chang et al., 2022). Recent studies found that
the combination of irreversible pan-HER TKIs with anti-HER2
antibody-drug conjugates (ADCs), such T-DXd, enhanced
receptor ubiquitination, which in turn promoted ADCs
internalization and efficacy (Li et al., 2020).

With the increasing number of options for beyond-second-line
therapies of HER2-positive MBC, several key questions remain. The
overriding issues are the efficacy and toxicity of drug combinations.
Next is how to select effective TKIs based on the patients’ prior
HER2-directed therapies, as there may be cross-resistance. Another
issue of note is that brainmetastases are a huge challenge for modern
oncology, however, there are few reports of CNS-related outcomes
in current clinical trials.

Future research should explore new combination therapies, such as
the use of HER2-targeted drugs in combination with immune
checkpoint inhibitors, PI3K/Akt/mTOR signaling pathway inhibitors,
or CDK4/6 inhibitors, which may also lead to more effective and better
tolerable treatment options for patients with HER2-positive MBC.

Conclusion

In summary, irreversible pan-HER TKIs, such as pyrotinib
and neratinib, in combination with chemotherapy, represent a
beneficial salvage therapy for patients with HER2-positive MBC
after the failure of multiple lines of treatment, but their efficacy
and safety need to be assessed with more phase-III/IV clinical
trials and basic research. In contrast, afatinib failed to show
significant activity in the treatment of HER2-positive MBC.
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Additionally, these irreversible pan-HER TKIs might be
promising therapies for patients with brain metastases. Future
directions could explore new combination therapies and focus on
the safety of cross-dosing.
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