
Microfluidic/HPLC combination to
study carnosine protective activity
on challenged human microglia:
Focus on oxidative stress and
energy metabolism

Anna Privitera1,2†, Vincenzo Cardaci3,4†,
Dhanushka Weerasekara5,6, Miriam Wissam Saab2, Lidia Diolosà1,
Annamaria Fidilio7, Renaud Blaise Jolivet8, Giuseppe Lazzarino2,
Angela Maria Amorini2, Massimo Camarda9,
Susan Marie Lunte5,6,10, Filippo Caraci1,7‡ and Giuseppe Caruso1,7*‡

1Department of Drug andHealth Sciences, University of Catania, Catania, Italy, 2Department of Biomedical
and Biotechnological Sciences, University of Catania, Catania, Italy, 3Vita-Salute San Raffaele University,
Milano, Italy, 4Scuola Superiore di Catania, University of Catania, Catania, Italy, 5Ralph N. Adams Institute
for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States, 6Department of
Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States, 7Unit of
Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy,
8Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands, 9STLab
Srl, Catania, Italy, 10Department of Chemistry, University of Kansas, Lawrence, KS, United States

Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide
widely distributed in excitable tissues such as the brain. This dipeptide
possesses well-demonstrated antioxidant, anti-inflammatory, and anti-
aggregation properties, and it may be useful for treatment of pathologies
characterized by oxidative stress and energy unbalance such as depression and
Alzheimer’s disease (AD). Microglia, the brain-resident macrophages, are involved
in different physiological brain activities such synaptic plasticity and neurogenesis,
but their dysregulation has been linked to the pathogenesis of numerous diseases.
In AD brain, the activation of microglia towards a pro-oxidant and pro-
inflammatory phenotype has found in an early phase of cognitive decline,
reason why new pharmacological targets related to microglia activation are of
great importance to develop innovative therapeutic strategies. In particular,
microglia represent a common model of lipopolysaccharides (LPS)-induced
activation to identify novel pharmacological targets for depression and AD and
numerous studies have linked the impairment of energy metabolism, including
ATP dyshomeostasis, to the onset of depressive episodes. In the present study, we
first investigated the toxic potential of LPS + ATP in the absence or presence of
carnosine. Our studies were carried out on human microglia (HMC3 cell line) in
which LPS + ATP combination has shown the ability to promote cell death,
oxidative stress, and inflammation. Additionally, to shed more light on the
molecular mechanisms underlying the protective effect of carnosine, its ability
to modulate reactive oxygen species production and the variation of parameters
representative of cellular energy metabolism was evaluated by microchip
electrophoresis coupled to laser-induced fluorescence and high performance
liquid chromatography, respectively. In our experimental conditions, carnosine
prevented LPS + ATP-induced cell death and oxidative stress, also completely
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restoring basal energymetabolism in humanHMC3microglia. Our results suggest a
therapeutic potential of carnosine as a new pharmacological tool in the context of
multifactorial disorders characterize by neuroinflammatory phenomena including
depression and AD.

KEYWORDS

carnosine, human microglia, inflammation, oxidative stress, energy metabolism,
depression, microfluidics, HPLC

1 Introduction

Carnosine is a natural occurring dipeptide (beta-alanyl-L-
histidine) and an over-the-counter food supplement (Gulewitsch
and Amiradžibi, 1900). This dipeptide is synthetized starting from
β-alanine and L-histidine via the activity of the carnosine synthase
1 enzyme, while its degradation into its constituting amino acids
depends on cytosolic and plasmatic carnosinases (Kalyankar and
Meister, 1959; Winnick and Winnick, 1959). Carnosine can be
found in several mammalian tissues, with the highest tissue
concentrations observed in the brain (up to 5 mM) as well as in
skeletal and cardiac muscle (up to 20 mM) (Hipkiss et al., 1998;
Gariballa and Sinclair, 2000).

There are different pre-clinical studies showing the ability of
carnosine to exert a neuroprotective and anti-inflammatory activity
(Caruso et al., 2019a) through a multimodal mechanism of action
that includes the scavenging of free radicals (Chen et al., 2009;
Prokopieva et al., 2016), the downregulation of pro-inflammatory
markers (Kubota et al., 2020), as well as the modulation of immune
cells such as macrophages and microglia (Caruso et al., 2019b),
regulating their production of reactive oxygen and nitrogen species
(ROS and RNS, respectively) and polarization (Caruso et al., 2017a;
Fresta et al., 2018). Carnosine has also shown to improve global
cognitive function in the elderly (Rokicki et al., 2015) and its
therapeutic potential has been considered for the treatment of
different neuropsychiatric disorders such as Parkinson’s disease
(PD), schizophrenia, Alzheimer’s disease (AD), attention-deficit/
hyperactivity disorder, and cognitive impairment in the elderly
(Boldyrev et al., 2008; Chengappa et al., 2012; Ghajar et al., 2018;
Caruso et al., 2021; Caruso et al., 2022b).

Microglia represent the immune cells of the central nervous
system (CNS) and play a key role in brain development, memory,
synaptic plasticity, and neurogenesis (Yirmiya et al., 2015).
Microglial dyshomeostasis and/or hyperactivation due to pro-
inflammatory/pro-oxidant conditions (e.g., lipopolysaccharides
(LPS) infections) or aging characterized by microglial decline and
senescence can contribute to the pathogenesis of major depression
and associated impairments in neuroplasticity and neurogenesis
(Delpech et al., 2015). Numerous studies have shown that activated
microglia initiate an inflammatory process in various
neurogenerative disorders including AD, PD, and multiple
sclerosis (Liu and Hong, 2003; Glass et al., 2010; Stephenson
et al., 2018; Caruso et al., 2022a). The activation of microglia has
also been associated to a phenomenon known as “oxidative stress”
(Caruso et al., 2019d), defined as an excessive production of ROS/
RNS that overcomes the antioxidant defense system (Gunasekara
et al., 2014; Weidinger and Kozlov, 2015). High levels of ROS/RNS
have been related to the development of numerous pathologies

including cancer, atherosclerosis, cardiovascular disease, diabetes,
PD, and AD.

LPS, expressed in the external membrane of Gram-negative
bacteria, represents one of the main inflammatory inducers of
microglial cells (Cui et al., 2012). LPS-induced microglial
activation triggers neuroinflammatory processes through the
secretion of different types of cytokines and eicosanoids
(Lykhmus et al., 2016). LPS-activated signaling pathways have
been shown to significantly increase the production of pro-
inflammatory markers such as nitric oxide (NO) and ROS, tumor
necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and
prostaglandin E2 (PGE2) (Hanada and Yoshimura, 2002; Bellezza
et al., 2013). Furthermore, microglial cells represent a common
model of LPS-induced activation to identify novel pharmacological
targets for depression and AD and develop potential therapeutic
approaches able to attenuate the production and release of pro-
inflammatory mediators (Park et al., 2007).

Recent pre-clinical and clinical studies have shown that the
response to bacterial infection is characterized by enhanced levels of
circulating C-reactive protein (Iraz et al., 2015; Engler et al., 2017;
Kyvelidou et al., 2018). It has also been observed that the
administration of LPS in animals leads to a behavioral phenotype
mimicking anhedonia and affective symptoms currently detectable
in depressed patients (Lasselin et al., 2020). Furthermore, significant
associations between blood concentrations of LPS-induced pro-
inflammatory cytokines and affective and cognitive symptoms
have been observed in depressed patients (Suarez et al., 2003).
Many research studies have also linked the impairment of energy
metabolism to the onset of depressive episodes (Gu et al., 2021); in
fact, abnormal energy metabolism represents one of the key
mechanisms for the occurrence and development of this disease.
Of note, systemic inflammation has been associated to disruption of
energy metabolism at CNS level (Kealy et al., 2020). In particular,
LPS-induced inflammation and IL-1β can trigger hypoglycemia and
reduce glucose levels in the brain (Kealy et al., 2020). All these
molecular events related to LPS toxicity can contribute to the onset
of cognitive symptoms in depression (Kotulla et al., 2018).

It is well-known that energy metabolism is linked to the
production of ROS and fundamental enzymes part of the
metabolic pathways can be affected by redox reactions. During
the physiological aging as well as the onset and progression of
numerous age-related diseases, such as atherosclerosis and
neurodegenerative diseases, the interplay existing between energy
metabolism and ROS becomes even more clear (Quijano et al., 2016;
Trostchansky et al., 2016).

In the present study, we first investigated the toxic potential of
LPS + ATP combination in the absence or presence of carnosine. We
conducted these studies in human microglia (HMC3) in which this
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combination of stimuli has been shown to induce cell toxicity
paralleled by pro-inflammatory phenomena (Li et al., 2018).
Additionally, to elucidate the molecular mechanisms underlying
the protective effect of carnosine, we evaluated the ability of this
dipeptide to modulate ROS production as well as the variation of
parameters representative of cellular energy metabolism and
oxidative stress in activated HMC3 cells. In the present
manuscript we show for the first time that carnosine is able to
counteract microglia cell death induced by LPS + ATP by reducing
oxidative stress and rescuing basal energy metabolism conditions.

2 Materials and methods

2.1 Materials and reagents

C-Chip disposable hemocytometers were obtained from Li
StarFish S.r.l. (Naviglio, MI, Italy). HMC3 (human microglia)
cells (ATCC® CRL-3304™), fetal bovine serum (FBS), trypsin-
EDTA solution, Eagle’s Minimum Essential Medium (EMEM),
and penicillin/streptomycin solution were supplied by American
Type Culture Collection (ATCC, Manassas, VA, United States).
Centrifuge tubes equipped with 3 kDa molecular weight cut-off
filters, methanol, water, chloroform, and far-UV acetonitrile were
purchased from VWR International (West Chester, PA,
United States). Sylgard 184 polydimethylsiloxane (PDMS)
prepolymer and curing agent were obtained from Ellsworth
Adhesives (Germantown, WI, United States). Kits to perform
RNA extraction (RNeasy Mini Kit) and cDNA synthesis
(QuantiTect Rev. Transcription Kit) along with QuantiTect SYBR
Green PCR Kits and QuantiTect Primer Assays were purchased
from Qiagen (Hilden, Germany). 384-well plates were supplied by
Roche Molecular Systems Inc (Pleasanton, CA, United States). PCR
tubes and LoBind Microcentrifuge Tubes PCR Clean were obtained
from Eppendorf (Hamburg, Germany). HPLC-grade acetonitrile
was obtained by VWR Chemicals (Briare, France). All water used
in our study was Ultrapure (18.3 MΩ cm) (Milli-Q Synthesis A10,
Millipore, Burlington, MA, United States). All the remaining
materials, of analytical grade, were supplied by Sigma-Aldrich
Corporate (St. Louis, MO, United States) or Thermo Fisher
Scientific Inc. (Pittsburgh, PA, USA) unless specified otherwise.

2.2 Propagation and maintenance of cells

HMC3 cells were cultured in EMEMmedium enriched with FBS
(10%), streptomycin and penicillin (0.3 mg mL–1 and 50 IU mL–1,
respectively), GlutaMAX (1 mM), sodium pyruvate (1 mM), and
MEM non-essential amino acids by using 25 or 75 cm2 polystyrene
culture flasks. Cells were maintained in a humidified environment
(37°C, 95% air/5% CO2), and split every 3–5 days depending on cell
confluence.

2.3 Analysis of cell status

The number of live and dead cells under our experimental
conditions was determined by using a trypan blue exclusion

assay as previously described (Fresta et al., 2018). Each cell
suspension was diluted 1:1 to 1:3 (depending on cell density)
with 0.4% trypan blue solution and loaded on a C-Chip
disposable hemocytometer for cell status analysis. Live cells,
characterized by intact cell membranes, excludes the trypan blue,
while dead cells did not.

2.4 Intracellular ROS levels determination

On the day of the experiment, HMC3 cells were harvested by
using trypsin/EDTA, counted, plated in 25 cm2 polystyrene
culture flasks, and incubated in a humidified environment
(95% air/5% CO2, 37°C) to allow the complete cell attachment.
The day after, cells were left untreated (control) or treated with
LPS (100 ng/mL for 24 h) plus ATP (5 mM for 30 min), in the
absence or presence of carnosine (10 mM; 1 h pre-treatment). At
the end of the stimulation, the intracellullar ROS levels in
HMC3 cells were determined by using microchip
electrophoresis with laser-induced fluorescence (ME-LIF) and
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (Fresta
et al., 2018) as previously described, with slight modifications.
Briefly, in each 25 cm2 polystyrene culture flask the medium was
removed, cells were washed with phosphate-buffered saline
(PBS), and incubated with Dulbecco’s Modified Eagle Medium
(DMEM) without phenol red-free containing H2DCFDA (10 μM)
for 1 h (37°C, 95% air/5% CO2) (Fresta et al., 2018). Next, the
medium was removed, cells were washed with PBS, harvested
using trypsin/EDTA, centrifuged, and the obtained cell pellet was
prepared and analyzed by ME-LIF (Caruso et al., 2017b).
Specifically, cells were lysed with 50 μL of pure ethanol, the
lysate solution was filtered with a 3 kDa molecular weight cut-
off filter with centrifugation at 17,000 x g for s total of 10 min.
Each filtered cell lysate (10 μL) was diluted 10 times by adding
90 μL of 10 mM boric acid, 2 mM β-cyclodextrin, and 3.5 mM
sodium dodecyl sulfate at pH 9.2 obtaining a cell lysate solution
with 10% ethanol. Twenty μL of this solution were run by using
the PDMS-based microfluidic chips with a simple-T geometry,
made by mixing PDMS prepolymer and curing agent in a 1:10 w/
w ratio (Supplementary Figure S1). An aliquot of cell suspension
coming from each flask was used for cell counting. The
fabrication of each disposable hybrid PDMS-glass microchip
used to perform ME-LIF analysis was based on a procedure
described previously in details (Mainz et al., 2012; de Campos
et al., 2015). Briefly, soft photolithography was selected to
fabricate the SU-8 10 photoresist (Silicon, Inc., Boise, ID,
United States) mold containing the microdevice design. The
obtained wafer was soft baked through a programmable
hotplate (Thermo Scientific, Asheville, NC, United States).
Microchip channel designs were designed with the AutoCAD
software (Autodesk Inc., San Rafael, CA, United States) and
printed onto a transparency film (Infinite Graphics Inc.,
Minneapolis MN, United States). A transparency film mask
was used to cover the coated wafer followed by UV light
exposure (ABM Inc., San Jose, CA, United States), post-
baking, developing, rinsing, and drying steps. The procedure
ended with the wafer that was subjected to a hard bake. To
obtain each disposable hybrid PDMS-glass microchip, the PDMS
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layer containing the embedded channels was sealed to a borofloat
glass plate.

2.5 Analysis of metabolites

A well-established HPLC method was used for the analysis of
the intracellular metabolites in deproteinized samples obtained
by HMC3 cells under all our experimental conditions. At the end
of the incubation, cells were pelleted, washed by using ice-cold
PBS, and deproteinized by employing a protocol based on the use
of organic solvents (e.g., acetonitrile) that allows the
measurement of both acid labile and easily oxidizable
compounds (Chen et al., 2009). Previously described ion
pairing HPLC methods were used for the simultaneous
separation of numerous metabolites including high-energy
triphosphates, nicotinic coenzymes, reduced glutathione
(GSH), nitrite and nitrate in the protein-free cell extracts
(Romitelli et al., 2007; Lazzarino et al., 2018). Separation was
obtained by using a Hypersil C-18, while the HPLC apparatus
consisted of a SpectraSYSTEM P4000 pump system coupled to a
highly sensitive UV6000LP diode array detector, equipped with
5 cm light path flow cell, setup for acquisition between 200 and
550 nm wavelengths (Thermo Fisher Scientific, Rodano, MI,
Italy). Each compound included in chromatographic runs was
identified and then quantified by comparing retention times,
absorption spectra, and area of the peaks belonging to the
chromatographic runs of mixtures composed by known
concentrations of true ultrapure standard mixtures. Different
acquisition wavelengths were used based on the different nature
of the metabolites analyzed by HPLC. In particular, 260 nm was
used for high energy phosphates and nicotinic coenzymes,
266 nm was used for malondialdehyde (MDA) (not detectable
levels), while, 206 nm was used in the case of GSH and nitrite.

2.6 Statistical analysis

Graphpad Prism software (version 8.0) (Graphpad software, San
Diego, CA, United States) was used to perform the statistical
analysis. One-way analysis of variance (ANOVA), followed by
Tukey’s post hoc test, was used for multiple comparisons. The
statistical significance was set at p-values < 0.05. Data are
reported as the mean ± SD of at least three samples.

3 Results

3.1 Carnosine protects microglia against the
toxicity induced by LPS + ATP challenge

Before monitoring the potential protective effects of carnosine,
we first investigated the effects of LPS + ATP on human microglia
cells viability. The data reported in Figure 1 clearly show that the
treatment of HMC3 cells with LPS + ATP significantly decreased the
number of viable cells compared to untreated HMC3 cells (p < 0.05).
Despite the treatment with LPS + ATP, the pre-treatment with
carnosine at the concentration of 10 mM was able to rescue the
number of viable cells in HMC3 (p < 0.05 vs. LPS + ATP), giving cell
number counts similar to that observed for untreated HMC3 cells.

3.2 Carnosine prevents the increase in
intracellular ROS induced by LPS + ATP in
HMC3 cells

As reported in Figure 2, the treatment of HMC3 with LPS + ATP
was able to significantly increase the intracellular concentration of
ROS compared to that observed in control cells (p < 0.001). The pre-
treatment (1 h) of HMC3 cells with carnosine at the concentration of
10 mM was able to significantly (p < 0.001) decrease intracellular
ROS levels despite the stimulation of cells with LPS + ATP.

3.3 Carnosine rescues cellular energy
metabolism status in HMC3 cells challenged
with LPS + ATP

As shown in Figure 3, challenge of human microglia with LPS + ATP
caused a deep imbalance in the cell energetic, as demonstrated by the 32%
decline in the ATP concentration (p < 0.001 vs. CTRL) and the 42% and
218% increases inADP (p< 0.01 vs.CTRL) andAMP(p< 0.001 vs.CTRL)
levels, respectively. LPS + ATP challenge caused a 52% decrease in the
ATP/ADP ratio (p< 0.001 vs. CTRL), strongly suggesting a strong decrease
of the mitochondrial phosphorylating capacity deeply affecting the overall
cell energy wellness, as indicated by the decline in the ECP determined in
these cells (p < 0.001 vs. CTRL). Treatment with carnosine, under these
stressing conditions, was able to rescue all the aforementioned parameters,
allowing cells to have values of these indicators of the cell energy state
significantly higher than those measured in LPS + ATP cells and, more
relevant, not significantly different from those measured in controls.

The energy crisis induced by LPS + ATP challenge negatively
affected the concentrations of the other triphosphate nucleosides
(GTP, UTP, and CTP) of great biochemical relevance in numerous

FIGURE 1
Number of viable cells in resting HMC3 and in HMC3 cells
stimulated with LPS (100 ng/mL, 24 h) + ATP (5 mM, 30 min), in the
absence or presence of carnosine (Car) (10 mM, 1 h pre-treatment).
The number of viable cells is expressed as the percent variation
with respect to the untreated (CTRL) cells. Values are means ± SD of
four to five different cell counts. Standard deviations are represented
by vertical bars. *significantly different, p < 0.05.
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fundamental cell processes (Figure 4). Notably, the sum of all
triphosphate nucleosides (ATP, GTP, UTP, and CTP) was
decreased by 31% in LPS + ATP-treated HMC3 cells. The
beneficial effects of carnosine allowed to rescue the
concentrations of these compounds to levels significantly higher
than those measured in LPS + ATP cells and, again, not significantly
different from those measured in controls.

The negative effects of the exposure to LPS + ATP combined
stimuli of humanmicroglia on the concentrations and redox balance
of nicotinic coenzymes is shown in Figure 5. Whilst NAD+

concentration underwent a 40% decrease (p < 0.001 vs. CTRL),
no changes were observed in the case of NADP+. Concomitantly,
NADH levels, although not significantly different from naïve cells,
increased by 21% and those of NADPH decreased by 36% (p <

FIGURE 2
Detection of intracellular concentrations of ROS, expressed as (A) average peak area/number of cells or (B) average peak height/number of cells in
resting HMC3 cells and in HMC3 cells challengedwith LPS (100 ng/mL, 24 h) + ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM,
1 h pre-treatment). Values aremeans ± SD of three to four different samples. Each peak valuewas divided by the number of cellsmeasured for the specific
treatment. Standard deviations are represented by vertical bars. ***significantly different, p < 0.001.

FIGURE 3
Values of (A) ATP, (B) ADP, (C) AMP, (D) ATP/ADP ratio, and (E) Energy Charge Potential (ECP = ATP +1/2ADP/ATP + ADP + AMP) determined in
resting HMC3 cells and HMC3 cells exposed to LPS (100 ng/mL, 24 h) + ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM, 1 h
pre-treatment). Data represent mean of four different samples. Standard deviations are represented by vertical bars. **Significantly different, p < 0.01;
***Significantly different, p < 0.001.
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0.001 vs. CTRL). Consequently to the changes in the levels of
oxidized and reduced forms of nicotinic coenzymes, both the
NAD+/NADH as well as the NADP+/NADPH ratios showed
significant changes, with the former undergoing a 51% decrease
(p < 0.01 vs. CTRL) and the latter a 50% increase (p < 0.05 vs.
CTRL). Impressively, the presence in the culture medium of
carnosine was able to repristinate nicotinic coenzymes
homeostasis, normalizing either the concentrations of oxidized
and reduced forms of each coenzyme or the oxidized/reduced ratios.

Results illustrated in Figure 6 indicate that LPS + ATP causes a
remarkable decrease in the concentration of GSH (−34%, p < 0.05),
the main water-soluble antioxidant. The pro-inflammatory stimulus
induced by LPS + ATP challenge also caused sustained
overproduction of the stable end-products of NO catabolism,
i.e., nitrite (+31%, p < 0.05) and nitrate (+289%, p < 0.001),
therefore culminating in a condition of nitrosative stress.
Certainly linked to the effects on cell energetic and nicotinic
coenzyme homeostasis is the effect occurring to human microglia
exposed to LPS + ATP + carnosine. Under these conditions, no
differences with resting controls in any of the aforementioned
parameters was observed, confirming the previous observations
indicating that carnosine is capable to preserve cellular GSH
content and prevent the increase in NO levels.

Figure 7 shows that LPS + ATP negatively influences UDP-
derivatives (UDP-Gal, UDP-Glc, UDP-GalNac, and UDP-GlcNac)

ensuring the correct process of protein glycosylation indispensable
for protein trafficking within and outside the cell. The addition of
carnosine to LPS + ATP-treated HMC3 cells restored the
concentrations of these UDP-derivatives but not that of UDP-
Gal, the concentration of which was similar to that measured in
cells challenged with LPS + ATP and lower than that measured in
naïve cells (p < 0.05).

4 Discussion

Today, it is well-accepted in research community that microglia,
myeloid cells and primary component of the brain immune system,
play key roles in the regulation of numerous physiological processes
that includes the trophic support of proliferation, survival, and
differentiation of neural and other glial progenitor cells
(Rodríguez et al., 2022) as well as synaptic plasticity (Yirmiya
et al., 2015). As already stated, the deviation from microglial
homeostasis can lead to different pathological conditions
including neurodegenerative diseases (Liu and Hong, 2003; Glass
et al., 2010; Stephenson et al., 2018) reason why the identification of
the molecular mechanisms related to its pro-inflammatory and pro-
oxidant activation are of great importance to develop therapeutic
strategies (Dello Russo et al., 2017; Du et al., 2017). The activation of
microglia can be considered as a mandatory path in the early phase

FIGURE 4
Values of (A) GTP, (B) UTP, (C) CTP, and (D) sum of triphosphates (ATP + GTP + UTP + CTP) determined in resting HMC3 cells and HMC3 cells
exposed to LPS (100 ng/mL, 24 h) + ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM, 1 h pre-treatment). Data represent mean
of four different samples. Standard deviations are represented by vertical bars. *Significantly different, p < 0.05; **Significantly different, p < 0.01;
***Significantly different, p < 0.001.
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of cognitive decline in dementia (Dhananjayan et al., 2017).
Therefore in drug discovery processes, it becomes essential to
identify pharmacological targets related to microglia activation to
develop innovative therapeutic strategies for the treatment of
cognitve disorders.

Among its numerous pharmacological activities, carnosine has
shown the ability to regulate the activity of immune cells including
microglia, enhancing their antioxidant capacity, increasing the
expression and release of anti-inflammatory mediators and
neurotrophic factors, and ameliorating the cellular energy
metabolism of these cells (Caruso et al., 2017a; Fresta et al., 2017;
Caruso et al., 2019b).

LPS-induced sickness behavior have been reported in rodents
and humans (Lasselin et al., 2020). Numerous studies have also
shown a strong association between inflammation and depression,
with basal and LPS-stimulated inflammatory markers being
associated with sickness behavior symptoms including anhedonia,
low energy, and irritability (van Eeden et al., 2020). Furthermore,
recent studies have suggested that depression can be regarded as a
microglial disease (Wang et al., 2022) and LPS represents a well-
validated tool to explore in human microglial cells the molecular
mechanisms underlying affective and cognitive symptoms in
depression (Kotulla et al., 2018).

Along this line, it has recently been demonstrated as the challenge of
human HMC3microglial cells with a combination of stimuli consisting
of LPS + ATP is able to promote cell death due to the upregulation of
pro-inflammatory genes (i.e., IL-1β and IL-18) and the activation of
c-Fos/NLRP3/caspase-1 cascades (Li et al., 2018).

According to this scenario, in the present study, we first evaluated
the modulation of the toxic effects induced by LPS + ATP challenge on
HMC3 microglial cells in presence of carnosine dipeptide. When
monitoring the number of viable cells under our experimental
conditions, as expected, we observed that the treatment with LPS +
ATP significantly decreased microglia viability, while the presence of
carnosine prevented these toxic effects (Figure 1).We hypothesized that
these protective effects could be related to the ability of carnosine to
counteract oxidative stress in immune cells includingmicroglia (Caruso
et al., 2019b; Fresta et al., 2020). Based on this hypothesis, we
investigated the correlation between the toxicity induced by LPS +
ATP and intracellular ROS levels, well-known contributors to
inflammatory and neurodegenerative phenomena (Togo et al., 2004;
Massaad et al., 2009). The levels of intracellular ROS significantly
increased following the challenge of HMC3 with LPS + ATP
(Figure 2). This inductive effect in terms of ROS production is in
accordance with numerous studies showing increased concentrations of
different types of ROS in immune cells stimulated with LPS, alone or in
combination with other pro-inflammatory stimuli such as interferon-γ
(Hsu and Wen, 2002; Park et al., 2015). ROS levels were instead
significantly decreased in the presence of carnosine (Figure 2). These
results are in line with the well-recognized antioxidant activity of
carnosine being associated with its ability to directly interact with
these species (Klebanov et al., 1997) and with the presence of the
imidazole ring of histidine part of its molecular structure (Caruso et al.,
2017a). The results underlining the efficacy of carnosine in decreasing
the levels of species related to oxidative stress are in line with other
research studies in which carnosine exerted neuroprotection against

FIGURE 5
Values of oxidized (A, C) (NAD+ and NADP+) and reduced (B, D) (NADH and NADPH) nicotinic coenzymes determined in resting HMC3 cells and
HMC3 cells exposed to LPS (100 ng/mL, 24 h) + ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM, 1 h pre-treatment). The
oxidized/reduced ratios (E, F) are also shown. Data represent mean of four different samples. Standard deviations are represented by vertical bars.
*Significantly different, p < 0.05; **Significantly different, p < 0.01; ***Significantly different, p < 0.001.
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oxidative stress viamitogen-activated protein kinase (MAPK) pathway
modulation (Kulebyakin et al., 2012) or protected rat cerebellar cells
against free radicals-induced damage (Lopachev et al., 2016).

The protective activity exerted by carnosine on HMC3,
preventing LPS + ATP-induced cell death, could also depend on
its ability to activate glial cells within the brain, stimulating both
synthesis and release of neurotrophins, including brain-derived
neurotrophic factor and nerve growth factor (Yamashita et al.,
2018). In BV-2, an established experimental model to mimick
neuroinflammation in primary microglia (Henn et al., 2009),
carnosine was able to prevent cell death in cells challenged with
Aβ oligomers throughmultiple mechanisms that included the rescue
of IL-10 levels and the increase of the expression and the release of
transforming growth factor beta-1 (Caruso et al., 2019c).

The challenge of human microglia with LPS + ATP caused a deep
imbalance in the cell energetic (e.g., ATP↓, ADP↑, AMP↑, and ↓ATP/
ADP ratio) (Figure 3) strongly suggesting a dramatic decrease of the
mitochondrial phosphorylating capacity (Maldonado and Lemasters,
2014) deeply affecting the overall cell energy wellness, as also
sustained by ECP decline. The energy crisis induced by LPS + ATP
negatively affected the concentrations of GTP, UTP, and CTP (Figure 4),
indicating profound alterations of metabolic pathways and cycles
devoted to the cell energy supply. In agreement with previous studies,
showing the ability of carnosine to ameliorate macrophage energy state
(Caruso et al., 2019b; Fresta et al., 2020), the treatment with this dipeptide
restored all the aforementioned parameters. With specific regards to

HMC3 cells, it was recently demonstrated that carnosine leads to a
generalized amelioration of the cell energy state, evaluated through the
increase both in the ATP/ADP ratio and the ECP (Caruso et al., 2023).
This suggests that the amelioration observed in the presence of carnosine
could be the consequence of the ability of this dipeptide to counteract the
deleterious effects of LPS + ATP challenge coupled to its capacity to
enhance the basal cellular energy metabolism status.

LPS + ATP challenge also led to an unmbalance of redox
nicotinic coenzymes (Figure 5). In particular, NAD+/NADH ratio
was decreased, while NADP+/NADPH ratio was increased, in
accordance with previous studies in which LPS led to significant
changes in energy metabolism and mitochondrial functions in
macrophages (Lee et al., 2019; Vijayan et al., 2019). Our data
strongly suggest that LPS + ATP-treated cells appealed to
glycolysis to counteract the energy crisis due to mitochondrial
malfunctioning (decrease of the NAD+/NADH ratio), comprising
both biosynthetic reactions and antioxidant defenses (increase of
NADP+/NADPH ratio) (Amorini et al., 2016; Tataranni et al., 2017).
Carnosine was able to repristinate nicotinic coenzymes homeostasis,
normalizing either the concentrations of oxidized and reduced
forms of each coenzyme or the oxidized/reduced ratios. Of
course, this effect was strictly linked to the better cell energetic
determined in LPS + ATP + carnosine treated cells, since the correct
nicotinic coenzyme homeostasis is a prerequisite to support cell
energy demand via electron transfer chain (ETC) coupled to
oxidative phosphorylation (OxPHOS) and to allow the

FIGURE 6
Values of (A)GSH, (B) nitrite, (C) nitrate, and (D) nitrite + nitrate determined in resting HMC3 cells andHMC3 cells exposed to LPS (100 ng/mL, 24 h) +
ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM, 1 h pre-treatment). Data represent mean of four different samples. Standard
deviations are represented by vertical bars. *Significantly different, p < 0.05; **Significantly different, p < 0.01.
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biosynthesis of structural and functional components (membrane
lipids and nucleotides) and cell antioxidants (GSH) (Ghosh et al.,
2018; Bernier et al., 2020; Cheng et al., 2021). These results are in line
with previous studies showing that carnosine has beneficial effects
on energy metabolism during periods of cell sufferance induced by
various stimuli (Macedo et al., 2016; Ouyang et al., 2016).

The remarkable decrease in GSH concentration (Figure 6),
representing the main water-soluble antioxidant (Lazzarino et al.,
2019), is certainly connected to the altered levels of NADP+, NADPH,
and NADP+/NADPH ratio leading to diminished cell capacity to
reduce the increase in oxidized GSH under conditions of increased
oxidative stress. Interestingly our experimental model of
neuroinflammation mimicks what observed in patients with major
depressive disorder (MDD), where a significant reduction of GSH
levels has been detected in the brain (Gawryluk et al., 2011). Further
studies are needed to understand whether the clinical efficacy of
carnosine as add-on treatment in MDD (Araminia et al., 2020) might
be related to its antioxidant activity and its rescuing effects on GSH
levels.

The pro-inflammatory stimulus induced by LPS + ATP also
caused sustained overproduction of nitrite and nitrate, therefore
culminating in a condition of nitrosative stress (May et al., 2004;
Ergün et al., 2011). Carnosine not only restored the levels of GSH, in
accordance to a recent study by Jamshidzadeh et al. (Jamshidzadeh
et al., 2017), but was also able to reduce nitrite and nitrate to their

initial levels, confirming, also in human microglia, its antioxidant
properties previously showed in murine models (Caruso et al.,
2019c; Solana-Manrique et al., 2022).

As reported in Figure 7, LPS + ATP negatively influences UDP-
derivatives (UDP-Gal, UDP-Glc, UDP-GalNac, and UDP-GlcNac),
representing key mediators in ensuring the correct process of
protein glycosylation indispensable for protein trafficking within and
outside the cell (Akella et al., 2019; Giallongo et al., 2020). In this, the
correct functioning of the hexosamine biosynthetic pathway (HBP),
strictly dependent on adequate UTP availability, is fundamental for the
maintenance of the correct levels of the aforementioned UDP-
derivatives. HBP and protein glycosylation are associated to the
correct functioning of endoplasmic reticulum (ER) (Srinivasan et al.,
2009). Stressors altering HBP functionality, in our conditions certainly
because of UTP depletion, lead to ER stress and modification in the
correct functioning of the complex process of protein glycosylation. The
addition of carnosine to LPS + ATP-treated cells restored the
concentrations of these UDP-derivatives (except UDP-Gal). It is
however possible to affirm that the presence of carnosine, by
restoring the concentrations of 3 of the 4 UDP-derivatives,
generated highly favorable conditions for a correct HBP and
glycosylation process with reduction of stressing conditions of ER. It
remains essential to evaluate and validate in future studies the same
metabolic alterations in animal models of AD and depression, sharing
behavioural and molecular alterations.

FIGURE 7
Values of (A)UDP-Gal, (B)UDP-Glc, (C) UDP-GalNac, and (D)UDP-GlcNac in resting HMC3 cells and HMC3 cells exposed to LPS (100 ng/mL, 24 h)
+ ATP (5 mM, 30 min), in the absence or presence of carnosine (Car) (10 mM, 1 h pre-treatment). Data represent mean of four different samples. Standard
deviations are represented by vertical bars. UDP-Gal = UDP-galactose; UDP-Glc = UDP-glucose; UDP-GalNac = UDP-N-acetylgalactosamine; UDP-
GlcNac = UDP-N-acetylglucosamine. *Significantly different, p < 0.05; **Significantly different, p < 0.01; ***Significantly different, p < 0.001.
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5 Conclusion

In the present study we were able to show for the first time that
carnosine suppresses cell death induced by LPS + ATP combination
in HMC3 microglia by decreasing oxidative stress measured as
intracellular ROS, nitrite, and nitrate levels, also rescuing GSH
content. The protective activity exerted by carnosine was also
attributable to its ability to completely restore basal energy
metabolism conditions as evidenced by the positive modulation
of high-energy triphosphates, nicotinic coenzymes, and UDP-
derivatives. Our results suggest a therapeutic potential of
carnosine as a new pharmacological tool in the context of
cognitive disorders, such as depression and AD, characterized by
microglia over-activation, oxidative stress, and energy unbalance.
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