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Drug hepatotoxicity assessment is a relevant issue both in the course of drug
development as well as in the post marketing phase. The use of human relevant
in vitromodels in combinationwith powerful analyticalmethods (metabolomic analysis)
is a promising approach to anticipate, as well as to understand and investigate the
effects andmechanismsof drughepatotoxicity inman. Themetabolic profile analysis of
biological liver models treated with hepatotoxins, as compared to that of those treated
withnon-hepatotoxic compounds, providesuseful information for identifyingdisturbed
cellular metabolic reactions, pathways, and networks. This can later be used to
anticipate, as well to assess, the potential hepatotoxicity of new compounds.
However, the applicability of the metabolomic analysis to assess the hepatotoxicity
of drugs is complex and requires careful and systematic work, precise controls, wise
data preprocessing and appropriate biological interpretation to make meaningful
interpretations and/or predictions of drug hepatotoxicity. This review provides an
updated look at recent in vitro studies which used principally mass spectrometry-
based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the
principal drawbacks that still limit its general applicability in safety assessment
screenings. We discuss the analytical workflow, essential factors that need to be
considered and suggestions to overcome these drawbacks, as well as recent
advancements made in this rapidly growing field of research.
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1 Introduction

The success rate in pharmaceutical drug development is strongly linked to an early
detection of the potential undesirable effects of the new drug on humans. This has been
classically examined in the early preclinical phase by testing drugs on experimental animals.
Differences in the response of drugs in animals and in man, and, in particular, differences in
drug metabolism, bioactivation and disposition, stimulated the search for human relevant
experimental models that could replace the use of animals for human safety assessment and
prediction. In line with the 3Rs policy (replacement, reduction, refinement), drug toxicity in
humans is aimed to be detected across the drug discovery process without relying exclusively
on animal studies. Thus, there has been a big effort in the past decades for creating new
experimental methodologies that circumvent the use of animals for toxicological research,
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without compromising its accuracy. These non-animal strategies are
faster, cheaper and provide extensive and meaningful data regarding
both compound’s hazard and safety and are constantly evolving and
improving. They essentially integrate human relevant cellular
models and powerful analytical tools.

The use of omics approaches (particularly transcriptomics
and proteomics) to assess relevant changes in cells exposed to
new compounds, started many years ago, with variable success
(Kennedy, 2002; Joseph, 2017). More recently, technical advances
for the precise identification and quantitation of small molecules,
facilitated the offspring of metabolomics and its application in
drug discovery and development. This ‘omic’ has become
nowadays a relevant tool for toxicology and risk assessment.
Metabolomics involves the analysis of metabolites present in a
biological system, and its biological interpretation. The
information retrieved from the analysis of the metabolic
profile permits the identification of perturbed metabolic cell
reactions, pathways and networks, which are useful for the
evaluation of a pathological alteration or the consequences of
an external intervention, such as the exposure of cells to
xenobiotics/drugs. Metabolites are low molecular weight
organic molecules, usually less than 1,500 Da, covering a wide
range of structural, physicochemical properties and
concentration ranges. The metabolome of a cell includes
different classes of molecules such as amino acids, nucleosides,
fatty acids, lipids, phospholipids, sugars, steroids, organic acids
and many other entities that participate in the normal cell’s
metabolism (Patti et al., 2012; Johnson et al., 2016). Metabolites
can serve as building blocks for larger, more complex, molecules
or are the result of their catabolism. As such, they are directly
involved in a vast network of biochemical processes/reactions
taking place in cells. Thus, the metabolome is the direct result of
the biochemical activity of a living cell and can provide a
snapshot of the current status of cellular metabolism. In
general, the metabolome is more closely linked to the
immediate physiological state of the cell, tissue or organism,
while the proteome may provide information about longer-term
changes in cellular function and development (Fiehn, 2002).
Metabolites are not only the downstream products of genes,
mRNA and proteins, but they are also the result of other
signals (epigenome), governing the performance of cells. In
addition, metabolites back-regulate and affect the other
“omics” layers such as transcriptomics and proteomics
(Karczewski and Snyder, 2018).

The chemical space of metabolomics and its number is vast, but
with advances in analytical methods that improve sensitivity and
specificity, their detection is nowadays affordable. Indeed, there has
been an increase in the number of metabolites that can now be easily
detected and annotated. This makes it possible to identify and
analyze a significant and large number of metabolites, typically in
the range of hundreds, that are of great value to interpret the most
relevant alterations associated with the toxic insult of a particular
compound (Ramirez et al., 2013). Therefore, analyzing cell’s
metabolome provides a direct view of the changes associated
with the biochemical performance of a biological system
(Rodríguez-Morató et al., 2018). Nevertheless, this analysis is
limited to the subset of metabolites that are detected and
identified in the model systems.

Metabolomics has emerged, over the last 2 decades, as a mature
tool in toxicology, enabling us to obtain information about the
effects of xenobiotics on target organs and improving our
understanding of the modes of action of bioactive/toxic
compounds. Nowadays, metabolomics is recognized as a
powerful tool for assessing the positive and negative effects of
drugs under different exposure conditions (Ramirez et al., 2013).

Furthermore, the combination of metabolomics with in vitro
models represents a great step forward in the use of human-relevant
non-animal alternatives in toxicology. Using human relevant in vitro
models for hazard/risk assessment of pharmaceuticals offers several
advantages over in vivo studies. The strategy can be applied during
the early drug discovery phase, and the experimental conditions and
potential confounders are more manageable, providing greater
repeatability. Additionally, in vitro models require smaller sample
sizes and offer higher throughput at a more affordable cost
(Bellouard et al., 2022).

The liver plays a central role in the homeostasis of the whole
organism as well as plays a key role in drug metabolism and
biotransformation, with many active metabolic processes
susceptible to being altered after exposure to drugs. Drug
metabolism involves the chemical biotransformation of parent
drugs molecules, commonly through phase I reactions (catalyzed
by CYP450 and FMO enzymes) and phase II reactions (involving
conjugation reactions driven by UDP-glucuronosyltransferases,
sulfotransferases, N-acetyltransferases, glutathione S-transferases
and methyltransferases), leading to more hydrophilic, usually
inactive compounds, that are more readily excreted from the
liver into urine and feces (Vaja and Rana, 2020).
Notwithstanding, the results of biotransformation reactions can
be harmful. The resulting metabolites can be more toxic or
reactive, and these reactions can also generate intermediates that
may cause damage to hepatocytes or other cells in the liver.
Hepatotoxicity is typically associated with metabolic disturbances
in target liver cells. Therefore, it is possible that the deleterious
effects of a drug causing drug-induced liver injury (DILI) can
ultimately be observed through characteristic changes in the cell’s
metabolome (Moreno-Torres et al., 2022a).

Hence, one way to monitor the harmful effects of a xenobiotic on
hepatocytes is by examining the intracellular metabolome. In
addition, it can also be reflected in changes of the levels of
extracellular metabolites (exometabolome), which, in part, reflect
changes of the intracellular metabolome. Hence, it is also possible to
assess the occurrence of an in vivo DILI episode by monitoring liver
biomarkers in other biological fluids such as serum or urine,
obtained by non-invasive or minimally invasive procedures,
avoiding the need for liver biopsies for diagnostic purposes.
Although the metabolites released from hepatocytes after drug
exposure and injury are only a part of the altered
endometabolome, they can still serve as potential biomarkers for
hepatotoxicity in vivo DILI studies, as recent research has
demonstrated (Quintás et al., 2021). Metabolomics in vivo, is an
incidentally used strategy for identifying hepatic toxicity biomarkers
in different biological samples such as plasma, serum, urine, feces, or
tissue biopsies. However, it has the main limitation that these
samples are typically collected in the clinical setting only after
liver injury has already occurred and rarely at the time of the
peak event. Thus, determining whether metabolic changes
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observed in vivo are the either the cause or the result of a toxicity
event, represents a significant challenge in metabolomics (Luo et al.,
2021).

On the other hand, in vitro metabolomics can overcome the
limitations of in vivo studies and reveal early events following drug
exposure. This can lead to a better understanding of the sequence of
initiating molecular events that lead to the toxic effect, and ultimately
to the description of an adverse outcome pathway (AOP) that outlines
the sequence ofmolecular and cellular events of toxicity. Thus, in vitro
metabolomics is a valuable tool for screening hepatotoxicity both
in vitro and in vivo. However, due to its inherent complexity, in vitro
metabolomics presents drawbacks that can limit its general
applicability in safety assessment screenings.

In this review, we aim to provide an up-to-date overview of
recent in vitro hepatotoxicity studies that made use of metabolomics

to assess the potential hepatotoxicity of drugs. We have reviewed the
analytical workflow and the key factors that need to be improved to
overcome current limitations. We also discuss the progress that has
been made in terms of methods and practices in this emerging area
of research.

2 Metabolomics in vitro: the
experimental design for robustness and
data reproducibility

As mentioned before, metabolomics facilitates the
understanding of the biochemical phenomena occurring in cells
or tissues exposed to a potentially toxic compound. For this, it is
crucial to have a properly study design, the right experimental

FIGURE 1
Experimental workflow in metabolomic analysis.
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model, careful sample collection and processing, and appropriate
data analysis in order to accurately interpret the biological
significance of the results. Additionally, standardized procedures
and internal controls must be used to ensure reproducibility of data.

The whole strategy involves a series of sequential steps, that are
schematised in Figure 1 and typically involves the following steps: 1)
Sample collection, where biological samples are collected from the
study subjects according to the experimental design, 2) Metabolite
extraction, where depending on the nature of the sample and the
metabolites of interest different approaches such as solvent
extraction, protein precipitation and solid-phase extraction can
be used, 3) Data acquisition, various analytical techniques such
as GC or LC-MS are used to detect and quantify the metabolites
present in the prepared samples, 4) Data preprocessing, the
generated data is pre-processed for chromatographic peak
detection, alignment and normalization procedures to remove
sampling differences, batch effects or injection order-dependent
signal drifts, 5) Data processing with bioinformatic tools for the
identification and quantification of the detected metabolites and 6)
Biological interpretation which involves statistical analysis to
identify differences between groups and correlate metabolites
with biological processes or clinical outcomes as well as to
provide insights into metabolic pathways, biomarker discovery
and disease mechanisms. Key to this strategy is to ensure a
proper identification of metabolites that are representative of the
cell’s targets, signaling pathways, and biochemical pathways,
relevant for toxicity evaluation.

2.1 Experimental models for in vitro
hepatotoxicity assessment

The results and significance of metabolomic analysis done
in vitro are largely dependent on the characteristics of the
different hepatic cell types used and their specific requirements.

Experimental in vitromodels comprise a wide range of cell types
and culture procedures, including primary hepatocyte cultures,
differentiated hepatic cell lines, stem cell derived hepatocytes,
cultured on two- (2D) or three-dimensional (3D) formats, which
can significantly influence the outcome of the experiment.
Toxicology assessments through in vitro metabolomic analysis
require striking a balance between using liver cell models with
appropriate metabolic capabilities, while ensuring their ease of
handling and reproducibility of data. Hepatic cell types can
exhibit significant variations in their metabolic performance (Kim
et al., 2014; Cuykx et al., 2018), which can be further influenced by
various culture conditions, such as cell passage, senescence level, and
differentiation status (Moreno-Torres et al., 2021). These factors
should be considered when designing metabolomics studies to
ensure the reliability of the results.

Despite the potential of in vitro metabolomics to assess liver
toxicity, its use is still infrequent, as indicated by the scarcity of
research papers on this subject. Several in vitro models have been
used for investigating the hepatic metabolism of drugs and
xenobiotics and their potential hepatotoxic effects by means of
metabolomic analysis. Primary Human Hepatocytes (PHHs) are
considered the gold standard of vitro models for predicting in vivo
metabolism because they can mimic hepatic metabolic reactions,

including those catalyzed by cytochrome P450 (CYP) enzymes and
by flavin-containing monooxygenases (FMOs), as well as
conjugation with glucuronic acid, sulfate, and glutathione to a
large extent. Among the 29 studies reviewed, only one utilized
PHHs as the model system (Xu et al., 2020). Although PHHs
serve as a valuable in vitro model for many applications, they
have several important limitations. One of the most significant
issues is their high inter-donor variability, which significantly
impairs data reproducibility and limits further bioinformatic data
analysis. Additionally, their in-time availability might be
problematic, they have a short lifespan and their metabolic
performance decays in vitro over time.

Immortalized hepatoma cell lines, such as L-02, derived from
normal embryonic liver cells and Huh-7 (a well differentiated cell
line derived from a human carcinoma) have also been used. HepaRG
(a cell line isolated from a cholangiocarcinoma, that can be
differentiated in vitro to adult hepatic cells) and HepG2 (a
differentiated cell line exhibiting epithelial-like morphology,
isolated from a hepatocellular carcinoma) are widely available
and have been used extensively in liver metabolism and
hepatotoxicity studies. L-02 cells are a cost-effective alternative to
PHHs for initial hepatotoxicity screening in humans. Among the
studies reviewed, L-02 cells have been frequently utilized to study
hepatotoxicity mechanisms due to their excellent proliferative
capacity and ability to perform typical liver cell functions (Cuykx
et al., 2019a; Hu et al., 2019; Zhao et al., 2019; Dong et al., 2020; Liu
et al., 2020; Wang et al., 2020; Zhang et al., 2020; Zhang et al., 2021).

HepaRG cell line is the second most used cellular model and is
generally considered as a good surrogate for PHHs when
investigating liver metabolism and detoxification (Rodrigues
et al., 2018; Cuykx et al., 2019a; Cuykx et al., 2019b; Seeger et al.,
2019; Manier et al., 2020; Bellouard et al., 2022; Iturrospe et al.,
2022). It presents low inter-batch variability and long-term stability
while expressing most liver-specific functions including CYP activity
and bile acid synthesis (Cuykx et al., 2018). HepaRG cells are dually
capable of being differentiated towards hepatocyte-like cells and to
biliary-like cells, mimicking the in vivo situation (Guillouzo et al.,
2007; Marion et al., 2010; Iturrospe et al., 2022). Furthermore,
HepaRG cells have also proven to be valuable for in vitro
cholestatic research (Anthérieu et al., 2012; Woolbright et al.,
2016; Rodrigues et al., 2018). However, previous results indicate
that the number of significantly altered metabolites in HepaRG
exposed to α-pyrrolidinobutiophenone (α-PBP) and α-
pyrrolidinoheptaphenone (α-PEP) is lower that in human liver
microsomes (HLM) or PHHs. This outcome could be attributed
to the capability of HepaRG cells to differentiate into hepatocyte-like
cells that exhibit significant levels of CYP3A4 expression, while their
expression of CYP2D6 is comparatively lower (Manier et al., 2020).

Despite HepG2 and Huh-7 display low biotransformation
capacities, they both have been used [Huh-7 (Liu et al., 2019;
Krajnc et al., 2020; Krause et al., 2021) and HepG2 (Chatterjee
et al., 2018; Luo et al., 2021; Moreno-Torres et al., 2021; Martínez-
Sena et al., 2023)] as in vitromodels for hepatic toxicity metabolomic
studies, because of their stability. When testing drug-induced
hepatotoxicity in vitro, 2D cell cultures are currently the most
commonly used culture system because of its simplicity in
handling and culture requirements. They are also easy to process,
quench and extract for further metabolomic analysis. However, the
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2D monolayer cell cultures do not fully reflect the features of
hepatocytes in vivo. This limitation influences the cell’s response
to drugs, potentially altering the drug’s mechanisms of action, or
boosting the cell’s resistance to the drug (Bonnans et al., 2014).
Additionally, some hepatotoxicity key events rely on interactions
between cells, a feature that is not well-displayed in 2D cultures.

Spheroids, a 3D cell culture technique that closely mimics the
cell status/environment within the liver, can produce results that
more accurately reflect the in vivo changes in metabolic pathways in
response to toxic compounds, as compared to 2D cell culture (Silva
et al., 2013). A 3D culture model can mimic more accurately the
microenvironment in which cells proliferate, aggregate, and
differentiate, leading to improved predictions of drug
hepatotoxicity on a cell, in particular, in repeated doses or long-
term toxicity. This is due to the model’s ability to resemble more
closely the organotypic histomorphology and microenvironment of
hepatocytes in the liver in vivo (Lv et al., 2017), the impact of
metabolic cooperation between different cell types on metabolic
profiling and long-term survival being metabolically competent. As
a result, 3D culture models are becoming increasingly popular
(Tung et al., 2011) and reduce, at the same time, the need for
animal testing in toxicity evaluations (Tutty et al., 2022). We found
that about 20% of the metabolomic-based hepatotoxicity studies
reviewed used 3D models involving either L-02 cell spheroids (Silva
et al., 2013) or HLMs (Wang et al., 2019; Goracci et al., 2020; Zhou
et al., 2020; Kim et al., 2021). Although 3D culture models offer
several advantages, such as improved physiological relevance, they
present greater difficulties in terms of their handling due to
variations in size, cell number, and cell composition.
Additionally, the minute amounts of metabolites produced by
spheroids pose a challenge for analytical tools, often pushing
them to the limits of their performance.

Research has shown that using 3D spheroid cultures of L-02 cells
to investigate the hepatotoxicity of perfluorooctanoic acid (PFOA)
through non-targeted metabolomics can provide valuable insights
into the chronic toxicity mechanisms of PFOA, that cannot be
uncovered in 2D monolayer models (Silva et al., 2013).

HLMs are capable of reactions catalyzed by membrane-bound
enzymes such as CYP enzymes, FMOs, and uridine 5′-diphospho-
glucuronosyltransferases (UGTs) which are among the most
relevant ones in drug metabolism. However, while HLMs provide
one of the most convenient ways to assess CYP-mediated
metabolism they hardly predict in vivo metabolism of phase II
metabolism other than glucuronidation, or the combination of both
phase I and II metabolism (Manier et al., 2020). These 3D
microtissues (MTs) biological matrices were used in an
innovative combination with a lipidomics approach and a
cheminformatic workflow for data analysis, aiming at anticipating
drug effects end points in an early discovery phase, mimicking
subchronic exposure conditions (Goracci et al., 2020). In a previous
study, MTs had already been characterized and validated for
predicting DILI which demonstrated to be superior to
cytotoxicity results in conventional 2D PHHs cell cultures
(Proctor et al., 2017).

To summarize, 2D cell models of cell lines are the easiest to
handle and most reproducible models for in vitro toxico-
metabolomic studies. However, they may not fully capture all
aspects of a specific type of hepatotoxicity, such as drug-induced

cholestasis. In such cases, 3D models may be more appropriate, but
researchers must be prepared to handle the increased complexity
and variability of these models during experimentation.

2.2 Experimental factors: concentration and
exposure times

When cells are exposed to a chemical, multiple metabolic
changes may occur. These specific changes will depend on the
chemical and biochemical effects (e.g., mode of action) of the
chemical, as well as on the concentration and the exposure time.
It is therefore important to determine for each cell system the
appropriate drug concentration and exposure time, in order to
assess the type of metabolic impact and the mechanism of
toxicity. The drug concentration used in the study should exceed
the lowest observed effect level (LOAEL) in vitro, but not cause
significant cell death. The objective is to select a concentration that
triggers the primary molecular events leading to toxicity, without
surpassing a threshold that produces metabolomic signals linked to
overall cytotoxicity and significant cell death. Thus, it is
recommended to perform a dose toxicity curve prior to
conducting the studies, and it is advised that the concentration
chosen for metabolomic hepatotoxicity assessment should not reach
IC50 level. In the studies reviewed, a range of concentrations were
usually tested, and cytotoxicity was prior assessed using different
endpoints, such asMTT (Rodrigues et al., 2018; Hu et al., 2019; Zhao
et al., 2019; Liu et al., 2020; Zhang et al., 2020; Bellouard et al., 2022;
Martínez-Sena et al., 2023), neutral red uptake (Cuykx et al., 2019a;
Cuykx et al., 2019b; Iturrospe et al., 2022), CCK8 assay (Liu et al.,
2020; Xu et al., 2020; Luo et al., 2021), CytoTOX-ONE homogeneous
membrane integrity assay andWST-1 cell proliferation assay (Seeger
et al., 2019; Krause et al., 2021), Real Time-Glo Annexin V
Apoptosis, Necrosis reagent (Krajnc et al., 2020) or by measuring
the propidium iodide red fluorescence levels (Silva et al., 2013). The
concentration/toxicity curves acquired from cytotoxic assays are
also utilized to determine the point of departure (PoD), which is the
concentration leading to significant metabolic alterations in the
in vitro systems. Choosing a drug concentration for
metabolomics studies based on cell alteration end-points instead
of cell death outcomes is crucial. This approach allows for the early
identification of metabolic pathway changes associated with the
primary molecular events that lead to liver injury. By doing so, the
recorded events are specifically induced by the substance, rather
than being a result of overall cytotoxicity and cell death (Krajnc et al.,
2020). In fact, inhibitory concentrations such as IC10 or fractions of
these values are often preferred over IC50 for this purpose
(Rodrigues et al., 2018; Bellouard et al., 2022; Iturrospe et al., 2022).

When selecting the exposure concentration, it is also important
to consider other physiological factors, such as the route of
administration and distribution, and pharmacological factors,
such as Cmax, to prevent the use of unrealistic exposure
scenarios (Cuykx et al., 2019b). Lower, rather than high
concentrations are chosen to mimic real levels found in blood
and liver from treated-patients (Bellouard et al., 2022). Xu et al.
observed that N, N-dimethylformamide (DMF) treatment
significantly released ALT to culture media in a dose-dependent
manner and claimed that ALT might serve as a sensitive biomarker
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for DMF-induced liver injury, compared to cell viability that was
only affected at the highest concentrations (Xu et al., 2020).
Supplementary Table S1 summarizes the concentration ranges
analyzed in the reviewed results.

When assessing multiple drugs to compare their potency in
altering the cellular metabolome and intrinsic differences, it is
recommended to incubate them at the same concentration. This
concentration should not result in significant cell death in cultured
hepatocytes, regardless of the clinical Cmax differences of the drugs
(Goracci et al., 2020).

The toxic event, which progresses from molecular initiating
events to secondary events and ultimately results in severe cell
dysfunction and death, can be best described as a sequential
process occurring over time. So, apart from the effects that are
dependent on the dosage, there are also cellular metabolic alterations
that depend on time during the course of a toxic event. Therefore,
the duration of exposure is a crucial factor in in vitro metabolomics
toxicity studies. Thus, the timing usually selected to uncover such
molecular initiating events by means of metabolome alterations
typically ranges between 30 min and 24 h. Longer incubation times
can make it challenging to identify the early metabolic impairments
directly caused by the exposure to the drug. Nevertheless, longer-
term exposures are frequently studied, often in combination with
multiple time points, to examine the time-course variation of the
metabolome, to understand the sequence of molecular initiating
events leading to an adverse outcome pathway, and chronic toxicity
upon repeated exposure to a given compound (Silva et al., 2013;
Rodrigues et al., 2018; Cuykx et al., 2019b; Goracci et al., 2020).

2.3 Importance of including control and
negative reference compounds

A key aspect in drug-toxicity evaluation by in vitro
metabolomics is the importance of including data from both
non-hepatotoxic compounds as well as non-treated cells (Cuykx
et al., 2019b). Precautions should be taken to minimize confounding
signals that could be attributed to the experimental conditions rather
than to the substance being tested, given the dynamic nature of the
metabolome and its susceptibility to alteration by small external
stimuli. Culture conditions in vitro metabolomics studies, for
instance, are often overlooked but can be a significant source of
bias in the data, sometimes even more intense than the effects of the
drug being tested. Even the presence of a non-toxic bioactive
xenobiotic can cause metabolic alterations that need to be
distinguished from those caused by a hepatotoxic substance.
Without careful consideration and monitoring of these
confounding factors, the data obtained can be misleading in
interpreting the toxicity events. Comparing the metabolome of
cells exposed to a hepatotoxin and to a non-toxic negative
control can provide a first insight into the toxic mode of action.
However, due to the limited scope of small-scale experiments (e.g.,
one concentration, one time point exposure), this is not always done,
leading to great uncertainties on the predictive value of the observed
metabolic alterations. Cuykx et al. evaluated the metabolomic
impact of sodium saccharin which is considered a non-
hepatotoxic chemical and thus a suitable compound to identify
markers of xenobiotic exposure, not related to hepatotoxicity. They

observed that several lipids (n = 15) changed significantly, including
increased levels of triacylglycerols and decreasing levels of
phospholipids in the culture media (Cuykx et al., 2019b).
However, they identified common alterations between non-
hepatotoxic reference compounds used as negative control and
hepatotoxic compounds, which demonstrate the importance of
these controls to eliminate background and reduce false positive
results when investigating toxicological insults.

Martínez-Sena et al. (2023), incorporated larger numbers of
non-hepatotoxic compounds (citrate, ketotifen, 3-aminophenol,
ascorbic acid, betaine, dexamethasone, gentamicin, glucose,
lactose and N-acetylcysteine) in their experimental design.
Interestingly, metabolic alterations were detected with all these
non-hepatotoxic compounds, but the pattern of changes differed
from that of hepatotoxic compounds (Martínez-Sena et al., 2023).

Another aspect to consider in vitro metabolomic analysis is the
occurrence of hyperosmolarity which is a consequence of a too high
concentration of the xenobiotic being assayed. This phenomenon
has been described for human cell cultures as leading to altered levels
of intracellular monosaccharides and amino acids which allows the
cell to equilibrate the osmotic balance (Cuykx et al., 2019b). To
prevent biased selection of metabolites altered by a compound’s
mode of action, it is important to intentionally avoid hyperosmolar
concentrations. This is especially relevant in vitro experiments,
where concentrations can be easily increased beyond therapeutic
levels.

3 Sample preparation andmetabolomic
analysis

The optimization of cell processing to immediately block
metabolism and ensure proper extraction of cell metabolites for
further analysis, is essential to ensure robust, reproducible and
meaningful metabolomic data.

3.1 Quenching and extracting metabolites

Speeding up the process of extracting metabolites from cells
by quickly processing samples and halting or quenching
metabolic activity is critical. Commonly used quenching
methods in metabolomics studies include washing the culture
plates and adding pre-cooled methanol or acetonitrile, or rapidly
freezing the plates in liquid nitrogen. To minimize the
contamination of the endometabolome by the exometabolome
during the extraction process, it is crucial to perform quenching
rapidly and with care to avoid metabolite leakage. Once
quenched, the cells are typically transferred to eppendorf
tubes for further processing.

It is often recommended to include a prior washing step, such as
rinsing culture plates with cold PBS immediately before quenching,
to minimize carryover effects. Introducing a washing step when
using adherent 2D cultures is simpler since it can be done very
quickly before quenching. However, the impact of the washes on
metabolite leakage in suspended cells or spheroids that require a
centrifugation step must be thoroughly examined. Adding a washing
step in cell suspension or 3D cultures also comes with potential
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drawbacks such as the unavoidable larger quenching time frame
(Kapoore and Vaidyanathan, 2016).

To extract metabolites, various factors need to be considered,
such as the physicochemical properties of metabolites, including
their solubility in polar and nonpolar solvents, and their
molecular size.

Standard operating procedures with optimized extraction
processes including internal standards for quality control of
the process are critical and should be rigorously applied to all
samples to obtain reproducible results. Solvent mixtures
containing methanol, acetonitrile and/or chloroform, with or
without water, are commonly used for metabolite extraction in
the in vitro toxicometabolomic studies reviewed. Biphasic solvent
systems, such as methanol/chloroform/water, offer several
advantages over single-phase solvent systems. By extracting
both polar and non-polar metabolites in a single sample, this
method can reduce variability caused by analyzing them
separately. Following centrifugation, both fractions can be
analyzed separately providing a better metabolomic coverage
(Kapoore and Vaidyanathan, 2016). However, optimized
methods tailored to the specific type of matrix and target
metabolites may be necessary to achieve the optimal results in
targeted analysis (Lin et al., 2007; Chen et al., 2013; Medina et al.,
2020; Yan et al., 2020).

3.2 Sample analysis

In metabolomics studies of hepatotoxicity, there are two main
strategies: targeted and untargeted. Targeted approaches focus on
measuring and quantifying specific metabolites, while untargeted
approaches aim to gather as much metabolic information as
possible. In the case of mass spectrometry (MS)- based
metabolomics, several strategies are use, e.g., desorption
electrospray ionization mass spectrometry (DESI-MS) or flow
injection analysis-MS (FIA-MS), or in combination with
separation techniques such as gas chromatography-mass
spectrometry (GC-MS), liquid chromatography-mass
spectrometry (LC-MS), or capillary electrophoresis-MS (CE-MS),
to increase separation and better identification and quantitation of
the metabolites present in a cell extract (Pitt, 2009; Moros et al.,
2017; Seeger et al., 2019; Dong et al., 2020).

In order to maximize the effectiveness of in vitro metabolomic
studies for hepatotoxicity, it is important to have a comprehensive
coverage of the cell’s metabolome. However, due to practical
limitations, a balance must be achieved between comprehensiveness
and feasibility. A common approach involved the combination of
complementary analytical methods or separation techniques aiming at
specific metabolic classes (e.g., lipids, amino acids).

Cuykx et al. employed a combination of reversed phase
(C19 column) and hydrophilic interaction liquid
chromatography (HILIC) chromatography for a better
coverage of the metabolome in the non-polar and polar
fractions, respectively (Cuykx et al., 2019a; Cuykx et al.,
2019b). Liu et al. (Liu et al., 2020) evaluated the sensitivity
and reproducibility of an HILIC method, assessed the
influence of mobile phase gradient, ionic strength and column
temperature and validated the method for glycolysis pathway

metabolites upon exposing Huh-7 cells to 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) (Goracci et al., 2020).
Dong et al., used also a combination of complementary
analytical methods including gas chromatography with flame
ionization detection (GC-FID) and MS (GC-MS) for fatty acid
analysis, LC-MS/MS for ceramide and sphingosine analysis and
1H-NMR to retrieve a global metabolic profile (Dong et al.,
2020). Iturrospe et al. used a headspace GC-FID to quantify
ethanol in cell media and a Drive-Tube Ion-Mobility (DTIM)-
QToF-MS for metabolomic and lipidomic analysis (Iturrospe
et al., 2022). Rodrigues et al. used an LC-MS/MS approach for the
determination of cholic acid and glycocholic acid and 1H NMR
for global metabolomic analysis of cell culture media (Rodrigues
et al., 2018).

3.3 Metabolite annotation

In order to interpret untargeted LC-MS data in a biological
context, it is necessary to annotate the detected features using
computational tools. However, the percentage of LC-MS features
annotated is typically lower than 20%. This limitation hampers
biochemical interpretation and identification of toxic events in
metabolomics studies.

This involves the comparison of mass fragmentation spectra
(MS/MS spectra) experimentally acquired in the study through data
dependent acquisition (DDA) or data independent acquisition
(DIA) against the spectral and retention time (RT) databases of
known or predicted metabolites. Several considerations are typically
accounted for, besides accurate mass and RT, which includes the
elimination of background signals, deisotoping, identification of
adduct peaks in MS spectra, and MS/MS fragmentation patterns
compared to databases or internal standards and the matching
degree estimated (see Figure 2).

Metabolite annotation in toxico-metabolomic studies has
been carried out using different mass spectra databases,
including HMDB (Rodrigues et al., 2018; Cuykx et al., 2019b;
Hu et al., 2019; Wang et al., 2019; Krajnc et al., 2020; Liu et al.,
2020; Xu et al., 2020; Zhang et al., 2020; Moreno-Torres et al.,
2021; Bellouard et al., 2022; Feng et al., 2022; Martínez-Sena et al.,
2023), METLIN (Cuykx et al., 2019a; Cuykx et al., 2019b; Manier
et al., 2020; Luo et al., 2021; Moreno-Torres et al., 2021; Bellouard
et al., 2022; Feng et al., 2022; Iturrospe et al., 2022; Martínez-Sena
et al., 2023), mzCloud (Silva et al., 2013; Hu et al., 2019; Zhao
et al., 2019; Xu et al., 2020; Zhang et al., 2020; Zhang et al., 2021),
KEGG (Hu et al., 2019; Zhao et al., 2019; Xu et al., 2020; Zhang
et al., 2020), NIST (Manier et al., 2020; Iturrospe et al., 2022),
GNPS (Iturrospe et al., 2022), LipidMaps or Chemspider (Cuykx
et al., 2019a; Cuykx et al., 2019b), Metware database (Liu et al.,
2020), LipidMatch, LipidHunter, MS-Finder, MassBank
(Iturrospe et al., 2022) or by comparing them with an in-
house library build through the analysis of available standards
(Goracci et al., 2020; Bellouard et al., 2022).

While community guidelines for metabolite identification have
already been published, their adoption has been limited due to the
diversity of LC-MS data acquisition methods and the use of non-
standardized manual curation workflows. Hence, there is a general
lack of a standardized reporting procedure for MS/MS spectra
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acquisition and metabolite annotation. Furthermore, it is often the
case that published results do not include detailed information on
the quality score for the match between experimental and database
peaks, the fragmentation conditions used, or the quality thresholds
used for the experimental spectra (Manier et al., 2020).

To assist with the reporting of annotation confidence levels, it
may be helpful to make raw data available for sharing through
platforms such as Metabolights and the Metabolomics Workbench.
Automated processing and easy-to-report parameters can also help
to streamline the annotation process. Several considerations should
be accounted for, besides accurate mass (AM) and retention time
(RT), which includes the elimination of background signals,
deisotoping, recognition of adduct peaks in spectra, and MS/MS
fragmentation pattern compared to databases or internal standards
and the matching degree estimated (Figure 2).

3.4 Profiling the exo- and endo-
metabolome

In some situations, analyzing the exometabolome (i.e., the
metabolites released by released cells), can be advantageous
because it allows direct assessment of the metabolome changes in
the culture media without disrupting the cell culture or extracting
the metabolites from the cellular matrix, simplifying the monitoring
of time-course events. While changes in the endometabolome, or

intracellular metabolites, may be reflected to some extent in the
exometabolome, this is not always the case. However,
exometabolome analysis can be very useful for assessing drug
metabolism and metabolic effects linked to toxic events, provided
that these metabolites are released from the cells and remain stable
in the culture media until sample collection and preprocessing.

Sample processing and methods for analyzing the
endometabolome and exometabolome differ. One major
challenge is the high concentration of nutritional components
present in culture media, such as amino acids, glucose,
nucleosides, and vitamins that can hinder the detection of
metabolic changes linked to the hepatotoxic events that can be
up to several orders of magnitude lower.

Several studies analyzed the exo-metabolome in culture media to
examine hepatotoxic effects of xenobiotics (Rodrigues et al., 2018;
Seeger et al., 2019; Wang et al., 2019; Goracci et al., 2020; Manier
et al., 2020; Xu et al., 2020; Yadav et al., 2020; Kim et al., 2021;
Iturrospe et al., 2022). Goracci et al. analyzed the culture media
supernatant to identify dronedarone, entacapone and metformin
metabolites using liver micro tissues competent in both Phase I and
II xenobiotic metabolism (Goracci et al., 2020). Other studies
performed media metabolite profiling for the study of drug
metabolism using incubations with recombinant CYPs or HLMs
(Wang et al., 2019; Yadav et al., 2020; Kim et al., 2021). Iturrospe
et al. used metabolomic data from cell culture media to quantify the
concentration of a hepatotoxic agent, in their case ethanol, pre and

FIGURE 2
Metabolite annotation. Several considerations should be accounted for besides accurate mass (AM) and retention time (RT). This includes
elimination of background signals (Kennedy, 2002), deisotoping (Joseph, 2017), recognition of adduct peaks in spectra (Patti et al., 2012) and mass
spectrometry/mass spectrometry (MS/MS) fragmentation pattern that is compared to in house or publicly available databases or internal standards, and
the matching degree is estimated (Johnson et al., 2016). Figure adapted from (Kim and Kang, 2021).
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post cellular incubations, to confirm the incorporation of the
xenobiotic into the cells (Iturrospe et al., 2022). Manier et al.
compared the alterations observed in the endometabolome and
exometabolome for the identification of biomarkers of
hepatotoxicity of the two new psychoactive substances α-PBP
and α-PEP, and concluded that the features found in cell culture
media in these experiments had better discriminant properties and
were more suitable biomarkers than the significant features found
within cells (Manier et al., 2020). Other studies also compared the
endometabolome and exometabolome (Seeger et al., 2019) by
metabolomics and lipidomics to assess the occurrence of
hepatotoxicity, with variable discriminating power (Rodrigues
et al., 2018; Xu et al., 2020).

The analysis of the exometabolome is a valuable tool for
evaluating drug-induced liver damage, particularly in cases where
obtaining a liver sample from DILI patients is not feasible for
medical and ethical reasons. The exometabolome results from

in vitro studies can provide insights into the metabolites that
may be also present in the serum or plasma of DILI patients.
However, it is crucial to ensure that the intracellular metabolites
of interest are released from hepatocytes during the course of an
hepatotoxic insult and remain stable in the blood, in order to be used
as reliable biomarkers for the diagnosis and monitoring of DILI.
Therefore, the potential clinical application of exometabolome
findings is evident and warrants further investigation (Moreno-
Torres et al., 2022a).

3.5 Main sources of variability in in vitro
testing

Obtaining reliable results in in vitro toxicology studies requires a
comprehensive understanding of the biological system and the
inclusion of controls for all potential influencing factors, such as

FIGURE 3
Sources of variability in metabolomics data from in vitro hepatotoxicity studies.
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cellular passage and processing batch (Moreno-Torres et al., 2021).
These studies often involve analyzing numerous samples under
various experimental conditions, presenting a significant
challenge in controlling the variability resulting from different
drugs, concentrations, incubation times, and analytical batches.
The main sources of variability in metabolomics data from
in vitro hepatotoxicity studies are summarized in Figure 3.

A key issue, common to all cellular systems, is the variability
introduced with the use of cultures of different cell passage
numbers. Failure to account for this, adds variability, reduces
the reproducibility and the power of downstream statistical
analysis. Moreno-Torres et al. examined the effects of cell
passage, sample processing batch, and instrumental batch
drifting on metabolomic profiles of a series of identical
samples, to examine how these factors interact (Moreno-
Torres et al., 2021). Results obtained showed that all these
factors influence on data reproducibility, with sample
processing batch and storage time being the most disruptive.

Sources of variation related to sample manipulation can be
minimized and partially controlled using well defined standard
operational procedures (SOPs). SOPs are lists of concise, step-by-
step written instructions, that document all the procedures followed
for data acquisition. SOPs are fundamental to maintain quality
control (QC) and quality assessment (QA) processes and
facilitate reproducible research within and across laboratories.
Although not frequently adopted in academic research
laboratories, one cannot sufficiently emphasize the importance of
defining and having a strict attrition to SOPs, even in academic
metabolomic studies. For example, using the same type of collection
tubes and processing methods for all samples to minimize
variability, the use quality control samples to detect and
normalize any variability, to store samples at a constant and
appropriate temperature and avoid temperature fluctuations, to
prevent exposure to moisture and oxygen which can lead to
oxidation and degradation of certain metabolites and to
standardize quenching procedures and temperature for all
samples, are strongly recommended. Furthermore, there are
several types of quality control samples that are typically used in
metabolomics analysis to ensure accuracy and reliability of
metabolomics data and helping to identify any sources of
variability or bias in the analytical process (Broadhurst et al.,
2018). In general, biological variations resulting from media
preparation, inoculum densities or pre-cultivation factors are
significantly higher than the analytical or instrumental variance.
To measure this variation, it is recommended to conduct
experiments with a sufficient number of biological replicates.
Studies reviewed have described a range of three to eighteen
replicates, with six being the most common number used.

The robustness of an in vitro metabolomics test system alone is
not enough to ensure the reliability and reproducibility of the data
obtained. Gradual variations in the LC-MS instrumental response
within and between batches can lead to unwanted and uncontrolled
data variation, ultimately reducing the repeatability and
reproducibility of the analysis, and difficulting the extraction of
biological information.

Changes in instrumental conditions such as inlet interface
contamination, ionization efficiency, mobile phase composition
or column performance, introduce a systematic bias in the

instrumental response, and can also reduce its precision. In this
situation, the signal retrieved for a given analyte is not only
dependent on the concentration in the sample, but also on the
relative position of the sample in the batch analysis. This so-called
within-batch effect, decreases the repeatability and reproducibility as
well as the discriminant power to detect relevant biological
responses, and difficults data interpretation and reuse. Batch
effects are often unavoidable and thus, a very active field of
research. To overcome this challenge, it is important to apply
post-acquisition chemometric techniques for batch correction to
achieve reliable high-throughput screening (Kuligowski et al.,
2014; Kuligowski et al., 2015). A common procedure involves the
use of pooled QC samples, distributed throughout the analytical
batch. The response obtained from the analysis of the QC is used
for the monitoring of the instrument stability (Silva et al., 2013;
Cuykx et al., 2019a; Cuykx et al., 2019b; Zhao et al., 2019; Liu
et al., 2020; Zhang et al., 2020; Bellouard et al., 2022; Feng et al.,
2022; Iturrospe et al., 2022). Furthermore, the analytical variation
in the response observed in pooled QC samples can be used to
model the instrumental drift and thereafter to correct the within-
batch effects. Principal component analysis (PCA) can be used to
conduct an unsupervised assessment of the batch effect in toxico-
metabolomic studies. This method generates new variables,
referred to as Principal Components (PCs), which effectively
capture the most important sources of variation in the data. By
summarizing these patterns, PCA enables a visual representation
of the structural characteristics in the data. The PCA scores as a
function of the injection order is shown in Figure 4. The scores of
the first PC accounting for 22% and 35% of the total variance
showed significant associations with the injection order and the
batch origin. These two sources of variation are evidenced in
Panel A and B, that illustrate trends in PCA scores as a function of
the injection order corresponding to within-batch effects, and
Panel B, where a tight clustering among batches indicative of a
between-batch effect respectively. On Panel A, the PCA of data
set before and after (left and right panels) within-batch effect
correction using support vector regressions (QC-SVRC) is
displayed. On Panel B the PCA of the dataset before and after
(left and right panels) QC correction for between batch effects is
represented. After QC normalization the observed within and
between batch clustering effects were no longer detected,
indicating a successful removal of both biases.

The elimination of batch effects is critical for reusing publicly
available data sets and for the merging of data acquired in different
time points, batches, instruments or laboratories.

Several linear (Manier et al., 2020) and non-linear strategies
(QC-Robust Smoothing Splines (QC-RSC) (Kirwan et al., 2013),
QC-Support vector regression correction (QC-SVRC)) (Kuligowski
et al., 2015; Moreno-Torres et al., 2021) have been proposed for the
modeling of within-batch effects.

Information retrieved from the analysis of QCs can also be used
to identify unreliable features showing RSD% or MSD% higher than
a user-selected threshold (typically in the 10%–20% range).

Goracci et al. identified the batch effect as one of the most critical
issues in metabolomic applications when used for screening
purposes (Goracci et al., 2020). Goracci et al. conducted a study
that mimicked real-world conditions by spreading the drug
treatments and analyses over a 6-month period, divided into four
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batches. This approach not only involved variation in UHPLC-MS
instrumental performance but also included human liver MTs
produced in different batches from the same cell lots. Principal
Component Analysis (PCA) allowed the identification of the batch
as the main source of variation. To correct for this batch effect, they
performed an automatic merging of lipid profiles from replicates,
followed by subtraction of the lipid profile of each control of the
corresponding treated sample, on a given day of treatment.

Despite the importance of the use of QC in untargeted
metabolomics, few authors make use of this correction
(Moreno-Torres et al., 2021; Iturrospe et al., 2022; Martínez-

Sena et al., 2023). Nine reviewed publications did not report
the utilization of QC samples for data normalization (Silva
et al., 2013; Cuykx et al., 2019a; Cuykx et al., 2019b; Hu et al.,
2019; Zhao et al., 2019; Luo et al., 2021; Zhang et al., 2021;
Bellouard et al., 2022; Feng et al., 2022) and even
16 publications did not include QCs in their analysis (see
Supplementary Table S2). Therefore, standardizing protocols for
QA/QC in toxico-metabolomics is crucial for improving the
quality and reproducibility of data in this type of studies, and
to facilitate the joint analysis and re-use of data from different
studies and sources.

FIGURE 4
Within and between batch effect correction using QC samples. PCA scores as a function of the injection order calculated for QCs in the example
data set before (left) and after (right) QC-SVRC correction (A) for within batch effect elimination or QC normalization (B) for inter batch effect elimination.
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3.6 Data normalization

Data normalization helps minimize the impact of non-biological
factors on metabolite concentration and is essential in any toxico-
metabolomic study.

Normalization is crucial for accurately analyzing and comparing
in vitro metabolomics data as it corrects for errors and slight
variations caused by factors such as changes in the number of
living cells, cell harvesting, sample processing, and detection
sensitivity. There are two general strategies for normalization. Pre-
acquisition normalization, involves normalizing the extracted
metabolome to a metric that is expected to have an even spurious
influence on all of the metabolite signals retrieved from a sample
using, for example, the cell number. Finally, it is important to ensure
that the chosen cell sample is an accurate representation of the entire
cell population. However, during the process of scraping or
trypsinization, some cells are inevitably lost, leading to changes in
the metabolic pattern and reducing the accuracy of normalization
(Wu and Li, 2016). Additionally, cells within the sample may have
differing physiological states, and therefore may not precisely reflect
the metabolic status of the whole population (Kapoore et al., 2015).
Alternative normalization factors employed include the diameter of
spheroids in 3D models (Goracci et al., 2020), total DNA content,
image cell counting of culture plate attached cells by micrograph
digitalization or normalization to dry cell weight (DCW) (Seeger et al.,
2019) and total protein content (Zhang et al., 2022). Normalization to
DCW can be problematic because it is a time-consuming process,
requires a large number of samples, and it can introduce a significant
amount of weighing errors. Normalization to protein content has
shown poor correlation to cell number in some cases (Silva et al.,
2013). Both approaches require separate samples which might
introduce bias and reduce the accuracy of the normalization.

On the other hand, post-acquisition options for normalization
are based on the retrieved metabolic profiles. These include the use
of the peak area normalized to the internal standards (Wang et al.,
2019; Manier et al., 2020), the use of the total area of the spectrum
(Chatterjee et al., 2018; Xu et al., 2020; Luo et al., 2021), a
probabilistic quotient normalization (Cuykx et al., 2018) by the
median of the QC pooled samples (Iturrospe et al., 2022), or by the
MS total useful signal from the NOREVA online software (Bellouard
et al., 2022).

Despite the impact that normalization may have in correcting
the noise from external variating factors, most reviewed results did
not include a normalization step in their data processing pipeline
(Cuykx et al., 2019b; Hu et al., 2019; Krajnc et al., 2020; Liu et al.,
2020; Wang et al., 2020; Yadav et al., 2020; Zhang et al., 2020; Zhou
et al., 2020; Kim et al., 2021; Krause et al., 2021; Zhang et al., 2021;
Feng et al., 2022).

4 Identification of biomarkers and
metabolic pathways in drug
hepatotoxicity assessment

Several metabolites emerge as biomarkers of hepatocyte injury
from metabolomic studies on hepatotoxicity and are gathered in
Supplementary Table S3. It contains a compilation of hepatotoxic
compounds assayed, metabolites altered, and the altered metabolic

pathways so far involved. Figure 5 summarizes the observations of
the toxicity papers reviewed with the most commonly perturbed
metabolites and metabolic pathways.

Of all metabolites so far reported, carnitine and acylcarnitines
were consistently the most repeatedly identified biomarkers in the
course of many hepatotoxic events. The tendency reported in the
different studies is not always consistent, increasing in some studies,
while decreasing in others. Carnitine, a N-methylated γ amino acid,
is responsible for transporting fatty acids across the inner
mitochondrial membrane for beta-oxidation. There is a link
between plasma levels of carnitine and mitochondrial dysfunction
(Adeva-Andany et al., 2017) and acylated carnitines have been
related to steatogenic processes (Meissen et al., 2015; Olsvik
et al., 2017). Although carnitine appears as the most frequently
altered metabolite, the metabolic pathway of carnitine synthesis
appeared significantly altered, only in two investigations (Xu et al.,
2020; Zhang et al., 2020).

The second most commonly altered metabolite is glutathione,
either in the reduced or in the oxidized state and the metabolic
pathway of glutathione (GSH) metabolism appeared altered in
8 studies. GSH homeostasis is largely regulated in the liver and
plays a major role as an antioxidant and cell-signaling regulator
(Ten-Doménech et al., 2022). It has been found to be an essential
element for detoxifying free radicals and reactive oxygen species
(ROS), thereby serving as the primary defense against oxidative
stress induced by cellular respiration in the mitochondria of cells
(Ten-Doménech et al., 2022). It also plays a crucial role in defending
the cell against drug-derived radical or reactive oxygen species
emerging in the course of an hepatotoxicity event (Güntherberg
and Rost, 1966). A decreased level of GSH makes hepatocytes more
vulnerable to oxidative irreversible damage in the course of
hepatotoxicity. However, although a decreased GSH/GSSG ratio
has been defined as a hallmark for oxidative stress, it is not exclusive
or specific to hepatotoxicity. Despite its high interest, GSH and
GSSG titration is challenged by the pre-analytical enzymatic- and
non-enzymatic GSH oxidation (Yuan and Kaplowitz, 2009). A
commonly used approach to prevent the oxidation of GSH
makes use of the Michael addition reaction for the alkylation of
the thiol group of GSH with N-ethylmaleimide (NEM) (Heidari
et al., 2015). Nonetheless, pre-analytical derivatization of the thiol
group is not used in the majority of the metabolomic studies
reviewed. Nonetheless, pre-analytical derivatization of the thiol
group is not used in the majority of the metabolomic studies
reviewed. Ophthalmic acid (L-γ-glutamyl-L-α-
aminobutyrylglycine), a tripeptide analog of glutathione in which
the cysteine group is replaced by L-2-aminobutyrate, is a good
indicator of oxidative stress, and is also altered in several of the
reviewed studies (Xu et al., 2020; Martínez-Sena et al., 2023).

Oxidative stress is also a downstream effect of other toxicological
molecular initiating events, for example, uncoupling of the
tricarboxylic acid cycle (TCA). Indeed it also appears to be
associated with altered levels of malic acid, succinic acid and citric
acid (Hu et al., 2019; Zhao et al., 2019; Liu et al., 2020; Xu et al., 2020;
Zhang et al., 2020; Luo et al., 2021; Moreno-Torres et al., 2021).

Additionally, the disruption of electron flow in the respiratory
chain due to an impaired mitochondrial respiration also leads to a
reduced reoxidation of NADH into NAD+, thereby reducing
oxidation of pyruvate by the pyruvate dehydrogenase complex.
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This consists of several enzymes. Collectively they transformpyruvate,
NAD+ and coenzyme A into acetyl-CoA, CO2, and NADH. The
conversion is crucial because acetyl-CoA then may be used in the
citric acid cycle to further fostering cellular respiration. The inability
to consume pyruvate alternatively results in its reduction to lactate,
causing lactic acidosis (Rodrigues et al., 2018; Hu et al., 2019; Zhao
et al., 2019; Dong et al., 2020;Wang et al., 2020; Zhang et al., 2020; Luo
et al., 2021; Moreno-Torres et al., 2022a; Feng et al., 2022). The higher
concentrations of acetate and lactate often recorded suggest an
elevated rate of glycolysis to counteract an impaired fatty acid
oxidation in the mitochondria, as a major source of energy (ATP)
in hepatocytes. The increase of acetoacetate levels, once again, denotes
a decrease in mitochondrial function (Begriche et al., 2011; Chatterjee
et al., 2018; Rodrigues et al., 2018; Luo et al., 2021).

Other biomarkers frequently associated with hepatotoxicity
events, although not fully specific, are choline and
phosphatidylcholines. Choline and its derivatives have many
functions, the most notable being a precursor for phospholipids
as well of signaling molecules. Phosphatidylcholines are a
structurally important component of cell membrane and essential
for their stability. They also participate in the biosynthesis of
S-adenosylmethionine. Phosphatidylcholines are needed for the
synthesis of VLDLs. Choline promotes fat transportation and
improves the utilization of fatty acids, preventing an abnormal

accumulation of fat in the liver (steatosis). A lack of choline
leads to the accumulation of lipids in the liver (Hensley et al.,
2000). As a therapeutic drug it is widely used for treating non-
alcoholic fatty liver disease, as well other liver disorders (Borges
Haubert et al., 2015). Choline had a preventive effect on oxidative
damage in mice (Li et al., 2016). Choline deficiency has been found
to be associated with the onset of liver cancer in rats (Inoue et al.,
2007). Lower levels of choline may result in steatosis induced by
certain medications. In that sense phosphocholine appeared
frequently altered in hepatotoxicity studies. Several of the studies
reviewed reported changes in different phospholipids, and although
no clear mechanism is established linking phospholipids changes to
DILI, mitochondrial dysfunction, oxidative damage, or
inflammation have been suggested. It is also possible that
excessive accumulation of phospholipids in tissues, especially in
hepatocytes, may be responsible for liver toxicity via vacuolization of
hepatocytes and necrosis (Iturrospe et al., 2022).

Liver damage can also lead to modifications in amino acid
metabolism, which is usually displayed as a decrease in the levels
of branched-chain amino acids and an increase in aromatic amino
acids. The decreased levels of leucine/isoleucine and valine observed
in several studies (Rodrigues et al., 2018; Zhao et al., 2019; Liu et al.,
2020; Feng et al., 2022), suggest their abnormal catabolism, which
implies amino acid imbalance.

FIGURE 5
Suggested connection between different identified metabolite markers of toxicity (orange squares) and the most reported metabolic pathways of
toxicity (green squares). Created with BioRender.com.
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Elevated levels of other amino acids have been also reported
(Chatterjee et al., 2018; Liu et al., 2019; Zhao et al., 2019; Wang et al.,
2020; Xu et al., 2020; Zhang et al., 2020; Luo et al., 2021; Bellouard
et al., 2022; Feng et al., 2022; Iturrospe et al., 2022; Martínez-Sena
et al., 2023) including arginine, lysine, phenylalanine, histidine,
tryptophan, methionine and alanine. Hepatocyte injury and
dysfunction interrupts active protein biosynthesis in the liver and
lack of their utilization, leading to increased levels of free amino
acids in both the liver and blood. The changes in the intracellular
concentrations of amino acids differed depending on the severity of
liver damage (Moreno-Torres et al., 2022a).

L-Glutamate is another amino acid that is commonly altered in
metabolomic hepatotoxicity studies. It reacts with ammonia,
catalyzed by glutamine synthetase to form non-toxic glutamine,
helping to decrease blood ammonia levels and preventing ammonia
encephalopathy (Bai et al., 2013). Research also indicates that
L-glutamate is able to prevent fatty liver in a cholesterol-fed
rabbit model (Yanni et al., 2010). Furthermore, glutamine is
involved in the biosynthesis of antioxidants such as GSH. Indeed,
it has been shown that supplementation with glutamine increases
the intracellular levels of GSH in the 3D L-02 spheroids (Zhang et al.,
2022).

Besides analyzing changes in individual metabolites, as
biomarkers of hepatotoxicity, the effects of any kind of stressor on
model organisms can be also evaluated at a higher integration level by
determining their influence on metabolic pathways. A metabolic
pathway is classically described as a series of linearly connected
chemical reactions that feed one another. The pathway starts with
one or more metabolites and, through a series of intermediates,
converts them into products. The metabolic pathway analysis aims
at identifying clusters of metabolites related to key cellular events and
metabolic networks and provides mechanistic insight into the
underlying biochemistry of differentially expressed metabolites.
However, metabolic pathways are not simple one-way roads,
rather they are part of a complex network of interactions. Based
on this view, each molecule becomes a node in this and in other
networks.When cells are exposed to toxicants, either these nodes may
change (altered metabolite concentration) or remain relatively
constant, or the connections originating from them may change
(altered metabolic flux). Since metabolic pathways are
interconnected, the perturbation of a single metabolite can affect
more than one metabolic pathway. By interpreting the perturbations
occurring upon drug treatment at the metabolic pathways level, a
more comprehensive understanding of the impact of drugs on the
complexity of cell’s metabolic networks can be achieved. Thus, it can
help identifying which metabolic pathways are most deeply involved
and perturbed in the course of an hepatotoxic event, and provide
valuable insight into the mechanisms and initiating molecular events
of the toxic event (Chong et al., 2019).

Moreno-Torres et al. and Martínez-Sena et al., evaluated
whether the analysis of the impact on a set of metabolic
pathways could constitute a characteristic metabolic
fingerprint of the different hepatotoxicity mechanisms
(Moreno-Torres et al., 2021; Martínez-Sena et al., 2023). This
view constitutes a further step in the in-depth data analysis of
metabolomics pathway analysis approaches. The proposed
method involves aligning the descriptors from two distinct
pathway analysis, resulting in two data matrices, X1 (m x k)

and X2 (m x k), which contain the descriptors for the m pathways
present. The use of a correlation-based analysis of results from
metabolic pathway analysis is proposed to compare pairs of
multidimensional pathway information matrices. In their
studies, output results from pathway analysis, which are the
-log10 (p-value), and the impact factor (estimated as the sum
of the importance measures of all metabolites in the pathway)
were used as k descriptors (i.e., coordinates) of the metabolic
pathway outcome (Kapoore and Vaidyanathan, 2016; Moreno-
Torres et al., 2021) (Figure 6). Both works utilized Mantel test on
the correlation of functional results from metabolic pathway
analysis (Figure 7). The Mantel test is based on the estimation
of the correlation between two matrices summarizing the results
from pathway analysis. First, the dissimilarity of the two original
data matrices is calculated. Then, the correlation between the two
vectors built after unfolding the upper triangular parts of the
dissimilarity matrices is calculated, and its statistical significance
is estimated by permutation testing. This involves randomly
permuting the elements in one of the two vectors and
calculating the correlation coefficient for each permutation.
This process is repeated multiple times to create an empirical
null distribution of the set of correlation coefficients. The one-
tailed (right) p-value, which represents the empirical estimate of
the statistical significance of the correlation coefficient, is
determined by calculating the proportion of permutations for
which the correlation coefficient value is greater than or equal to
the original statistic derived from non-permuted data as
previously described (Kapoore and Vaidyanathan, 2016;
Moreno-Torres et al., 2021). This correlation analysis among
pathway analysis descriptors suggested that, despite some
metabolic pathways are commonly altered across mechanisms,
the joint analysis of a set of pathways improves the identification
of toxicity mechanisms.

This approach has already been applied to the examination of
reproducibility in in vitrometabolomics studies (Moreno-Torres et al.,
2021), for the analysis of the generalization of the outcomes from
metabolomic studies, for the comparison of metabolic phenotypes,
and for the evaluation of the degree of differentiation of hepatocyte-
like cells (Moreno-Torres et al., 2022b), which demonstrates its
applicability and power as an additional source of information.
Together, these applications demonstrate the algorithm’s suitability
for interpreting data and conducting meta-analyses, thereby
promoting its use in metabolomic research.

Drug reactive metabolites are thought to be a major trigger of
hepatotoxicity, in particular of idiosyncratic metabolic DILI.
Reactive intermediates are linked to reported hepatic side effects,
but the occurrence of reactive metabolites does not necessarily result
in hepatotoxicity, unless the defense systems of hepatocytes are
overwhelmed. Nevertheless, the formation of reactive metabolites is
a warning signal for potential hepatotoxicity and deserves to be
examined to understand their mechanistic role in hepatotoxicity
(Kim and Kang, 2021).

In this context, metabolomics has demonstrated its utility for
profiling drug metabolism and identifying potential reactive
intermediates (Li et al., 2011; Liu et al., 2015; Xie et al., 2018; Lu
et al., 2020; Ten-Doménech et al., 2021).

For example, Yadav et al. performed a metabolism study with
bromfenac to scrutinize the formation of reactive intermediates and

Frontiers in Pharmacology frontiersin.org14

Quintás et al. 10.3389/fphar.2023.1155271

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1155271


their linkage to the hepatotoxicity of this compound (Yadav et al.,
2020). In vitro studies have revealed that bromfenac requires
conjugation by UGT’s to form a bromfenac glucuronide
intermediate that cyclizes to a major metabolite, bromfenac
indolinone (BI). The results demonstrated that CYP2C9 was
majorly responsible for the formation of hydroxylated bromfenac
and the subsequent bioactivation to thioether adducts when
incubated with GSH. CYP1A2 and CYP3A4 were responsible for
the bioactivation of BI by forming hydroxylated metabolites on the
aromatic ring of the indolinone moiety. The aromatic hydroxylated
BI is a precursor to the quinone methide and quinone imine reactive
toxic intermediates in the proposed bioactivation pathway.

The integration of ‘omics’ data (e.g., transcriptomic, proteomic
and metabolomic) into the risk assessment of chemical mixtures has
great potential to reveal combined effects at a mechanistic level,
providing insights into modes of action or adverse outcome
pathways. Omic approaches used in toxicology provide a tool to
characterize and quantify the molecular and biochemical changes in
cells, tissues and organisms following exposure to chemicals and

toxic substances. These approaches measure effects across a range of
biological pathways simultaneously and can be used to investigate a
chemical’s mode of action, predict toxicological effects, characterize
dose response relationships, and understand species relevance.
Although single-omics analyses have led to the identification of
biomarkers for certain types of toxicants and exposures, they cannot
provide a systemic understanding of toxicity pathways or adverse
outcome pathways. Integration of multiple omics data sets offer a
substantial aid to improve our knowledge on the pathway response
to a toxicant. The Organization for Economic Cooperation and
Development (OECD), nowadays promotes and encourages the
combined use of “omics” to evaluate chemical safety.

5 Predictive models

Predictive classification models are one of the usable outcomes
of metabolomics. They can assist in identifying metabolites and
pathways that are associated with drug-induced toxicity and assist in

FIGURE 6
Schematic workflow for the functional correlation analysis of results frommetabolic pathway analysis. TheMantel’s test is based on the estimation of
the statistical significance of the correlation between two matrices summarizing the results from pathway analysis. Figure adapted from (Liu et al., 2015;
Moreno-Torres et al., 2021; Martínez-Sena et al., 2023).
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developing most suitable drugs. An ultimate goal in the field of
toxicometabolomics, and in particular drug hepatotoxicity is the use
of metabolite patterns to predict the toxicological effects of unknown
chemicals in the liver. To do so, metabolite patterns associated with
well-known training compounds are used to develop classification
schemes. Once established and validated, these schemes can then be
applied to analyze the metabolite patterns of unknown compounds
and based on this to predict their potential toxicity. This approach
has the potential to warn researchers to identify potential hazards
before drugs are tested in animals or humans (Ramirez et al., 2013).
The generation of a statistical model for toxicity endpoint prediction
itself represented a valuable tool for fast screening in drug discovery.
Furthermore, the models presented could be improved by adding
new compounds in the training set when new data are available.

The general workflow for the establishment of predictionmodels
involves the following steps. First, a training set of known
compounds belonging to different well-identified mechanisms of
toxicity are evaluated in cells. Upon cell incubation, the cell extracts
are analyzed by MS techniques and metabolomic data is retrieved,
metabolites annotated and metabolomic patterns associated to each
specific mechanism of drug-induced toxicity are identified. For
model generation, a suitable machine learning algorithm is
selected and the data is split into training and testing set. The
metabolome of a subset of treated cells with compounds belonging
to the samemechanisms of toxicity are compared to the metabolome
of a subset of control treated cells (either non-toxic compounds or
vehicle treated cells). Subsequently, metabolite changes and
metabolic pathways altered are identified for each toxicity

mechanism and predictive models, based on these identified
relevant biomarkers, are built for each individual mechanism of
toxicity. Usually, multivariate discriminant algorithms (e.g., PLS-
DA, support vector machine, random forest) are optimized and
evaluated using internal figures of merit estimated by cross
validation (CV) such as the area under the receiver operating
characteristic curve (AUROC), sensitivity, specificity or accuracy
to assess its discriminant performance. Afterwards, the statistical
significance of the model can be evaluated by permutation testing to
assess the lack of overfit. Once the model is trained, a validation set
generated using test compounds not included in the training set can
be applied to obtain external figures of merit. The application of
these models in toxico-metabolomic research can help identify
potential drug toxicity issues early in drug development process,
allowing for timely intervention (Figure 7). It is important to note
that the use of predictive classification models in metabolomic drug
toxicity studies is still in juvenile stages and requires further research
and validation to assess its robustness and performance.

Goracci et al. built a model with the lipid fingerprint for
hepatotoxicity which was robust and sensitive to dose treatment
(Goracci et al., 2020). For that purpose, a data set of 22 drugs
belonging to five different therapeutic and chemical classes with
various DILI effects were selected. These included glitazones (insulin
sensitizing agents), leukotriene D4 receptor antagonists (LTRA),
inhibitors of catechol-O-methyl-transferase (COMT), biguanides,
benzofuran derivatives and endothelin receptor antagonists. They
disclosed a lipidomic profile that matched, within pharmaceutical
classes, the different DILI rank categories. Preliminary tests

FIGURE 7
Building prediction models. Incubation of cells with a set of known hepatotoxic compounds for the generation of a metabolic fingerprint for
different toxicity mechanisms. Based on this, build predictive models that enable to evaluate the likeliness of a novel/unknown compound to be
hepatotoxic and through which mechanism.
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confirmed the prediction capability of the model for new drugs and
its drug-dose relationship. Regarding the hepatotoxicity potential
across therapeutic drug classes, authors demonstrated that their
approach was highly informative as compared to traditional assays
and indicative of new mechanistic hypotheses. Furthermore they
observed significant variations in the lipid fingerprint over time, and
that certain drugs belonging to the same class looked similar in the
grade of lipid variation but the direction in the PCA space was
different, which reinforces the idea that multiple time points are
recommended to be analyzed in order to understand the hepatotoxic
profile and evaluate the predictions, which are limited in single time
point studies (Goracci et al., 2020).

Martínez-Sena et al. (2023) assessed the metabolic alterations
that arise when cells are exposed to both hepatotoxic and non-
hepatotoxic compounds. They also investigated how different
mechanisms of toxicity contribute to the overall hepatotoxicity of
a novel compound. Selection of a training set of compounds acting
through different hepatotoxicity mechanisms, was made on the basis
of solid bibliographic references of scientific literature, as well as on
their own expertise. Thus, 29 chemicals were chosen for which there
was a clear consensus about their mode of action and preferential
mechanism of hepatotoxicity, classifying them accordingly into five
major mechanisms groups: oxidative stress (OS), mitochondrial
disruption (MI), apoptosis (APT), steatosis (ST) and cholestasis
(CHOL).

The validation set consisted of 69 hepatotoxic and 18 non-
hepatotoxic compounds. The researchers evaluated the global
hepatotoxicity and the presence of any of the aforementioned
mechanisms of toxicity at various concentrations. They assessed
the global alterations caused by a drug (i.e., toxicity index) presence
and the degree of participation of any of the aforementioned
mechanisms of hepatotoxicity. The most relevant metabolites for
global hepatotoxicity assessment and for each mechanism
prediction model (VIP>1.5) were guanosine, cysteine,
N-Acryloylglycine, pyroglutamic acid, glutamylcysteine, carnitine,
choline, glycerophosphocholine, N-Methylglutamic acid,
ophthalmic acid, AMP, propionylcarnitine, histidyl proline,
succinyladenosine, betaine, glutamyl-threonine, N-lactoyl-glycine,
N8-acetylspermidine, N1, N12,-diacetylspermine, N-acetyl-L-
histidine, pantothenic acid, lysoPC (16:0), N-acetylglutamic acid,
3-methylindole.

The analysis also yielded comparative data within a group of
compounds, which enabled them to rank them based on their level
of toxicity. They conclude that the toxic effects of a given drug may
result in a set of metabolic changes which are shared by more than
one mechanism, and it is interpreted as evidence of the involvement
of more than one toxic pathway. This is something that was
observed in several of the molecules studied, where the
contribution of other mechanisms to global hepatotoxicity
evolved with increasing concentrations of the compound.

6 Future perspectives

Metabolomics is to become an important tool in research related
to the investigation of drug-induced hepatotoxicity, allowing
researchers to assess the deleterious effects of xenobiotics by

identifying changes in metabolite levels that uncover the toxic
mechanisms at play, the identification of biomarkers of interest
suitable for clinical diagnosis and facilitating the development of
predictive models.

In recent years, there has been an increase in the use of
metabolomics in the study of the toxic effects of pharmaceuticals
in vitro settings. These studies have led to significant progress in the
application of omics sciences in toxicology. The technical advances
experienced in the field of mass detection have made MS based
metabolomics a reliable, highly sensitive and versatile tool.
Nevertheless, further research is needed to reduce the impact of
existing technical limitations that hinder reproducibility,
standardization, data comparison across laboratories, as well as
compatibility with in vitro models. A must, if we expect to
integrate this technical approach in clinics, drug development or
regulatory toxicity assessment processes. QA and QC procedures are
critical aspects for the use of toxico-metabolomics from a regulatory
perspective. Fostering the application of QA procedures to ensure
that testing is conducted consistently, accurately and following
established QC procedures to increase the accuracy and reliability
of the outcomes, will facilitate the application of toxico-metabolomic
strategies in drug development areas.

An additional bottleneck in untargeted metabolomics is
metabolite annotation. In the recent past years, this has greatly
improved thanks to advancements in MS and computational
metabolomic strategies.

We would like also to pinpoint the importance that in addition
to metabolomic studies, in -depth studies on biochemical pathways
using a multi-omics approaches in in vitro hepatotoxicity studies,
such as transcriptomics, proteomics, and metabolomics, provides a
more comprehensive understanding of the effects of xenobiotics at
cellular level. By simultaneously analyzing the levels of multiple
types of biomolecules, such as genes, proteins, and metabolites, it
will be possible to gain insights into the complex interactions
between these pharmacological compounds and the underlying
biological processes that are affected. Thus, integration of the
results from different omics technologies will be key to enhance
functional interpretation of the data and also requires intensive data
processing.

Altogether, metabolomics is currently demonstrating its value in
in vitro drug hepatotoxicity studies, providing mechanistic
information of hepatotoxic events arised upon exposure of
hepatic cells to xenobiotics. Despite current limitations
highlighted in this review, implementing appropriate controls
and recommendations from the metabolomics community will
make this field move forward improving the overall quality and
comparability of the data which is required for drug screening
purposes. Although the focus of this paper is based on the study
of the metabolomics potential for hepatotoxicity evaluation across
different drug classes, the workflow and the methods described here
are easily translatable to other fields of research. This review does not
only provide valuable insights into the application of metabolomics
in hepatotoxicity evaluation but also offers a flexible and adaptable
framework that can be employed in other research areas where
metabolomics approaches could be useful or necessary. By
demonstrating the versatility and reproducibility of the methods
outlined in this revision, we hope to encourage further exploration
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and application of metabolomics in diverse fields of scientific
inquiry.
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Glossary

AcCa Acyl-carnitine

ALT Alanine aminotransferase

AM Accurate Mass

ANOVA Analysis of Variance

AOP Adverse outcome pathway

APAP Acetaminophen

API Apinegin

APT Apoptosis

ATP Adenosine triphosphate

BCAAs Branched chain amino acids

BHT Butylhydroxytoluene

cAMP Cyclic adenosine monophosphate

CE Capillary electrophoresis

Chol Cholestasis

CKK8 Cell counting kit 8

CMAP Camellia vietnamese active peptides

CMP Cytidine monophosphate

CoA Conezyme A

COMT Catecol-O-methyl transferase

CTD Cantharidin

CYP Cytochrome P450 monooxygenases

DCW Dry cell weight

DESI Disruption electrospray ionization

DG Diacylglycerol

DILI Drug-induced liver injury

DMF N-dimethylformamide

DTIM Drive-Tube Ion-Mobility

ERAs Endothelin receptor antagonists

ESI Electrospray ionization

FAD Flavin adenine dinucleotide

FIA Flow injection analysis

FID Flame ionization detection

FS Fisetin

FMN Flavin mononucleotide

FMOs Flavin-containing monooxygenases

GC Gas chromatography

GDP Guanosine diphosphate

GSH Glutathione

GSSG Glutathione disulfide

HILIC Hydrophilic Interaction Liquid Chromatography

HLM Human liver microsomes

HMDB Human Metabolome Database

HPLC High performance liquid chromatography

IC Inhibitory concentration

LC Liquid chromatography

LOAEL Lowest observed effect level

LTRA Leukotriene D4 receptor antagonists

MI Mitochondrial damage

MS Mass Spectrometry

MTBE Methyl tert -Butyl ether (MTBE)

MTs 3D microtissues

MUFA Monounsaturated fatty acids

NAD Nicotinamide

NADH Nicotinamide adenine dinucleotide

NMR Nuclear Magnetic Resonance

NPS Nanoparticles

NRU Neutral red uptake

OPLS-DA Orthogonal least squares discriminant analysis

OS Oxidative stress

PCA Principal Component Analysis

PC-DFA Principal component discriminant function analysis

PFOA Perfluorooctanoic acid

PHHs Primary Human Hepatocytes

PI Phosphatidylinositol

PoD Point of departure

QA Quality assessment

QC Quality control

RSD Relative standard deviation

RT Retention Time

SAM S-Adenosylmethionine

SCFA Short chain fatty acids

SM Sphingomyelin

SOPs Standard Operational Procedures

ST Steatosis

SVRC Support Vector Regression

TCC Triclocarban

TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin

TG Triacylglycerol
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TPP Triphenyl phosphate

UGTs Uridine 5′-diphospho-glucuronosyltransferases

UMP Uridine monophosphate

XMP Xanthosine monophosphate

ZZ Gardeniae Fructus

α-PBP α-pyrrolidinobutiophenone

α-PEP α-pyrrolidinoheptaphenone
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