
Post-approval studies with the
CFTR modulators Elexacaftor-
Tezacaftor—Ivacaftor

Burkhard Tümmler  1,2*
1Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School,
Hannover, Germany, 2Biomedical Research in Endstage and Obstructive Lung Disease Hannover
(BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany

Triple combination therapy with the CFTR modulators elexacaftor (ELX),
tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in
cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/
IVA published between November 2019 and February 2023 after approval by the
regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild
type conformation in vitro, but in patient’s tissue a CFTR glyoisoform is synthesized
that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy
improved the quality of life of people with CF in the real-life setting irrespective of
their anthropometry and lung function at baseline. ELX/TEZ/IVA improved
sinonasal and abdominal disease, lung function and morphology, airway
microbiology and the basic defect of impaired epithelial chloride and
bicarbonate transport. Pregnancy rates were increasing in women with CF.
Side effects of mental status changes deserve particular attention in the future.
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Introduction

Cystic fibrosis (CF) is a severe ion channel disease of autosomal recessive inheritance that
is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
gene. Thanks to continuously improved symptomatic treatment during the last 5 decades,
this lethal paediatric disease has been transformed into a chronic disorder with a median life
expectancy of nowadays more than 50 years (Bell et al., 2020).

Current therapy has been symptomatic, but meanwhile CFTR modulators have arrived
to the clinic that target the basic defect in CF of impaired epithelial conductance for chloride
and bicarbonate (Tümmler, 2022). There are two classes of CFTR modulators: Potentiators
increase the activity of CFTR at the cell surface and correctors facilitate the translation,
folding, maturation and trafficking of mutant CFTR to the cell surface and/or prevent its
premature degradation. Already 10 years ago the potentiator ivacaftor has been approved for
the treatment of the small group of patients who carry a gating mutation in at least one of
their two CFTR alleles. Ivacaftor is the first molecule that has been approved as a mutation-
type specific medication for human use. Meanwhile the triple combination of the potentiator
ivacaftor (IVA) and the two correctors elexacaftor (ELX) and tezacaftor (TEZ) has become
available for the treatment of the more than 90% of people with CF (pwCF) who harbour at
least one CFTR allele that is responsive to this medication (Middleton et al., 2019). Thanks to
the strong improvements in anthropometry, lung function, reduction of pulmonary
exacerbations and quality of life, triple therapy with ELX/TEZ/IVA has been qualified as
a game changer in CF (Bell et al., 2020). Based on an individual person-level microsimulation
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model the median lifetime survival of p.Phe508del homozygous
pwCF receiving ELX/TEZ/IVA plus current best supportive care has
been estimated to be 71.6 years (Lopez et al., 2023). ELX/TEZ/IVA is
the first CFTR modulator therapy shown to halt lung function
decline over an extended time period (Lee et al., 2022). This clinical
success has initiated post-approval studies on multiple preclinical
and clinical aspects. Here we now provide an overview of the current
body of literature on ELX/TEZ/IVA published after approval in the
United States by November 2019.

CFTR modulators and their action on
CFTR

Although there are more than 2,000 known sequence variants in
CFTR, the vast majority of CF is homozygous or compound
heterozygous for the most common mutation p.Phe508del.
Phe508del CFTR protein is defective in posttranslational
processing and trafficking. Newly synthesized Phe508del CFTR
fails to adopt a wild-type fold in the endoplasmic reticulum (ER),
is targeted to ER-associated degradation and is removed faster from
the apical membrane by endocytosis. Consequently, p.Phe508del
homozygous subjects express only low amounts of complex-
glycosylated Phe508del CFTR and low or no residual Phe508del
CFTR-mediated chloride and bicarbonate secretory activity. The
analysis of second–site suppressor mutations revealed that a robust
correction of the conformational defects of Phe508del CFTR
requires the stabilization of the interfaces between the two
nucleotide binding domains (NBDs) and the membrane-spanning
domains (type I) and the stabilization of nucleotide binding domains
2 (NBD2) (type II) and Phe508del NBD1 (type III) (Okiyoneda et al.,
2013). Combinations of type I, II and III correctors restored 50%–
100% of wild-type-level Phe508del CFTR biogenesis and stability in
immortalized and primary human airway epithelia (Veit et al.,
2018). Concomitantly, the correctors decrease mucus
concentration, relax mucus network ultrastructure, improve
mucus transport and rheology of airway surface liquid, accelerate
wound repair of the airway epithelium and change the plasma and
cellular lipidome, in particular make the epithelial cells less
susceptible to apoptosis by reducing the levels of ceramide
(Gardner et al., 2020; Liessi et al., 2020; Veit et al., 2021a; Abu-
Arish et al., 2022; Laselva and Conese, 2022; Ludovico et al., 2022;
Morrison et al., 2022; Westhölter et al., 2022).

The yet most thoroughly characterized compound is the CFTR
potentiator ivacaftor (IVA, VX-770, IUPAC name: N-(2,4-di-tert-

butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide)
(van Goor et al., 2009) (Table 1). The opening of the CFTR ion
channel normally requires the binding and subsequent hydrolysis
of ATP. In contrast, picomolar ivacaftor reversibly enhances ATP-
independent opening of the channel and thereby overcomes the
defective ATP-dependent opening of CF-causing gating mutations
(Eckford et al., 2012; Jih and Hwang, 2013; Csanády and Töröcsik,
2019). CFTR open probability increases by stabilizing pre-
hydrolytic states with respect to closed states (Kopeikin et al.,
2014; Langron et al., 2018).

Lumacaftor (LUM, VX-809, IUPAC name: 3-[6-[[[1-(2,2-
difluoro-1,3-benzodioxol-5-yl) cyclopropyl]carbonyl] amino]- 3-
methyl-2-pyridinyl]-benzoic acid) has been the first CFTR
corrector approved for use in humans (van Goor et al., 2011).
This type I corrector acts early during CFTR biosynthesis (Loo
and Clarke, 2017; Kleizen et al., 2021) so that Phe508del CFTR can
exit the ER (Table 1). It improves the co-translational folding of
transmembrane domain 1 (TMD1). The subsequent early post-
translational TMD1:NBD1 packing facilitates the most critical
step of Phe508del CFTR folding, i.e., the binding to cytoplasmic
loop 4 (ICL4), leading to progression of domain assembly in the
absence of folded Phe508del-NBD1 (Kleizen et al., 2021). Further
allosteric effects of lumacaftor are the stabilization of the NBD1:
ICL4 and NBD1:ICL1 interfaces, of the transmembrane helices
3 and 4 and of the TMD1:TMD2 interaction (Farinha et al.,
2013; He et al., 2013; Ren et al., 2013; Hudson et al., 2017; Loo
and Clarke, 2017; Laselva et al., 2018; Krainer et al., 2020).

Tezacaftor (TEZ, VX-661, IUPAC name (R)-1-(2,2-difluorobenzo
[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-
hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl) cyclopropane
carboxamide) has been the second type I corrector that has been
approved for the treatment of people with CF with one or two
p.Phe508del alleles. Immunoblotting and in silico docking
experiments proposed a similar composite multi-domain binding
pocket for lumacaftor and tezacaftor comprised of residues within
the NBD1:ICL4 interface (Molinski et al., 2018) (Table 1).

The type III corrector elexacaftor (ELX, VX-445, IUPAC
name: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-
dimethylpropoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]
pyridine-3-carboxamide) synergistically restores Phe508del
CFTR processing in combination with type I or type II
correctors (Veit et al., 2020; Becq et al., 2022) (Table 1).
Moreover, elexacaftor acts as a co-potentiator of Phe508del,
Gly551Asp and Met1101Lys CFTR chloride channels (Veit
et al., 2021a; Laselva et al., 2021; Shaughnessy et al., 2021).

TABLE 1 Molecular action of the approved modulators on CFTR structure and function.

Ivacaftor Lumacaftor tezacaftor Elexacaftor

Modulator type Potentiator Type I corrector Type III corrector

Binding site in
CFTR

ICL4 (photoaffinity labelling data)
cleft formed by TM 4, 5, 8 (cryo-EM data)

TM 1, 2, 3, 6 (cryo-EM data) TM 2, 10, 11, lasso motif
(cryo-EM data)

Interaction with
CFTR

stabilizes channel open configuration, enhances ATP-
independent channel opening, stabilizes pre-hydrolytic states,
reduces folding efficiency of Phe508del CFTR at the ER,
destabilizes Phe508del CFTR in the plasma membrane

stabilizes early steps of CFTR biogenesis at the ER, improves
co-translational folding of TMD1, facilitates binding of
TMD1:NBD1 to ICL4, stabilizes the interactions NBD1:
ICL4, NBD1:ICL1, TM3:TM4, TMD1:TMD2

supports assembly of the
TMDs, co-potentiator

EM, electron micrograph; ICL, intracellular loop; NBD, nucleotide binding domain; TM, transmembrane helix; TMD, transmembrane domain.
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Exposure of primary p.Phe508del homozygous epithelia to a triple
combination of ELX/TEZ/IVA restored Phe508del CFTR chloride
channel function to about 60% of wild-type levels (Veit et al., 2020;
Capurro et al., 2021). However, when p.Phe508del homozygous
cells were treated with ivacaftor combined to any correctors (LUM
or TEZ or ELX), the Phe508del CFTR current was unresponsive to
the subsequent acute addition of ivacaftor (Cholon et al., 2014; Veit
et al., 2014; 2020; Shaughnessy et al., 2022a; Becq et al., 2022).
Ivacaftor diminished the folding efficiency and the metabolic
stability of Phe508 CFTR at the ER and post-ER compartments
and destabilized rescued Phe508del CFTR at the plasma
membrane causing reduced cell surface Phe508 CFTR density
and function. CFTR Western blot analysis of intestinal
epithelium of people with CF with one or two p.Phe508del
alleles revealed that treatment with ELX/TEZ/IVA improves
posttranslational processing and trafficking of Phe508del CFTR.
However, a low-complexity Phe508del CFTR glycoisoform is
produced that lacks the polydisperse spectrum of N-linked
oligosaccharides of mature complex glycosylated wild type
CFTR (Stanke et al., 2023). Hence, triple therapy with ELX/
TEZ/IVA generates and stabilizes a novel Phe508del CFTR
glycoisoform that is distinct from both the wild type and
mutant isoforms.

Cryo-electron microscopy of reconstituted recombinant protein
identified the binding sites of elexacaftor, tezacaftor and ivacaftor in
wild type and Phe508del CFTR (Fiedorczuk & Chen, 2022). Clinically
most relevant, the conformations of wild type CFTR and ELX/TEZ/
IVA-bound Phe508del CFTR were almost indistinguishable from
each other indicating that the CFTR modulators induce the
“correct” conformation in the absence of any other members of
the CFTR interactome. The three drugs bind to distinct sites of the
CFTR protein described by Fiedorczuk and Chen (2022) as a
“triangular belt encircling the transmembrane domains”. The
potentiator ivacaftor binds to a cleft formed by transmembrane
helices 4, 5, and 8 that stabilizes the open configuration of the ion
pore in both wild type and Phe508del CFTR. Likewise, the type I
corrector tezacaftor is recognized in both wild type and mutant by the
same amino acid residues of transmembrane helices 1, 2, 3, and 6 and
thereby probably stabilizes the early steps of CFTR biogenesis at the
ER. Conversely, the type III corrector elexacaftor supports the
subsequent assembly of the TMDs. ELX binds to Phe508del CFTR
within the membrane mainly interacting with amino acid residues of
transmembrane helices 2, 10, 11, and the N-terminal lasso motif.

Clinical pharmacology

Published data on the pharmacokinetics of ELX/TEZ/IVA in
humans are scarce and needs to be extracted from the material
submitted by the manufacturer Vertex to the regulators (FDA or
EMA). The serum half-life is 12 h for ivacaftor and 23 h for the
correctors. Thus, the label recommends a morning dose with ELX/
TEZ/IVA (TRIKAFTA®, KAFTRIO®) and an evening dose with
IVA (Kalydeco®). A deuterated derivative of ivacaftor, called
deutivacaftor (VX-561), has a reduced rate of clearance, greater
plasma concentrations at 24 h, and a longer half-life compared with
ivacaftor, thereby supporting once-daily dosing (Harbeson et al.,
2017). Once-daily triple therapy of deutivacaftor together with

tezacaftor and the novel corrector vanzacaftor is currently being
examined in clinical trials (Uluer et al., 2023). Assays for quantifying
ELX, TEZ, IVA in human plasma and cell lysate have meanwhile
been established by academic labs applying multiple reaction
monitoring mass spectrometry (MRM/MS) (Reyes-Ortega et al.,
2020) or isotope dilution liquid chromatography tandem mass
spectrometry (LC-MS/MS) (Habler et al., 2021; Ryan et al.,
2022). Pharmacokinetic modelling revealed that the transition
from IVA monotherapy or dual regimens with LUM/IVA or
TEZ/IVA to triple combination therapy with ELX/TEZ/IVA will
approach steady state levels within 2 weeks whereby IVA and at least
one corrector will remain above the half-maximal effective
concentration at all times (Tsai et al., 2020). Thus, although the
individual CFTR modulators are differentially metabolized by the
Cyp 3A457 enzyme complex in the liver, the immediate transition
from mono or dual regimens to triple therapy seems to be safe.

A challenging problem is the treatment of pwCF who are
infected with non-tuberculous mycobacteria (NTM), namely,
Mycobacterium abscessus, Mycobacterium bolleti or
Mycobacterium avium. Chronic airway infections with NTM have
become the major risk factor for quality of life and prognosis in CF
(Martiniano et al., 2022). The antimycobacterial multidrug regimens
that are laborious and burdened with many side effects will include
macrolide antibiotics and the ansamycins rifampicin or rifabutin.
Marolides inhibit and ansamycins strongly induce the Cyp-system.
Correspondingly, the label lists these drugs as contraindication for
CFTR modulator therapy. Based on physiologically based
pharmacokinetic modeling of drug-drug interaction, Hong et al.
(2022) have recently proposed a dose-adjusted ELX/TEZ/IVA
therapy concomitant with NTM treatment, i.e., increased doses
of ELX/TEZ/IVA 200/100/450 mg in the morning and 100/50/
375 mg in the evening when ETI is co-administered with
rifabutin and reduced doses of ELX/TEZ/IVA 200/100/150 mg
q72 h when co-administered with clofazimine or clarithromycin,
respectively.

Safety data for the CFTR modulators show that therapy is well-
tolerated. However, the phase 3 clinical studies for ELX/TEZ/IVA
reported an incidence of rash ranging from 4% to 10.9%. Rash
appeared to be more common in female patients and in those who
use hormonal contraception. Meanwhile numerous adverse skin
reactions have been observed in the real-life setting ranging from
skin rash, drug-induced acne, eruptive melanocytic naevi to toxic
epidermal necrolysis (Goldberg et al., 2021; Leonhardt et al., 2021;
Atkinson et al., 2022; Bhaskaran and Bateman, 2022; Cheng et al.,
2022; Diseroad et al., 2022; Hu et al., 2022; Hudson et al., 2022; Loyd
et al., 2022;Mederos-Luis et al., 2022; Muirhead et al., 2022; Okroglic
et al., 2023). Desensitization protocols were often successful, but
etiology has not been examined, the exception being a case report of
LUM-responsive CD4+ T-cell clones in non-immediate allergy
(Roehmel et al., 2021).

Impact of ELX/TEZ/IVA on CFTR
biomarkers

Modulation of the basic defect in chloride and bicarbonate
transport by ELX/TEZ/IVA has been assessed in post-approval
studies in the sweat gland, kidney and the respiratory, biliary and
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intestinal epithelium of pwCF. CFTR-mediated chloride
conductance of the upper respiratory epithelium improved to a
mean 47% of normal with ELX/TEZ/IVA (Graeber et al., 2022a).
Similarly, CFTR-mediated chloride transport of biliary and
intestinal epithelium shifted into the normal range for most
pwCF who carry at least one p.Phe508del allele (Graeber et al.,
2022a; Bijvelds et al., 2022). In the kidney exposure to ELX/TEZ/
IVA increased bicarbonate excretion to about 70% of that seen in
healthy controls (Berg et al., 2022).

The responses of the sweat gland to ELX/TEZ/IVA were
discordant. The sweat chloride concentration in the pilocarpine
iontophoresis sweat test dropped by a mean 50 mmol/L into the
intermediary or even normal range in the majority of pwCF
implying that the basic defect of defective chloride
reabsorption in the sweat duct had been partially or completely
reversed by triple therapy (Graeber et al., 2022a). Conversely, the
ß-adrenergic stimulated sweat secretion in the coil reached just
about 5% of median wild type β-adrenergic sweat rate (Pallenberg
et al., 2022a). Apparently β-adrenergic sweat stimulation in the
coil is more stringent in its requirements for a wild type CFTR
conformation whereas the reabsorption of chloride in the sweat
duct tolerates residual structural and functional deficits of
pharmacologically rescued mutant CFTR in the apical
membrane. The limited response of the β-adrenergic sweat rate
to high-efficient CFTR modulation allows the evaluation of new,
potentially even more efficient CFTR modulators in the future,
while the sweat chloride concentration may already have reached
the limit of its sensitivity.

Exposure of ELX/TEZ/IVA to rare CFTR
genotypes

In Europe ELX/TEZ/IVA therapy is currently approved for
pwCF aged 6 years or more who carry one or two p.Phe508del
alleles. The label in the US just requests the carriage of at least one
CF allele that is known to be responsive to the CFTR modulator
in vitro. Thus, about 90% of pwCF have access to ELX/TEZ/IVA. A
subgroup of the remaining 10% of the population is carrying rare or
even ultra-rare mutations of unknown mutant phenotype. Thus, to
address this unresolved issue, researchers have characterized the
association between CFTR genotype, phenotype and its modulation
by ELX/TEZ/IVA in recombinant cells (Laselva et al., 2021; Borgo
et al., 2022; Tomati et al., 2022) or patient-derived epithelial cells
in vitro (Veit et al., 2021b; Borgo et al., 2022; Shaughnessy et al.,
2022b; Furstova et al., 2022; Tomati et al., 2022). Alternatively, they
combined the cell culture work with the examination of CFTR
biomarkers and clinical characteristics prior and during treatment
with ELX/TEZ/IVA (Anderson et al., 2021; Comegna et al., 2021;
Huang et al., 2021; Terlizzi et al., 2021; Aalbers et al., 2022;
Kondratyeva et al., 2022a; 2022b; Ciciriello et al., 2022; Sondo
et al., 2022). A peculiar challenge are complex alleles not yet
documented in the databases. Characterization of p.[Leu467Phe-
Phe508del] in patient-derived organoids and primary intestinal
epithelium demonstrated a more compromised CFTR function
than p.Phe508del, but fortunately was susceptible to modulation
by ELX/TEZ/IVA both in vitro and in the patient in vivo
(Kondratyeva et al., 2022a; Kondratyeva et al., 2022b).

Numerous cases with two non-Phe508del mutations yielded
outcomes of triple therapy that would not have been expected from
our knowledge of the molecular pathology of CFTR. Table 2 lists the
published cases that by now have been examined prior to and during
ELX/TEZ/IVA therapy with CFTR biomarkers. Table 3 provides
data on sweat chloride, spirometry and body weight of pwCF with
advanced lung disease who participated in the French
Compassionate Program of ELX/TEZ/IVA (Burgel et al., 2023).

The molecular phenotype of splice site mutations is typically
predicted from the localization of the nucleotide substitution in the
acceptor or donor splice sites. If an individual with CF carries a
mutation in the canonical splice sites at the positions −2, −1, +1 or
+2 at the intron/exon border, exon skipping will occur. The
generated CFTR mRNA isoforms will typically be either rapidly
degraded or translated into mutants of no or low activity. Thus,
these splice mutations are assigned to the class I of minimal
function. In line with expectation most class I/class I genotypes
with one or two canonical splice site mutations did not respond to
ELX/TEZ/IVA (Table 3). However, exceptions were noted. Triple
therapy improved sweat chloride and lung function in pwCF who
are homozygous for splice sites mutations affecting the inclusion of
introns 18 and 26, respectively (Burgel et al., 2023). We tested two
brothers who are compound heterozygous for an acceptor splice
site and a donor splice site mutation flanking the same exon
(Pallenberg et al., 2023). These index cases normalized CFTR
function in the secretory coil of the sweat gland upon exposure
to ELX/TEZ/IVA, whereas the respiratory and the intestinal
epithelia were only slightly or not responsive to CFTR
modulation (Table 2).

Class V splice mutations harbor the nucleotide substitution at
a less conserved position of the splice site. Alternative splicing
will generate both full-length and shorter CFTR mRNA isoforms.
Hence, the donor splice mutation c.3717 + 5G>T has been
expected to generate some wild type transcript associated with
a pancreatic sufficient phenotype and a request for inclusion into
the compassionate use program was denied. The index case,
however, was exocrine pancreatic insufficient and the swelling
assay in patient-derived intestinal organoids demonstrated a
loss-of-function phenotype. The subject thus qualified for
treatment with ELX/TEZ/IVA and then showed strong
improvements in lung function, lung morphology and sweat
chloride (Aalbers et al., 2022). On the other hand, the rather
common splice mutation c.2657 + 5G>A is a class V mutation
that is known to confer some residual wild-type CFTR activity
(Highsmith et al., 1997; van Barneveld et al., 2008). However,
ELX/TEZ/IVA therapy of pwCF with one or two c.2657 + 5G>A
mutations led to only marginal or no clinical improvement
(Table 3) (Burgel et al., 2023).

Asn1303Lys CFTR is post-translationally processed by other
pathways than Phe508del CFTR. According to tests in recombinant
cells Asn1303Lys CFTR was thought to be not responsive to CFTR
modulation. However, ELX/TEZ/IVA efficiently attenuated the
basic defect in numerous patients (Tables 2, 3) (Huang et al.,
2021; Burgel et al., 2023). Similarly, the class II mutations
p.Ala561Glu, p.Arg1066Cys and p.Met1101Lys that were non-
responsive to CFTR correctors in vitro, were susceptible to CFTR
modulation in vivo. ELX/TEZ/IVA significantly reduced sweat
chloride and improved lung function (Table 3). Likewise, the
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missense mutants Arg334Trp and Arg347Pro CFTR have been
judged to be not accessible to modulation because of their
vicinity to the ion pore. However, the carriers of these class IV
mutations showed a strong clinical benefit in sweat test, lung
function and anthropometry.

In summary, the test of mutations in recombinant cells
in vitro correctly predicted the response of pwCF to ELX/TEZ/
IVA for most mutations, but was erroneous for a few splice and
missense mutations. This experience demonstrates that the
response of pwCF with ultra-rare CFTR mutations to ELX/
TEZ/IVA should be tested by CFTR biomarkers and clinical
characteristics. These probatory trials provide proper care for
the patient and improve our knowledge of the molecular
pathology of CFTR.

Quality of life during ELX/TEZ/IVA
therapy in patient groups not covered
by phase 3 trials

The first approval of ELX/TEZ/IVA for human use was based on
the outcome of phase 3 trials in pwCF aged 12 years or more with
subnormal spirometry of 40%–90% FEV1 predicted. During the
phase 3 trials ELX/TEZ/IVA treatment led to higher scores in all
respiratory (Middleton et al., 2019) and non-respiratory domains
(Fajac et al., 2022) of the Cystic Fibrosis Questionnaire-Revised, a
validated measure of quality of life. Meanwhile we learnt that ELX/
TEZ/IVA therapy improves the quality of life of pwCF irrespective
of their anthropometry and lung function at baseline. Already after

4 months of triple therapy “patients generally reported a rapid
impact on respiratory symptoms, sleep quality, general wellbeing
and physical self-esteem, and a reduction in overall treatment
burden. The majority of patients contrasted treatment burden,
symptom severity, depression and a closed future marked by
death or transplantation before ELX/TEZ/IVA, to renewed and
unexpected physical strength, leading to greater self-confidence,
autonomy and long-term planning, after treatment initiation”
(Martin et al., 2021). Daily hospitalization and intravenous
antibiotic rates were reported to decrease by 80% (Walter & Bass,
2022), which matches with the author’s experience at his CF clinic.
Most encouragingly, 1-month treatment with ELX/TEZ/IVA
improved ppFEV1 in pwCF with advanced lung disease by 11%–
13% (Carnovale et al., 2021; Martin et al., 2022) leading to a
pronounced decline in CF-related transplants by 55%–83% in CF
centers in the US, France and Germany (Bermingham et al., 2021;
Burgel et al., 2021; Ringshausen et al., 2023). Treatment burden
decreased substantially in the need for intravenous antibiotics,
oxygen therapy and non-invasive ventilation (Martin et al.,
2022). Therapy with ELX/TEZ/IVA was safe and efficacious post
liver transplant (McKinzie et al., 2022; Ragan et al., 2022).
Conversely, when ELX/TEZ/IVA was prescribed to lung
transplant recipients for extrapulmonary complications of CF,
triple therapy was poorly tolerated with modest perceived
extrapulmonary benefit so that about 40% of patients
discontinued the medication (Doligalski et al., 2022; Ramos et al.,
2022). In summary, with the exception of lung transplant recipients,
treatment with ELX/TEZ/IVA led to a strong improvement of the
quality of life.

TABLE 2 Rare non-p.Phe508del CFTR genotypes assessed for ELX/TEZ/IVA—mediated CFTR modulation in pwCF by CFTR biomarkers. Sequence variants are
differentiated by CFTRmutation class: class I, minimal function; class II, defective in protein processing and trafficking; class III: defective gating; class IV, change of
ion channel conductance; class V, reduced amount of wild type CFTR.

CFTR genotype CFTR biomarkers References

class I—class I

c.165-2 A>G/c.273 + 1G>A SST:0.07/0.23 QPIT: 84/102 NPD: 0/−3 ICM: 6/5 Pallenberg et al. (2023)

c.165-2 A>G/c.273 + 1G>A SST:0.06/0.23 QPIT: 110/115 NPD: 0/−1 ICM: 5/5 Pallenberg et al. (2023)

class I—class II

p.Gly542Ter/p. [Leu467Phe-Phe508del] ALI: 2/2 Sondo et al. (2022)

p.Glu585Ter/p. [Leu467Phe-Phe508del] ALI: 5/5 Sondo et al. (2022)

p.Glu193Ter/p.Asn1303Lys WPC: 0/22 QPIT: 108/95 Huang et al. (2021)

class I—class III

c.1585-1G>A/p.Gly1244Glua ALI: 1.7/15 Tomati et al. (2022)

p.Gly542Ter/p.Gly1244Glua ALI: 1.6/16 Tomati et al. (2022)

class III—class III

p.Gly1244Glu*/p.Gly1244Glua ALI: 2.4/20 Tomati et al. (2022)

aFDA approved sequence variant for ELX/TEZ/IVA, therapy.

Paired values at absence and presence of ELX/TEZ/IVA. A clinically relevant improvement of CFTR activity into the normal range or in the range of CFTR-related disorders is marked in bold.

SST, sweat secretion test: ß-adrenergically stimulated sweat secretion [nL/min].

QPIT, quantitative pilocarpin iontophoresis sweat test: sweat chloride concentration [mMol/L).

NPD, nasal transepithelial potential difference: cumulative depolarization potential to chloride-free solution [mV].

ICM, intestinal current measurement: cumulative ion current of rectal biopsy upon exposure to forskolin/IBMX and carbachol [µA/cm2].

ALI, transepithelial ion transport of primary nasal epithelial cells grown at air-liquid interface [µA/cm2].

WPC, whole patch-clamp recording of recombinant HEK293 cells [pA/pF].
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TABLE 3 Rare non-p.Phe508del CFTR genotypes assessed for ELX/TEZ/IVA - mediated CFTR modulation by sweat test, spirometry and body weight in pwCF with
advanced lung disease (Burgel et al., 2023). Sequence variants are differentiated by CFTR mutation class: class I, minimal function; class II, defective in protein
processing and trafficking; class III: defective gating; class IV, change of ion channel conductance; class V, reduced amount of wild type CFTR.

CFTR genotype Sweat chloride ppFEV1 Body weight

[mMol/L] [% predicted] [kg]

class I—class I

c.262-263delTT/p.Arg553Ter 107/92 44/42 36/36

c.357delC/c.357delC 70/96 28/28 59/56

c.579 + 1G>T/c.579 + 1G>T 110/96 42/44 28/29

c.948delT/p.Trp1282Ter 90/138 30/27 43/47

c.1209G>A/c.2215delG 61/47 37/47 48/50

c.1392G>T (p.Lys464Asn)/c.3528delC 94/95 23/21 47/47

c.1393-1G>A/c.1393-1G>A 86/80 42/45 39/41

c.1393-1G>A/c.1393-1G>A 93/89 41/46 68/70

c.1585-1G>A/c.2051_2052delAAinsG 105/95 39/60 60/61

c.1585-1G>A/c.3528delC 96/99 39/50 38/40

c.1585-1G>A/p.Gly542Ter 112/111 27/18 50/50

c.1585-1G>A/p.Arg553Ter 124/107 35/39 50/50

c.1679 + 1.6 kb A>G/c.1679 + 1.6 kb A>G 92/92 27/27 47/48

c.2051_2052delAAinsG/c.2051_2052delAAinsG 93/104 24/25 44/43

c.2051_2052delAAinsG/p.Gln493Ter 102/99 34/35 53/55

c.2051_2052delAAinsG/p.Gly542Ter 85/86 46/49 56/56

c.2810_2811insT/c.2989-313 A>T 98/65 32/29 55/55

c.2909-1 T>G/c.2909-1 T>G 68/28 32/38 95/94

c.2988 + 1G>A/c.2988 + 1G>A 106/102 31/32 60/59

c.2988 + 1G>A/c.2988 + 1G>A 111/124 26/26 30/30

c.2997_3000delAATT/p.Arg1162Ter 100/102 26/26 43/45

c.3469-2880_3717 + 2150del/c.3469-2880_3717 + 2150del 30/28 57/57

c.3964-3C>G/c.3964-3C>G 95/110 32/42 47/47

c.4139delC/p.Gly542Ter 102/102 37/44 22/23

c.4242 + 1G>A/c.4242 + 1G>A 88/73 31/52 25/30

c. [4242 + 1G>A; 3170delC]/p.Trp846Ter 101/95 40/37 49/48

p.Tyr122Ter/p.Tyr122Ter 114/111 49/47

p.Gly542Ter/p.Gly542Ter 103/98 35/33 58/58

p.Trp1063Ter/p.Trp1063Ter 120/110 27/28 65/65

p.Trp1282Ter/p.Trp1282Ter 108/97 28/27 62/62

p.Trp1282Ter/p.Trp1282Ter 114/111 18/11 36/36

p.Trp1282Ter/p.Trp1282Ter 104/101 28/29 59/59

class I—class II

CFTRdele2/p.Ala561Glu 100/61 22/42 61/63

c.489 + 2 T>G/p.Iso601Phe* 79/45 51/52 62/63

(Continued on following page)
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TABLE 3 (Continued) Rare non-p.Phe508del CFTR genotypes assessed for ELX/TEZ/IVA - mediated CFTR modulation by sweat test, spirometry and body weight in
pwCF with advanced lung disease (Burgel et al., 2023). Sequence variants are differentiated by CFTRmutation class: class I, minimal function; class II, defective in
protein processing and trafficking; class III: defective gating; class IV, change of ion channel conductance; class V, reduced amount of wild type CFTR.

CFTR genotype Sweat chloride ppFEV1 Body weight

[mMol/L] [% predicted] [kg]

c.579 + 1G>T/p.Iso507del 31/31 57/55

c.2051_2052delAAinsG/p.Leu558Ser 75/73 38/36 69/67

c.2490 + 1G>A/p.Gly85Glu* 105/66 44/63 52/55

c.2805_2810delinsTCAGA/p.Arg1066Cys (142)/70 23/38 62/67

c.3264delC/p.Met1101Lys* (163)/45 37/66 36/38

p.Gln493Ter/p.Gly85Glu* 102/63 38/48 67/68

p.Arg553Ter/p.Iso507del 25/30 49/49

p.Glu585Ter/p.Arg1066Cys 100/56 25/40 33/34

p.Arg1162Ter/p.Asn1303Lys 99/90 32/61 32/33

p.Arg1162Ter/p.Asn1303Lys 23/34 51/55

p.Arg1162Ter/p.Asn1303Lys (131)/95 46/54 51/52

class I—class IV

c.579 + 1G>T/p. [Arg74Trp-Val201Met-Asp1270Asn]* 54/18 35/35 52/53

p.Trp1282Ter/p.Asp1152His* 38/30 43/49 69/67

class I—class V

c.2051_2052delAAinsG/c.2657 + 5G>A 99/80 31/32 73/74

c.2988 + 1G>A/c.2657 + 5G>A 18/27 64/66

c.2988 + 1G>A/c.2657 + 5G>A 97/87 28/31 51/50

class II—class II

p.Gly85Glu*/p.Gly85Glu* 24/32 75/79

p.Gly85Glu*/p.Gly85Glu* 96/76 46/60 57/60

p.Ser492Phe*/p.Arg1066Cys 73/28 34/41 54/56

p.His1085Arg*/p.Asn1303Lys 99/46 45/66 47/49

p.His1085Arg*/p.Asn1303Lys 97/23 29/62 46/49

p.Asn1303Lys/p.Asn1303Lys 109/87 19/30 50/53

p.Asn1303Lys/p.Asn1303Lys 105/96 33/92 57/62

p.Asn1303Lys/p.Asn1303Lys 93/92 44/69 41/44

p.Asn1303Lys/p.Asn1303Lys 114/76 23/32 54/56

p.Asn1303Lys/p.Asn1303Lys 96/91 20/30 61/63

class II—class IV

p.Gly85Glu*/p.Arg334Trp 60/13 34/55 65/66

class IV—class IV

p.Arg334Trp/p.Arg347Pro* 101/65 29/37 40/41

p.Arg347Pro*/p.Arg347Pro* 79/37 38/42 37/43

p.Arg347Pro*/p.Asn1303Lys 102/28 26/41 50/54

p.Ser364Pro*/p.Ser364Pro* 82/24 42/60 58/60

(Continued on following page)
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Sinonasal function

Most pwCF have chronic rhinosinusitis resulting in nasal
obstruction, nasal polyposis, sinus infections, repeated surgeries
and olfactory dysfunction. Independent of age and global disease
severity, ELX/TEZ/IVA therapy led within a few days to clinically
meaningful and persisting improvements in sinonasal quality of life
as assessed by the SinoNasal Outcome Test (SNOT-22) (DiMango
et al., 2021; Douglas et al., 2021; Beswick et al., 2022a; 2022b; Shakir
et al., 2022; Stapleton et al., 2022; Bode et al., 2023; Castellanos et al.,
2023). Nasal polyps decreased in size or even resolved. Sinus
opacification and mucosal thickening improved on CT
radiographs. However, quantitative olfactory function did not
significantly change according to the Smell Identification Test
(Beswick et al., 2022a).

Pulmonary

The phase 3 trials reported a mean absolute increase in
ppFEV1 of 14 points after 24 weeks of therapy with ELX/TEZ/
IVA in pwCF with one p.Phe508del allele and a ppFEV1 of 40%–

90% at baseline (Middleton et al., 2019). A similar absolute increase
in the ppFEV1 of 15% was observed in French, Dutch, and Belgian
CF patients with advanced pulmonary disease (ppFEV1< 40% at
baseline) (Burgel et al., 2021; Kos et al., 2022; Stylemans et al., 2022).
In a real-world, postapproval setting ELX/TEZ/IVA did not only
significantly improve spirometry but also the lung clearance index as
a measure of ventilation homogeneity (Graeber et al., 2022b;
Stylemans et al., 2022). Air trapping, airway mucus plugging and
bronchial wall thickening were reduced (Bec et al., 2022; Graeber
et al., 2022b; FitzMaurice et al., 2022; Goralski et al., 2022; Fainardi
et al., 2023). Likewise, functional MRI showed improvements in
ventilation and perfusion (Streibel et al., 2023). During sleep the
episodes of oxygen desaturation, apnea and hypopnea decreased in
adult pwCF (Welsner et al., 2022; Giallongo et al., 2023).

Immunology and airway microbiology

In CF lung disease, mucus stasis favors chronic colonization
with opportunistic pathogens, which determines the quality of life

and prognosis in most pwCF. In spite of improved antimicrobial
therapies, the characteristic age-dependent sequence of initial
dominance of S. aureus followed by chronic colonization with P.
aeruginosa has remained largely unchanged during the last 50 years.
Neither monotherapy with IVA nor dual LUM/IVA changed the
infection epidemiology in CF, but ELX/TEZ/IVA initiation was
associated with a rapid reduction in infection-related visits and
antimicrobial use among pwCF (Miller et al., 2022). After 12-month
of treatment with ELX/TEZ/IVA, the detection of Staphylococcus
aureus and Pseudomonas aeruginosa decreased at single CF centers
by 40% or more (Pallenberg et al., 2022b; Beck et al., 2023; Sheikh
et al., 2023). Sputum microbiome diversity increased (Sosinski et al.,
2022). Compared to pretreatment, the total bacterial load decreased,
the individual species were more evenly distributed in the
community, and the individual microbial metagenomes became
more similar in their composition. However, the microbial
network remained vulnerable to fragmentation. The initial shift
of the CF airway microbiome was attributable to the ELX/TEZ/IVA-
mediated gain of CFTR activity followed by a diversification driven
by a group of commensals at the 1-year time point that are typical for
healthy airways (Pallenberg et al., 2022b).

CFTR is not only present in the apical epithelial membrane, but
it is also intracellularly detectable in professional phagocytes where
it regulates pH and chloride homeostasis of the post-Golgi network.
ELX/TEZ/IVA therapy improved chloride efflux and the phagocytic
and bactericidal activities of CF monocytes (Zhang et al., 2022b;
Cavinato et al., 2022; Gabillard-Lefort et al., 2022), reduced
neutrophilic inflammation in the lung (De Vuyst et al., 2023),
reduced systemic pro-inflammatory cytokines and normalized
circulating immune cell composition (Sheikh et al., 2023) even in
pwCF with advanced lung disease (Dhote et al., 2023).

Intestine, pancreas, liver and nutrition

The phase 3 trials demonstrated a significant increase of BMI
during ELX/TEZ/IVA therapy (Middleton et al., 2019). These
improvements were confirmed in real-life settings. Parameters
related to nutrient absorption such as weight, BMI, cholesterol
and albumin were all significantly increased and the lipid profile
improved independent of the diet composition (Carnovale et al.,
2022; Petersen et al., 2022). Serum levels of fat-soluble vitamins

TABLE 3 (Continued) Rare non-p.Phe508del CFTR genotypes assessed for ELX/TEZ/IVA - mediated CFTR modulation by sweat test, spirometry and body weight in
pwCF with advanced lung disease (Burgel et al., 2023). Sequence variants are differentiated by CFTRmutation class: class I, minimal function; class II, defective in
protein processing and trafficking; class III: defective gating; class IV, change of ion channel conductance; class V, reduced amount of wild type CFTR.

CFTR genotype Sweat chloride ppFEV1 Body weight

[mMol/L] [% predicted] [kg]

class V –class V

c.2657 + 5G>A/c.2657 + 5G>A 107/94 35/33 33/34

aFDA approved sequence variant for ELX/TEZ/IVA therapy.

Paired values at baseline and after at least 1 month of continuous treatment with ELX/TEZ/IVA; sweat chloride concentration [mMol/L] in QPIT; ppFEV1, percent of predicted Forced

expiratory Volume in 1 s; body weight in kg. All individuals were modulator-naïve at baseline. Physiologically implausible sweat chloride concentrations are indicated by brackets.

Data were taken from Tables 2–4 compiled by the French Compassionate Program of the French CF reference study group (Burgel et al., 2023). The class of a mutation was allocated according

to the molecular phenotype reported in the publications linked to the mutation in the CFTR1 database (http://www.genet.sickkids.on.ca/PicturePage.html). Sequence variants within canonical

splice sites were assigned to class I.

PwCF, who were judged to be responders and continued therapy with ELX/TEZ/IVA, are indicated by normal font. PwCF, who were judged to be non-responders and discontinued therapy are

indicated in italics.
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increased (Wright et al., 2022; Francalanci et al., 2023) even leading
to singular cases of hypervitaminosis (Miller and Foroozan, 2022;
Wisnieweski et al., 2022). These findings call for adjustments in
vitamin supplementation. ELX/TEZ/IVA attenuated abdominal
pain, gastro-oesophageal reflux, poor appetite and disorders of
bowel movement (Mainz et al., 2022). Fecal markers of
inflammation decreased. Pancreatic insufficiency did not improve
(Schwarzenberg et al., 2022).

CFTR is not expressed by the endocrine pancreas but fibrosis and
CFTR dysfunction in the ducts trigger the emergence of diabetes as the
major co-morbidity in CF. Studies on the impact of ELX/TEZ/IVA on
glucose homeostasis yielded conflicting outcomes. Continuous
glucose monitoring (CGM) and oral glucose tolerance tests
(OGTT) did not detect any difference in glucose patterns after
several months of ELX/TEZ/IVA therapy in three studies (Chan
et al., 2022; Crow et al., 2022; Piona et al., 2022). In contrast,
glucose patterns again assessed by CGM or OGTT improved in
three other studies (Korten et al., 2022; Scully et al., 2022; Steinack
et al., 2023). Thus, we still do not know whether or not ELX/TEZ/IVA
ameliorate glucose homeostasis and/or any of its direct determinants.

Drug-induced liver injury is known as a potential side effect of
the highly lipophilic CFTR modulators (Salehi et al., 2021; Lowry
et al., 2022) and the mobilization of gall stones may cause biliary
colic shortly after initiation with ELX/TEZ/IVA (Safirstein et al.,
2021). Upon initiation of triple CFTR modulator therapy serum
levels of bilirubin and liver transaminases will mildly increase after
3 months which is sustained but does not appear to increase further
in the majority of pwCF (Tewkesbury et al., 2023). A recently
published observational study reported that ELX/TEZ/IVA
negatively affects liver stiffness and alters bile acid metabolism in
children and adolescents (Schnell et al., 2023). Bile acid profiles
revealed a decrease in unconjugated and an increase in glycine-
conjugated derivatives. Share wave velocity derived by Acoustic
Radiation Force Impulse Imaging (ARFI) increased in the younger
patients which indicates an increase of liver stiffness known to
correlate with liver fibrosis. Schnell and co-workers (2023) suggest
that ARFI measurements and serum levels of glycine-conjugated bile
acids could serve as early markers for liver deterioration during ELX/
TEZ/IVA therapy.

Reproductive tract and pregnancy

Most women with CF exhibit subfertility mainly driven by
CFTR dysfunction that causes viscous cervical mucus presenting a
physical barrier to sperm penetration. Thanks to the partial
reversion of the basic defect and the globally improved health
and prognosis, pregnancy rates are increasing in women with CF
exposed to ELX/TEZ/IVA (Taylor-Cousar and Jain, 2021).
According to two published case series (Kendle et al., 2021;
O’Connor et al., 2021) females with CF achieved conception
within a few weeks after initiating ELX/TEZ/IVA. Most women
who discontinued ELX/TEZ/IVA during pregnancy out of concern
for unknown fetal risk restarted because of clinical deterioration
(Taylor-Cousar and Jain, 2021). Even a case of successful
pregnancy and uncomplicated delivery has been reported for a
woman with CF with very poor lung function (ppFEV1 23%) prior
to conception (Balmpouzis et al., 2022).

ELX/TEZ/IVA pass the placental barrier (Collins et al., 2022).
For example, a p.Phe508del homozygous infant was born who had
been exposed to ELX/TEZ/IVA in utero from the p.Phe508del
homozygous mother taking ELX/TEZ/IVA. The neonate
presented with a false-negative neonatal CF screening test,
normal pancreatic function and a borderline sweat chloride in
sweat test indicating a partial reversion of the basic defect in
utero (Fortner et al., 2021). Likewise, ELX/TEZ/IVA treatment of
a p.Phe508del carrier who was pregnant with a p.Phe508del
homozygous fetus, resolved a mid-gestation meconium ileus and
led to the delivery of a child with normal pancreatic function and
borderline sweat chloride in sweat test (Szentpetery et al., 2022).

On the other hand, recently one case of pulmonary hemorrhage
and three cases of bilateral congenital cataracts were reported for
infants who were exposed to ELX/TEZ/IVA in utero (Jain et al.,
2022a; Nuytten et al., 2022).

Considering the limited data on the outcomes following CFTR
modulator use during pregnancy and lactation, the MAYFLOWERS
trial was initiated, which will examine the role of the continued use
of modulators by comparing the pregnancy in women with CF who
are modulator ineligible and in women with CF who choose to
continue or discontinue CFTRmodulator therapy during pregnancy
and lactation (Jain et al., 2022b).

Nervous system and psychosocial issues

CFTR is ubiquitously expressed in the central and peripheral
nervous system during the fetal period and remains to be
predominantly expressed along the hypothalamic–hypophyseal
axis postnatally. PwCF are inconspicuous in their mental
activities suggesting that the dysfunction or lack of CFTR in the
brain is compensated by other ion channels. The phase 3 trials and
the open-extension study did not find any neurologic or psychiatric
side effects of ELX/TEZ/IVA therapy other than headache. Post
approval, however, adverse events related to the nervous system
have been reported. Patients complained about testicular or joint
pain (Rotolo et al., 2020; Prajapati et al., 2021) or–more
seriously–about substantial mental status changes (Zhang et al.,
2022a; Heo et al., 2022; Spoletini et al., 2022; Arslan et al., 2023).
Symptoms emerged within the first 3 months after initiating ELX/
TEZ/IVA therapy (Heo et al., 2022). The six patients of the first case
series described their symptoms as fogginess, slurred speech, short
term memory loss, word finding difficulty or other mental status
changes (Heo et al., 2022). Symptoms of insomnia decreased by
changing morning and evening dose. Earlier this year Arslan and
colleagues (2023) reported two adolescents with CF with new-onset
depression and suicide attempts shortly after starting ELX/TEZ/
IVA. In line with these case series, one out of five adults with CF seen
at another CF center in the US initiated or changed a psychiatric
medication (Zhang et al., 2022a). Of 266 CF adults who started ELX/
TEZ/IVA, nineteen individuals reported deterioration in mental
health with anxiety, low mood, insomnia and “brain fog” with
reduced attention and concentration span, which impacted on
day-to-day activity and quality of life (Spoletini et al., 2022).
Dose adjustments monitored by lung function and sweat
chloride, in conjunction with psychological support and
prescription of antidepressants if indicated, attenuated or
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resolved the symptoms (Spoletini et al., 2022). The underlying
mechanism responsible for this possible side effect of mental
health remains unknown.

Change of the symptom-oriented
treatment program

The highly effective triple modulator therapy reduces numerous
symptoms of typical CF disease and calls for changes of the
symptom-oriented treatment program. Supplementation with
pancreatic enzymes and fat-soluble vitamins needs to be adapted
on a case-to-case basis as it has already been individually optimized
in the pre-modulator era. If the absorption of nutrients and
vitamins, particularly fat absorption, improves, the nutritional
recommendations can switch from a calorie-rich diet to the
balanced mixed diet of the healthy population. Many pwCF
already change their therapy without consulting their professional
CF team.

The SIMPLIFY consortium will examine in the next years if
chronic therapies can bemodified or even stopped (Mayer-Hamblett
et al., 2021). Already within a few days of treatment, pwCF recognize
a reduction of sputum production. Lung imaging demonstrated that

intraluminal mucus plugging starts to be resolved (Graeber et al.,
2022b). Hence, inhalation of mucolytics may become dispensable.
The first SIMPLIFY study included two parallel, multicenter, open-
label, randomized, controlled, non-inferiority trials at
80 participating clinics across the USA in the Cystic Fibrosis
Therapeutics Development Network (Mayer-Hamblett et al.,
2022). Study participants had an almost normal spirometry. Six-
week discontinuation of daily inhalation DNase or hypertonic saline
did not show any significant difference in the change of
ppFEV1 when compared with continuing treatment.

Open questions

ELX/TEZ/IVA has improved the quality of life and prognosis for
pwCF. Table 4 summarizes our current knowledge of the response of
pwCF to ELX/TEZ/IVA under real-life conditions. However, the
3 years since approval are too short to conclude whether triple
modulator therapy may halt the progression of CF lung disease in
the long-term. Domestic multicenter consortia like PROMISE
(Nichols et al., 2021; 2022) will probably resolve this issue by
stratifying the course of quality of life, anthropometry and airway
disease depending on age and disease status when triple therapy was

TABLE 4 Real-world response of pwCF to triple therapy with ELX/TEZ/IVA*.

Feature Improvement No improvement/side effect

General quality of life (Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score) minor or no improvement of extrapulmonary symptoms in
lung transplant recipients

CFTR biomarkers CFTR-mediated chloride reabsorption in sweat gland duct CFTR-mediated sweat secretion of the secretory coil

CFTR-mediated chloride conductance in respiratory epithelium

CFTR-mediated chloride secretion in intestinal epithelium

CFTR-mediated bicarbonate secretion in renal epithelium

Sinonasal SinoNasal Outcome Test (SNOT-22) of sinonasal quality of life

reduction of nasal polyposis, sinus opacification and mucosal thickening

Lower airways lung function improved (spirometry, multiple breath washout), reduction of mucus
plugging, bronchial wall thickening, less pulmonary exacerbations, low or no sputum
production

consolidations, perfusion defects invariant

Airway
microbiology

reduction of bacterial load, lower detection rates of S. aureus and P. aeruginosa microbial network remains fragile, still dysbiosis

Immunology reduced systemic and lung inflammation

Cardiovascular rare: systemic arterial hypertension

Nutrition,
intestine

increased absorption of nutrients and fat-soluble vitamins, weight gain exocrine pancreatic insufficiency

CF-related
diabetes

contradictory outcomes of post-approval studies

Hepatobiliary
system

bile acid metabolism; increase of liver stiffness in children and
adolescents (?)

Dermatology rare: skin rash, drurg-induced acne

Reproductive
system

increase of pregnancy rate

Mental health mental status changes (5%—10% of adults)

*Information available from peer-reviewed original publications by 1 March 2023.
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started. Own data of the microbial airway metagenome suggest that
after intermittent normalization the dysbiosis was coming back after
1 year of ELX/TEZ/IVA therapy (Pallenberg et al., 2022b). Bacterial
load of the airways is reduced during ELX/TEZ/IVA but the typical
CF pathogens are only rarely eradicated. Hence, for the time being
we have no clue whether or not antimicrobial chemotherapy
needs to be continued with the same stringency. Likewise,
considering the conflicting outcome of the published studies,
the impact of CFTR modulator therapy on CF-related diabetes
mellitus deserves to be further clarified. ELX/TEZ/IVA
normalizes salt and water metabolism. Arterial blood pressure
slightly increases which may put pwCF at the same risk for
cardiovascular complications as the normal population
(Gramegna et al., 2022). The probably under-reported side
effects of mental status changes deserve particular attention.
Future studies should tell us whether these disturbances of
mental health reflect an inappropriate adaptation to the
medication that changes the patient’s lifelong perspectives or
whether–more likely—they are the inevitable consequence of the
gain of CFTR function in the central nervous system that has
never expressed functional CFTR before, but now has to cope
with chloride channel activities that since conception had been
fully compensated by other members of the neural network.

From the author’s point of view the major challenge in the future
will probably be the patient’s adherence to treatment. The burden of
the time-consuming symptom-oriented treatment programs needs to
be reduced, but the improved prognosis should not get lost by man’s
common attitude “you ought to, but you don’t.” Non-adherence is
linked to poor health outcomes. Annual medication adherence to IVA
that is as efficacious for pwCFwith gatingmutations as ELX/TEZ/IVA
is for pwCF with one or two p.Phe508 alleles, has been extracted for
the UK patient population from data of the national specialty
pharmacy database (Mehta et al., 2021). The mean proportion of
days covered by medication was 0.80. Clinical efficacy of treatment is
high, and the medication is extremely expensive. Thus, at each clinic

the CF team should join forces to ensure high rates of adherence in
pwCF in the long run.
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