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Bladder cancer (BLCA) is a heterogeneous disease, and there are many classical
molecular subtypes that reflect tumor immune microenvironment (TME)
heterogeneity but their clinical utility is limited and correct individual treatment
and prognosis cannot be predicted based on them. To find reliable and effective
biomarkers and tools for predicting patients’ clinical responses to several
therapies, we developed a new systemic indicator of molecular vasculogenic
mimicry (VM)–related genes mediated by molecular subtypes based on the
Xiangya cohort and additional external BLCA cohorts using a random forest
algorithm. A correlation was then done between the VM_Score and classical
molecular subtypes, clinical outcomes, immunophenotypes, and treatment
options for BLCA. With the VM_Score, it is possible to predict classical
molecular subtypes, immunophenotypes, prognosis, and therapeutic potential
of BLCA with high accuracy. The VM_Scores of high levels indicate a more
anticancer immune response but a worse prognosis due to a more basal and
inflammatory phenotype. The VM_Score was also found associated with low
sensitivity to antiangiogenic and targeted therapies targeting the FGFR3, β-
catenin, and PPAR-γ pathways but with high sensitivity to cancer
immunotherapy, neoadjuvant chemotherapy, and radiotherapy. A number of
aspects of BLCA biology were reflected in the VM_Score, providing new
insights into precision medicine. Additionally, the VM_Score may be used as an
indicator of pan-cancer immunotherapy response and prognosis.
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1 Introduction

Bladder cancer is one of the most common urinary
malignancies causing an estimated 81,180 new cases and
17,100 deaths in 2022 (Siegel et al., 2022). Surgery,
chemotherapy, and targeted therapy are the effective
treatments for BLCA, but most patients have a poor prognosis
(Witjes et al., 2021). Due to the high immunogenicity of BLCA,
the application of tumor immunotherapy, especially immune
checkpoint inhibitors (ICI), has achieved certain results, but
the overall efficacy is still not ideal (Witjes et al., 2021). This
is because there are no reliable or effective biomarkers or tools for
predicting patients’ clinical responses to these therapies, and only
a minority of patients with BLCA respond to these therapies.
Therefore, it is crucial to develop biomarkers for precise
diagnosis and treatment.

There are three components to the tumor immune
microenvironment (TME): cancer cells, immune cells, and the
extracellular matrix. There can be differences in clinical responses
to treatment based on the level of TME heterogeneity in patients
with the same pathological stage and grade (Dagogo-Jack and Shaw,
2018). It is worth noting that high TME heterogeneity hinders the
realization of BLCA precision medicine. As a result, understanding
TME heterogeneity can shed light onmany aspects of bladder cancer
biology and lead to more effective bladder cancer treatment. The
TME could be a promising pathway to precision medicine in BLCA
through the development of new therapeutic response prediction
markers and therapeutic target heterogeneity.

Vasculogenic mimicry (VM) has recently been detected in a
number of malignant tumors that provide a novel strategy for
treating them clinically. VM vessels are composed of endothelial
tumor cells, periodic acid–Schiff (PAS)–positive cells, and rich
external matrix components (Maniotis et al., 1999). Nutrients
and oxygen-carrying red blood cells are delivered to tumors by
VM. A number of mechanisms have been proposed for VM
formation, which include cancer stem cells (CSCs) and
epithelial–mesenchymal transformation (EMT), as well as various
signaling pathways that promote VM formation, such as matrix
metalloproteinases (MMPs), focal adhesion kinase (FAK), vascular
endothelial (VE)–cadherin, phosphatidylinositol 3-kinase (PI3K),
and hypoxia inducible factor 1a (HIF-1a) (Lu et al., 2013; Sun et al.,
2017). In addition to liver cancer, ovarian cancer, gastric cancer,
prostate cancer, and nasopharyngeal cancer, VM has been observed
in many other cancers as well. According to a large number of
clinical studies, VM is strongly associated with tumor invasiveness
and poor prognosis (Seftor et al., 2012; Zhang et al., 2019). However,
the significance of VM for the diagnosis, molecular typing, and
treatment of BLCA remains unclear.

VM is associated with tumor microenvironments such as CSC,
cancer fibroblasts, tumor-associated macrophages, and hypoxia
(Luo et al., 2020). To date, the role of molecular VM-related
genes in shaping TME heterogeneity remains unclear in BLCA. A
correlation was assessed between the mRNA levels of these VM-
related molecules and the heterogeneity of the TME,
immunophenotype, clinical characteristics of the disease, and
response to BLCA treatment. In order to quantify these subtypes
in BLCA, the VM_Score was generated using a molecular subtype
system mediated by molecular VM-related genes.

2 Material and methods

2.1 Workflow

The workflow of our research is shown in Figure 1.

2.2 Data retrieval and preprocessing

2.2.1 External public cohorts
A cohort from the Cancer Genome Atlas (TCGA) was

downloaded for RNA sequencing data (FPKM values) and
clinical data (https://portal.gdc.cancer.gov/), and FPKM was
subsequently converted to TPM value. A total of 412 BLCA
samples were included in this study after genomic and
clinicopathological data were filtered.

The GSE32894 dataset was downloaded from Gene
Expression Omnibus (GEO), and 224 BLCA sample were
included in this study. The GSE13507 and GSE48075 datasets
were downloaded from GEO, 165 and 73 BLCA sample were
included in this study respectively.

2.2.2 Xiangya cohort
Preprocessing and data analysis have been well described in our

previous studies (Liu et al., 2021).

2.3 Determination of molecular VM-related
gene sets

There is no comprehensive overview of molecular VM-related
genes at present. The following search term was used in PubMed:
vasculogenic mimicry to retrieve all genes associated with molecular
VM. Ultimately, a total of 182 molecular VM-related genes were
collected (Supplementary Table S1).

The identification of differentially expressed molecular VM-related
genes (molecular VM related DEGs) and functional analysis.

To identify molecular VM-related DEGs in BLCA tissue when
compared to normal tissue, the empirical Bayesianmethod of the limma
R package was used (Supplementary Table S2). For molecular VM-
related DEGs, the screening criteria were |log (fold change) |>1 and
adjusted p-value <0.05. Based on the aforementioned molecular VM-
related DEGs, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) analyses were performed (Yu et al., 2012).

2.4 Development and validation of VM_
Score

We used the “rfsrc” function from the “randomForestSRC”
package to develop a risk score based on molecular VM-related
DEGs (Supplementary Table S3). The median value of the VM_
Score was used as the cutoff value, and patients were divided into
high- and low-risk groups based on their VM_Scores. A survival
curve was plotted using the Kaplan–Meier (K-M) method; the
log–rank test was implemented in the “survminer” R package;
and a predictive accuracy assessment of the risk score was
conducted using the timeROC function provided in the “tROC”
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R package. Additionally, univariate and multivariate Cox analyses
were conducted on the TCGA-BLCA cohort to analyze the
independent effects of gender, age, stage, and VM_Score on

prognosis. An independent prognostic predictive value
nomogram was plotted based on these factors. ROC and
calibration curves were used to validate the nomogram.

FIGURE 1
Flow chart.
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2.5 Description of immunological features in
BLCA TME

The anticancer immune response in the BLCA TME consisted
of several steps: cancer antigen release and presentation (Steps
1 and 2), anticancer immune priming and activation (Step 3),
immune cell trafficking (Step 4), immune cell infiltration into the
TME (Step 5), T cell recognition of cancers (Step 6), and killing of
cancer cells (Step 7) (Chen and Mellman, 2013). The seven steps
determined the fate of tumor cells. In addition, we employed
several independent algorithms to calculate the levels of
tumor-infiltrating immune cells (TIICs) based on RNA-seq
data, which included TIMER, TIP, quanTIseq, xCell,
CIBERSORT-ABS, and MCP-counter (Newman et al., 2015;
Becht et al., 2016; Li et al., 2016; Xu et al., 2018; Finotello
et al., 2019; Li et al., 2020). The T-cell inflammation score
(TIS), which predicts clinical response to immune checkpoint
blockade (ICB), can reflect pre-existing anticancer immunity in
TMEs (Ayers et al., 2017). In this study, we calculated the
enrichment scores for several immunotherapy response-related
pathways using ssGSEA. A total of 20 inhibitory immune
checkpoints were screened and collected, which included PD-1,
TIGIT, LAG3-PD-L1, and CTLA-4. In our previous research,
these immunological characteristics have been well described (Hu
et al., 2021a; Hu et al., 2021b).

2.6 Prediction of molecular subtypes in
BLCA

A highly heterogeneous tumor, BLCA can be treated with
precision medicine when individual molecular subtypes can be
identified. Previous studies have clarified molecular subtype
systems as a result, such as CIT, Lund, TCGA, Baylor, MDA,
UNC, and consensus subtypes (Sjödahl et al., 2012; Choi et al.,
2014; Damrauer et al., 2014; Rebouissou et al., 2014; Robertson et al.,
2017; Mo et al., 2018; Kamoun et al., 2020). As a starting point for
subtyping molecular structures, we used the packages
ConsensusMIBC and BLCAsubtyping in the R language. A total
of 12 BLCA heterogeneous signatures were also collected. These
BLCA-specific features and molecular subtypes were correlated
further with the VM_Score. As a result of the initial assignment
of all samples to basal or luminal subtypes, the ROC curves were
plotted to determine the accuracy of the VM_Score in predicting the
molecular subtypes.

2.7 Gene set variation analysis

As an unsupervised and non-parametric method, the gene set
variation analysis (GSVA) can be used to estimate activity
differences of pathways or biological processes in expression of
data set samples. The differences of 50 correlation pathways in the
VM_Score were investigated using the “GSVA” R package
(Hänzelmann et al., 2013).

2.8 Response prediction of BLCA therapy

Because chemotherapy is critical for patients with end-stage
BLCA, the pRRophetic software package was used to assess the
efficacy of six commonly used chemotherapeutics (cisplatin,
bleomycin, camptothecin, docetaxel, paclitaxel, and vinblastine).
High-risk and low-risk score groups were compared in terms of
50% inhibitory concentration (IC50) of the six chemotherapeutic
agents listed above. Also, GSCALite was used to analyze VM-related
DEGs and chemotherapeutic drug sensitivity (http://bioinfo.life.
hust.edu.cn/web/GSCALite/) (Liu et al., 2018). It is also
important to consider targeted therapy, radiation therapy, and
alternative treatment options. This led to the collection of several
potential predictors of response to radiation therapy and targeted
therapy.

2.9 Statistical analysis

In order to visualize data and perform statistical analysis, the R
software (version 4.0.5) was used. In order to analyze the
relationship between the continuous variables, we used Pearson’s
or Spearman’s correlations. We used the t-test when the continuous
variables fit the normal distribution. Otherwise, we use the
Mann–Whitney U test. To assess risk score association with
prognosis, univariate and multivariate Cox regression analyses
were performed. With the help of the ROC curves, the accuracy
of the VM_Score was calculated in terms of prognosis andmolecular
subtype prediction. We used p < 0.05 for all statistical tests and two-
sided tests for all analyses.

3 Results

3.1 Landscape and functional analysis of VM-
related DEGs in BLCA

Between BLCA and normal tissue, 66 DEGs associated with
VM were screened. Among them, 28 molecular VM-related genes
were highly expressed in BLCA, and 38 molecular VM-related
genes had low expression (Supplementary Figures S1A, B). The
GO and KEGG enrichment analysis showed that molecular VM-
related DEGs were enriched in several pathways, such as, cell
junction assembly, tissue remodeling, regulation of anoikis,
regulation of peptidase activity, and focal adhesion. Notably,
molecular VM-related DEGs were mainly associated with cell
junction, adhesion, and anoikis (Supplementary Figures S1C, D).
A novel focal adhesion–related gene signature was significantly
correlated with tumor grade, tumor stage, immune scores, and
immune infiltrate types, according to Lin et al. (2021). Anoikis-
resistant mechanically stressed cancer cells exhibited enhanced
motility and evaded immune surveillance by natural killer cells,
according to Fanfone et al. (2022). This PPI network shows that
these molecular VM-related DEGs are closely related to each
other as shown in Supplementary Figure S1E.
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FIGURE 2
Development and validation of VM_Score in multiple BLCA cohorts. (A) Four best candidates were screened by random forest algorithm to
determine the generation of VM_Score. (B) Kaplan–Meier analysis of OS for VM_Score in TCGA-BLCA cohort. (C) ROC curves of VM_Score for predicting
OS in TCGA-BLCA cohort. (D,E) Validation of VM_Score in GSE32894. (F,G) Validation of VM_Score in Xiangya cohort.
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FIGURE 3
Construction of a nomogram in the TCGA-BLCA cohort. (A, B) Relationship between VM_Score and tumor grade and stage in TCGA-BLCA cohort.
(C, D) Results of univariate and multivariate Cox analyses. (E) Nomogram developed based on stage, age, and VM_Score to predict overall survival at 1, 3,
and 6 years.
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3.2 Pan-cancer multiomics analysis of VM
DEGs

In addition, we analyzed 66 molecular VM-related DEGs in pan-
cancer based on multi-omics signatures. It was observed that these
genes were significantly mutated in the following cancers: UCEC,
SKCM, COAD, STAD, DLBC, READ, and BLCA. Among them,
the SVIL gene had the highest mutation frequency in UCEC, at
76% (Supplementary Figure S2). Heterozygous amplifications and
deletions are the main types of copy number variations in molecular
VM-related DEGs in pan-cancer, among which the copy numbers of
NTN1, SIPR1, LAMTOR5, and ZRANB2 are heterozygous deletions in
most tumors. By contrast, EZH2, CDK5, AQP1, and AURKA are
heterozygously amplified in most tumors (Supplementary Figure S3). It
has been found that the gene copy number variation is one of the most
important factors affecting the expression of molecular VM molecules.
Most tumor types show a positive correlation between CNV and
mRNA expression. There is a significant positive correlation
between CNV and PTK2 mRNA expressions (Supplementary Figure
S4). As a result, the methylation levels of molecular VM genes are
negatively correlated with the levels of mRNA expression in most
cancers (Supplementary Figure S5).

3.3 Development and validation of VM_
Score in BLCA cohorts

We generated the VM_Score in the TCGA cohort by using the
random forest algorithm (Figure 2A). Meanwhile, mRNA
expression levels of these four target genes were verified in cell
lines and specimens (Supplementary Figure S16). The BLCA cohort
from the TCGAwas divided into two risk groups based on their level
of risk. Notably, we successfully validated that BLCA patients had a
worse prognosis in the high-risk group (Figure 2B). More
importantly, the VM_Score predicted 1-, 3-, and 5-year OS with
accuracies of 0.639, 0.647, and 0.649, respectively (Figure 2C).

To assess the extrapolation of risk scores, we validated the risk
scores using the external cohort GSE32894, GSE13507, and GSE48075
(Figures 2D, E, and Supplementary Figure S17). In the
GSE32894 cohort, patients with a higher VM_Score also had poorer
survival outcomes, with prediction accuracies of 0.60, 0.67, and 0.65 at
12, 36, and 60 months, respectively. In addition to this, we constructed
our own Xiangya cohort by sequencing and found that the results are
consistent with the above trends and have better predictive functions. At
12, 24, and 36 months, patients with high-risk scores had poorer
survival outcomes (p = 1.228e−02), with a prediction accuracy of
0.825, 0.675, and 0.905, respectively (Figures 2F, G). All these results
suggest that the prediction accuracy of the VM_Score is relatively high
and may be a powerful predictive tool for the BLCA operating system.

3.4 Relationship between VM_score and
clinicopathological features

Figures 3A, B show that patients with higher grades and stages
have higher risk scores, which is consistent with the prognostic
correlation of the VM_Score. A subgroup analysis was performed by
stage, sex, and age, and as expected, high-risk patients had a worse

prognosis in virtually all subgroups (Supplementary Figure S6). The
univariate Cox analysis also revealed that the VM_Score, stage, and
age predict prognosis significantly (Figure 3C). It was also confirmed
by multivariate Cox analysis that the VM_Scores were independent
prognostic factors (Figure 3D). As a result, stage no longer serves as a
reliable prognostic predictor in the case of patients with BLCA. The
results in this study confirm that VM_Score is a reliable indicator of
prognosis for BLCA patients. The purpose of this study was to
improve the predictive value of the VM_Score for BLCA prognosis,
we combined the VM_Score with age, tumor stage, and other factors
with prognostic value in the univariate Cox regression analysis to
establish a nomogram (Figure 3E). We further validated the
accuracy of the nomogram in predicting BLCA prognosis using
the ROC and calibration curves. The nomogram’s predictive
accuracy for 1-, 3-, and 5-year OS in the TCGA-BLCA cohort
was 0.715, 0.721, and 0.749, respectively (Figure 4A). This accuracy
of the nomogram and its clinical significance are illustrated by the
calibration curve showing that the OS predicted by the nomogram is
highly consistent with the actual OS (Figure 4B). Furthermore, both
validation sets of the GSE32894 and Xiangya cohort showed high
accuracy of the nomograms (Figures 4C–F).

3.5 Prediction of VM_score for immune
phenotypes and clinical response of ICB in
BLCA

The advent of immunotherapy has brought light to patients with
advanced bladder cancer, but the efficacy of immunotherapy or
neoadjuvant therapy largely depends on the TME. Most cancer
immune cycles were more active in patients with high a VM_Score;
for example, the release of cancer cell antigens (step 1), trafficking of
immune cells to the tumor (step 4) (recruitment of CD8 T cells,
CD4 T cells, macrophages, Th1 cells, NK cells, and DCs), and
killing of cancer cells (Step 7) (Figure 5A). These immune cycles
were also upregulated, resulting in increased levels of infiltration of
the corresponding TIICs (which included CD8 T cells, CD4 T cells, NK
cells, Th1 cells, macrophages, and DCs) in the BLCA TME. It was
performed in six independent algorithms cross-validation (Figure 5B).
The results suggest that those with a high VM_Score phenotype may be
more sensitive to ICB because they show an inflammatory phenotype.
Our next step was to examine the correlation between the VM_Score
and predictors of ICB effectiveness. First, by analyzing the relationship
between the VM_Score and TIS, we found that they were positively
correlated (Figure 5C). Low VM_Score groups had lower enrichment
scores for immune checkpoints (such as, PD-L1, TIGIT, and CTLA-4)
and immunotherapy response genes when compared with high VM_
Score groups (Figures 5D, E). In the stratified analysis of age, sex, and
stage, there was a consistent trend (Supplementary Figures S7–S12).

All results suggested that the VM_Score was correlated with the
TME and may be a potential predictor of ICB efficacy in BLCA.

3.6 Effect of VM_score for molecular
subtypes and therapeutic response

In recent years, the emergence of molecular subtypes has
promoted the development of precise diagnosis and treatment,
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and the prognosis and treatment response of BLCA can be better
predicted through the refinement of molecular subtypes. After
consulting the literature, it was found that there are currently

seven reported molecular types of BLCA (Kamoun et al., 2020).
However, their clinical application is hindered by the designation of
molecular subtypes and the complex detection methods required.

FIGURE 4
Validation of multiple cohorts of VM_Score. (A) ROC curves of the nomogram. (B) Calibration curves of the nomogram measured using the
Hosmer–Lemeshow test. (C, D) Validity of VM_Score in GSE32894. (E, F) Validity of VM_Score in Xiangya cohort.
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FIGURE 5
VM_Score correlated with the tumor immune microenvironment characteristics. (A) Differences in cancer immune cycling activity between
high- and low-risk groups. (B) Relationship between VM_Score and several immune cells (CD8+T cells, NK cells, macrophages, Th1 cells, and DCs)
in six independent algorithms. (C) Relationship between VM_Score and T cell inflamed score (TIS). (D) Correlation between VM_Score and
enrichment of ICB response–related pathways. (E) Relationship between VM_Score and immune checkpoints (*p < 0.05; **p < 0.01; ***p <
0.001).
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FIGURE 6
VM_Score effectively predicted molecular subtypes and therapy response. (A) Differences in biological function between VM_Score groups. (B,C)
Relationship between VM_Score and seven classical molecular subtypes. (D) Predictive accuracy of VM_Score for molecular subtypes in multiple
different algorithms. (E) Relationship between VM_Score and enrichment scores of multiple therapeutic signatures. (F) Difference on the effects of six
chemotherapy drugs.

Frontiers in Pharmacology frontiersin.org10

Zhang et al. 10.3389/fphar.2023.1163115

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1163115


Initially, we compared the enrichment of several signaling pathways
between high-risk and low-risk groups. In addition, the results
indicated that there were significant differences between the high
and low VM_Score groups with regard to biological functions
(Figure 6A). A high-risk group showed a lot of signals related to
complement, inflammation, and EMT, while a low-risk group
showed a lot of signals related to DNA repair and xenobiotic
metabolism. These results suggest that VM-Score may affect the
progression of BLCA by regulating the hallmark signaling pathway.
In Figures 6B, C, correlations between the VM_Score and classical
molecular subtype classification are shown. According to seven
molecular classifications, the high-risk group represented the
basal subtype of BLCA: TCGA subtype (Robertson et al., 2017),
Cartes d’Identité des Tumeurs-Curie (CIT) subtype (Rebouissou
et al., 2014), MD Anderson Cancer Center (MDA) subtype (Choi
et al., 2014), Lund subtype (Marzouka et al., 2018), University of
North Carolina (UNC) subtype (Damrauer et al., 2014), Baylor
subtype (Mo et al., 2018), and consensus subtype (Kamoun et al.,
2020), which was characterized by basal differentiation, EMT
differentiation, immune differentiation, interferon response, and
myofibroblasts; as opposed to low VM_Scores, which are
characterized by luminal differentiation, urothelial differentiation,
and the Ta pathway. The ROC curves showed that the VM_Score
had a high prediction accuracy for molecular subtypes, mostly
exceeding 0.75 (Figure 6D).

A number of different treatment regimens were tested for their
ability to predict their responses to VM_Score. It is possible that
patients with high VM_Scores are more susceptible to EGFR-
targeted therapy and radiotherapy. A significant VM_Score
enrichment was found in the low VM_Score group for several
immunosuppressive oncogenic pathways, such as the Wnt–β-
catenin network, IDH1, PPARG network, KDM6B, and VEGFA
(Figure 6E). The targeting of these oncogenic pathways may provide
promising therapeutic opportunities for BLCA patients with low
VM_Scores. Furthermore, chemotherapy drugs were more sensitive
in patients with a high VM_Score, such as cisplatin, paclitaxel,
bleomycin, camptothecin, docetaxel, and vinblastine (Figure 6F).

Overall, the VM_Score may be a cost-effective and simpler
alternative to classical molecular subtypes. In addition, the VM_
Score can be used to predict how well BLCA patients will respond to
several treatments.

3.7 Validating roles of VM_score in Xiangya
cohort and GSE32894

A further validation of the capability of the VM_Score to predict
the immune status, molecular subtype, and treatment response has
been performed in our cohort (Xiangya cohort). Multiple anticancer
immune cycles and infiltration levels of CD8 T cells, Th1 cells, DC,
NK cells, and macrophages were positively correlated with the VM_
Score in six independent algorithms (Figures 7A, E). Furthermore,
the VM_Score was significantly correlated with the enrichment
scores of immune response–related signatures, TIS, and ICB
(Figures 7B–D). Data from this study have suggested that the
VM_Score is an effective tool for stratifying BLCA
immunophenotypes. Additionally, the VM_Score can accurately
predict classical molecular subtypes with AUCs usually around

0.90, except in the TCGA data set (AUC = 0.77) (Figures 7F, G).
There is a promising correlation between VM_Score and clinical
response to radiotherapy, as well as several targeted therapies. It
appears that patients in the high-risk group may benefit more from
radiotherapy and EGFR-targeted therapies. A targeted therapy, such
as blocking theWnt–β-catenin network or the FGFR3 network, may
be better suited for patients at low risk (Figure 7H). The
abovementioned results were all validated in GSE32894
(Supplementary Figure S13). In addition, we looked at the
correlation between 66 VM-related DEGs and sensitivity to
multiple drugs, and we found that CYLD, MYC, and ZEB1 were
negatively related to most drugs, while CDH1, CLDN4, and
SERPINB5 were positively associated with major drug sensitivity
(Figure 8, Supplementary Figures S13, S15).

4 Discussion

There are increasing numbers of studies showing that VM plays
a critical role in the regulation of tumors; however, the role of VM in
BLCA is unclear. In this study, we developed a new systemic
indicator of molecular VM–related genes mediated by molecular
subtypes based on the Xiangya cohort and additional external BLCA
cohorts using a random forest algorithm. A correlation was then
done between the VM_Score and classical molecular subtypes,
clinical outcomes, immunophenotypes, and treatment options for
BLCA. With the VM_Score, it is possible to predict classical
molecular subtypes, immunophenotypes, prognosis, and
therapeutic potential of BLCA with high accuracy. VM_Scores of
high levels indicate a more anticancer immune response but a worse
prognosis due to a more basal and inflammatory phenotype. the
VM_Score was also associated with low sensitivity to antiangiogenic
and targeted therapies that target the FGFR3, β-catenin, and PPAR-
γ pathways but are associated with high sensitivity to cancer
immunotherapy, neoadjuvant chemotherapy, and radiotherapy. A
number of aspects of BLCA biology were reflected in the VM_Score,
providing new insights into precision medicine. Additionally, the
VM_Score may be used as an indicator of pan-cancer
immunotherapy response and prognosis.

We collected molecular VM-related genes through keyword
search, performed differential analysis in BLCA and the adjacent
tissues to screen out 66 differentially expressed genes, and
constructed the VM_Score by the random forest method. Then,
we validated it in multiple data sets such as our own Xiangya cohort,
and the results showed that the VM_Score can predict the clinical
outcome, molecular subtype, and treatment response of BLCA and
was related to the inflammatory TME. VM affects tumor
progression and survival prognosis. Studies have found that VM
was significantly associated with the survival and prognosis of
various tumors (Cao et al., 2013). In this study, the KEGG and
GO enrichment analyses of VM-related differential genes showed
that they were mainly enriched in cell junction assembly, tissue
remodeling, regulation of anoikis, regulation of peptidase activity,
and focal adhesion. These pathways were closely related to tumor
invasion and migration. In addition, through analyzing the
differences among 50 signaling pathways between the VM_Score
groups, it was found that EMT was most abundant in the high VM_
Score group and DNA repair was more abundant in the low-risk
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FIGURE 7
Validation of VM_Score in Xiangya cohort. (A) Relationship between VM_Score and activities of cancer immunity cycles. (B) Relationship
between VM_Score and immunotherapy predicted pathways. (C) Correlations between VM_Score and several immune checkpoints. (D)
Relationship between VM_Score and T cell inflammation score (TIS). (E) Relationship between VM_Score and infiltration levels of five tumor-
infiltrating immune cells. (F) VM_Score accurately stratified the molecular subtypes in seven different algorithms. (G) Accuracy of VM_Score
in predicting molecular subtypes in seven different algorithms. (H) Relationship between VM_Score and enrichment scores of several therapeutic
signatures.
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group. EMT and DNA damage are involved in key steps in
tumorigenesis and development (Aiello and Kang, 2019; Srinivas
et al., 2019). Genomic instability promotes tumor progression
(Andor et al., 2017). Through mutation analysis of VM-related
DEGs, it was found that most genes have high mutation frequencies
in various tumors such as UCEC, SKCM, and BLCA. The gene copy
number variation was mainly heterozygous amplification and
deletion. The study concluded that VM may play a significant
role in the occurrence and development of tumors.

The VM_Score predicts molecular subtype and treatment
response in BLCA. Researchers found that the higher the VM_
Score, the higher is the tumor stage, and worse is the survival
prognosis for BLCA patients. In addition, the opposite was the case
with low VM_Scores. The correlation between VM-related DEGs
and the sensitivity of various drugs was analyzed in CTRP and
GDSC databases, and many genes were found to be closely related to
most drugs. There was a greater sensitivity to chemotherapy drugs
such as cisplatin, paclitaxel, bleomycin, docetaxel, camptothecin,
and vinblastine, and radiotherapy and EGFR-targeted therapy in the
high VM_Score group, whereas drugs that target oncogenic
pathways such as Wnt–β-catenin network, PPARG network,

IDH1, KDM6B, and VEGFA may be more effective for the low
VM_Score group. Molecular subtype has greatly facilitated precision
medicine. In recent years, a variety of molecular typing has been
reported, but they have not been used in clinical practice due to
factors such as complex detection methods. According to this study,
the low VM_Score group mainly represented luminal types, and the
high VM_Score group represented the basal type, and the prediction
was more accurate. Therefore, the VM_Score is a more reliable
prediction tool, which is of great help in accurate diagnosis and
treatment by representing different molecular subtypes.

VM correlated with the tumor microenvironment and guided
immunotherapy. Studies have shown that vasculogenic mimicry
structures support the recruitment of monocytes (Tan et al., 2022).
In addition, the KEGG and GO enrichment analyses of molecular
VM-related DEGs found that they were significantly enriched in
focal adhesion and regulation of anoikis. There was a significant
association between a novel focal adhesion-related gene signature
and tumor grade, tumor stage, immune scores, and immune
infiltrate types, determined by Lin et al. (2021). It was discovered
by Fanfone et al. (2022) that anoikis-resistant mechanically stressed
cancer cells were more motile and had a better immune response

FIGURE 8
Correlation analysis between VM-related DEGs and drug sensitivity (top30 drugs in GDSC and CTRP). (A, B) Bubble chart shows the correlation
analysis between VM-related genes and drug susceptibility. Red indicates positive correlation and blue indicates negative correlation. The darker the
color, the higher is the correlation index. Bubble size indicates FDR.
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against natural killer cells. The enrichment analysis of the high and
low VM_Score groups showed that the complement and
inflammatory responses had more abundant signals in the high
VM_Score groups. In addition, according to this study, the VM_
Score had a positive correlation with anti-cancer immune cycle and
TIIC, suggesting that the VM_Score could be related to an
inflammatory immune microenvironment, and patients with high
VM_Scores had higher anti-cancer immunity. The vascular
endothelial growth factor receptor-1 (VEGFR-1) is a membrane
receptor which plays a crucial role in melanoma vasculogenic
mimicry. VEGFR-1 mediated signaling as an effective target for
reducing pre-tumor macrophage tumor invasion and improving ICI
immunotherapy efficacy (Lacal et al., 2020). Myeloid-derived
suppressor cells’ (MDSCs) migration and differentiation are
enhanced by VEGF signaling. VEGF-a knockdown in tumor cells
resulted in decreased infiltration of MDSC and increased infiltration
of CD8 T cells (Horikawa et al., 2017). Antiangiogenic therapy by
vaccination or adoptive cell transfer a few days before
immunotherapy increases the accumulation of T cells within the
tumor, and thus improves the anti-cancer efficacy, when compared
with vaccination alone (Fukumura et al., 2018). It is well known that
ICB has achieved good results in tumor immunotherapy. In
addition, the VM_Score was positively correlated with TIS and
immune checkpoint scores (such as CD274, CTLA4, PDCD1,
TIGIT, and LAG3), as well as the immunotherapy
response–related gene signature enrichment scores, suggesting
that the TMEs in the low VM_Score group had fewer
immunotherapy target points and the ICB treatment effect is not
ideal. By analyzing the methylation and expression levels of
molecular VM-related DEGs, we found that methylation
modification greatly affected the expression of VM-related DEGs.
We can reverse the TME by changing the modification pattern of
genes in the low VM_Score group, turning “cold tumors” into “hot
tumors.” The VM_Score can predict the therapeutic response to ICB
and closely relate to the TME, thus providing a new target for ICB
combined treatments.

We recognize that this study has certain limitations. Firstly, this
study employed bioinformatics analysis, and the accuracy of the
prediction is slightly lower. Although these results have been
repeatedly validated in multiple public cohorts and our own
Xiangya cohort, we still have to conduct in vivo and in vitro
studies on the relevant mechanisms of VM. Secondly, there is a
need for prospective clinical trials to validate the clinical value of the
VM_Score. Thirdly, the optimal VM_Score cutoff value was not
determined.

5 Conclusion

The VM_Score developed and validated by our group can
successfully predict clinical characteristics, TME characteristics,
and survival outcomes of BLCA. The VM_Score was a reliable
and effective biomarker and tool for predicting patients’ clinical
responses to several therapies. It is possible that patients with a high
VM_Score will respond more favorably to immunotherapy,
chemotherapy, radiotherapy, and EGFR-targeted therapies.
However, patients with low-risk scores may benefit from a

number of targeted therapies, such as blocking PPARG, Wnt–β-
catenin, and FGFR3.

Data availability statement

The data sets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

Conception and design: CZ, JX, JC, XZ, ZL, and PL. Provision of
study materials or patients: ZX, YH, and DD. Collection and
assembly of data: TY and ZL. Data analysis and interpretation:
CZ and PL. Manuscript writing: all authors. Final approval of
manuscript: all authors.

Funding

A grant from the National Natural Science Foundation of China
supported this research [82070785, 81873626], and the Science and
Technology fund project of Health and Family Planning
Commission of Guizhou province (No. gzwjkj2022-100). Basic
Research Project of Science and Technology Cooperation in
Qiandongnan Prefecture (No. 2023-16).

Acknowledgments

The authors sincerely thank all participants in the study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, editors, and reviewers.
Any product that may be evaluated in this article, or claim that
may be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1163115/
full#supplementary-material

Frontiers in Pharmacology frontiersin.org14

Zhang et al. 10.3389/fphar.2023.1163115

https://www.frontiersin.org/articles/10.3389/fphar.2023.1163115/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1163115/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1163115


References

Aiello, N. M., and Kang, Y. (2019). Context-dependent emt programs in cancer
metastasis. J. Exp. Med. 216 (5), 1016–1026. Epub 2019/04/13. doi:10.1084/jem.
20181827

Andor, N., Maley, C. C., and Ji, H. P. (2017). Genomic instability in cancer: Teetering
on the limit of tolerance. Cancer Res. 77 (9), 2179–2185. Epub 2017/04/23. doi:10.1158/
0008-5472.Can-16-1553

Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman, D. R., et al.
(2017). Ifn-Γ-related mrna profile predicts clinical response to Pd-1 blockade. J. Clin.
Invest. 127 (8), 2930–2940. Epub 2017/06/27. doi:10.1172/jci91190

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol. 17 (1), 218. Epub 2016/10/22.
doi:10.1186/s13059-016-1070-5

Cao, Z., Bao, M., Miele, L., Sarkar, F. H., Wang, Z., and Zhou, Q. (2013). Tumour
vasculogenic mimicry is associated with poor prognosis of human cancer patients: A
systemic review and meta-analysis. Eur. J. Cancer 49 (18), 3914–3923. Epub 2013/09/03.
doi:10.1016/j.ejca.2013.07.148

Chen, D. S., and Mellman, I. (2013). Oncology meets immunology: The cancer-
immunity cycle. Immunity 39 (1), 1–10. Epub 2013/07/31. doi:10.1016/j.immuni.2013.
07.012

Choi, W., Porten, S., Kim, S., Willis, D., Plimack, E. R., Hoffman-Censits, J., et al.
(2014). Identification of distinct basal and luminal subtypes of muscle-invasive bladder
cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25 (2),
152–165. Epub 2014/02/15. doi:10.1016/j.ccr.2014.01.009

Dagogo-Jack, I., and Shaw, A. T. (2018). Tumour heterogeneity and resistance to
cancer therapies. Nat. Rev. Clin. Oncol. 15 (2), 81–94. Epub 2017/11/09. doi:10.1038/
nrclinonc.2017.166

Damrauer, J. S., Hoadley, K. A., Chism, D. D., Fan, C., Tiganelli, C. J., Wobker, S. E.,
et al. (2014). Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of
breast cancer biology. Proc. Natl. Acad. Sci. U. S. A. 111 (8), 3110–3115. Epub 2014/02/
13. doi:10.1073/pnas.1318376111

Fanfone, D., Wu, Z., Mammi, J., Berthenet, K., Neves, D., Weber, K., et al. (2022).
Confined migration promotes cancer metastasis through resistance to anoikis and
increased invasiveness, 11. Epub 2022/03/09. doi:10.7554/eLife.73150Elife

Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., et al. (2019).
Molecular and pharmacological modulators of the tumor immune contexture revealed
by deconvolution of rna-seq data. Genome Med. 11 (1), 34. Epub 2019/05/28. doi:10.
1186/s13073-019-0638-6

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G., and Jain, R. K. (2018).
Enhancing cancer immunotherapy using antiangiogenics: Opportunities and
challenges. Nat. Rev. Clin. Oncol. 15 (5), 325–340. Epub 2018/03/07. doi:10.1038/
nrclinonc.2018.29

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and rna-seq data. BMC Bioinforma. 14, 7. Epub 2013/01/18. doi:10.1186/
1471-2105-14-7

Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K., et al.
(2017). Expression of vascular endothelial growth factor in ovarian cancer inhibits
tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin.
cancer Res. official J. Am. Assoc. Cancer Res. 23 (2), 587–599. Epub 2016/07/13. doi:10.
1158/1078-0432.Ccr-16-0387

Hu, J., Othmane, B., Yu, A., Li, H., Cai, Z., Chen, X., et al. (2021). 5mc regulator-
mediated molecular subtypes depict the hallmarks of the tumor microenvironment and
guide precision medicine in bladder cancer. BMC Med. 19 (1), 289. Epub 2021/11/28.
doi:10.1186/s12916-021-02163-6

Hu, J., Yu, A., Othmane, B., Qiu, D., Li, H., Li, C., et al. (2021). Siglec15 shapes a non-
inflamed tumor microenvironment and predicts the molecular subtype in bladder
cancer. Theranostics 11 (7), 3089–3108. Epub 2021/02/05. doi:10.7150/thno.53649

Kamoun, A., de Reyniès, A., Allory, Y., Sjödahl, G., Robertson, A. G., Seiler, R., et al.
(2020). A consensus molecular classification of muscle-invasive bladder cancer. Eur.
Urol. 77 (4), 420–433. Epub 2019/09/30. doi:10.1016/j.eururo.2019.09.006

Lacal, P. M., Atzori, M. G., Ruffini, F., Scimeca, M., Bonanno, E., Cicconi, R., et al.
(2020). Targeting the vascular endothelial growth factor receptor-1 by the monoclonal
antibody D16f7 to increase the activity of immune checkpoint inhibitors against
cutaneous melanoma. Pharmacol. Res. 159, 104957. Epub 2020/06/03. doi:10.1016/j.
phrs.2020.104957

Li, B., Severson, E., Pignon, J. C., Zhao, H., Li, T., Novak, J., et al. (2016).
Comprehensive analyses of tumor immunity: Implications for cancer
immunotherapy. Genome Biol. 17 (1), 174. Epub 2016/08/24. doi:10.1186/s13059-
016-1028-7

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). Timer2.0 for analysis of
tumor-infiltrating immune cells. Nucleic Acids Res. 48 (W1), W509–W514. Epub 2020/
05/23. doi:10.1093/nar/gkaa407

Lin, Z., Miao, D., Xu, Q., Wang, X., and Yu, F. (2021). A novel focal adhesion related
gene signature for prognostic prediction in hepatocellular carcinoma. Aging (Albany
NY) 13 (7), 10724–10748. Epub 2021/04/15. doi:10.18632/aging.202871

Liu, C. J., Hu, F. F., Xia, M. X., Han, L., Zhang, Q., and Guo, A. Y. (2018). Gscalite: A
web server for gene set cancer analysis. Bioinformatics 34 (21), 3771–3772. Epub 2018/
05/24. doi:10.1093/bioinformatics/bty411

Liu, Z., Qi, T., Li, X., Yao, Y., Othmane, B., Chen, J., et al. (2021). A novel tgf-B risk
score predicts the clinical outcomes and tumour microenvironment phenotypes in
bladder cancer. Front. Immunol. 12, 791924. Epub 2022/01/04. doi:10.3389/fimmu.
2021.791924

Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., and Fan, Y. Z. (2013). Contribution of the
pi3k/mmps/ln-5γ2 and epha2/fak/paxillin signaling pathways to tumor growth and
vasculogenic mimicry of gallbladder carcinomas. Int. J. Oncol. 42 (6), 2103–2115. Epub
2013/04/17. doi:10.3892/ijo.2013.1897

Luo, Q., Wang, J., Zhao, W., Peng, Z., Liu, X., Li, B., et al. (2020). Vasculogenic
mimicry in carcinogenesis and clinical applications. J. Hematol. Oncol. 13 (1), 19. Epub
2020/03/15. doi:10.1186/s13045-020-00858-6

Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe’er, J., et al. (1999).
Vascular Channel formation by human melanoma cells in vivo and in vitro:
Vasculogenic mimicry. Am. J. Pathol. 155 (3), 739–752. Epub 1999/09/17. doi:10.
1016/s0002-9440(10)65173-5

Marzouka, N. A., Eriksson, P., Rovira, C., Liedberg, F., Sjödahl, G., and Höglund, M.
(2018). A validation and extended description of the Lund taxonomy for urothelial
carcinoma using the tcga cohort. Sci. Rep. 8 (1), 3737. Epub 2018/03/01. doi:10.1038/
s41598-018-22126-x

Mo, Q., Nikolos, F., Chen, F., Tramel, Z., Lee, Y. C., Hayashi, K., et al. (2018).
Prognostic power of a tumor differentiation gene signature for bladder urothelial
carcinomas. J. Natl. Cancer Inst. 110 (5), 448–459. Epub 2018/01/18. doi:10.1093/jnci/
djx243

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (5),
453–457. Epub 2015/03/31. doi:10.1038/nmeth.3337

Rebouissou, S., Bernard-Pierrot, I., de Reyniès, A., Lepage, M. L., Krucker, C.,
Chapeaublanc, E., et al. (2014). Egfr as a potential therapeutic target for a subset of
muscle-invasive bladder cancers presenting a basal-like phenotype. Sci. Transl. Med. 6
(244), 244ra91. 244ra91. Epub 2014/07/11. doi:10.1126/scitranslmed.3008970

Robertson, A. G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A. D.,
et al. (2017). Comprehensive molecular characterization of muscle-invasive bladder
cancer. Cell 171 (3), 540–556.e25. e25. Epub 2017/10/11. doi:10.1016/j.cell.2017.09.007

Seftor, R. E., Hess, A. R., Seftor, E. A., Kirschmann, D. A., Hardy, K. M., Margaryan, N.
V., et al. (2012). Tumor cell vasculogenic mimicry: From controversy to therapeutic
promise. Am. J. Pathol. 181 (4), 1115–1125. Epub 2012/09/05. doi:10.1016/j.ajpath.
2012.07.013

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics, 2022.
CA Cancer J. Clin. 72 (1), 7–33. Epub 2022/01/13. doi:10.3322/caac.21708

Sjödahl, G., Lauss, M., Lövgren, K., Chebil, G., Gudjonsson, S., Veerla, S., et al. (2012).
A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18 (12), 3377–3386.
Epub 2012/05/04. doi:10.1158/1078-0432.Ccr-12-0077-t

Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., and Jeyasekharan, A. D. (2019). Ros
and the DNA damage response in cancer. Redox Biol. 25, 101084. Epub 2019/01/08.
doi:10.1016/j.redox.2018.101084

Sun, B., Zhang, D., Zhao, N., and Zhao, X. (2017). Epithelial-to-Endothelial transition
and cancer stem cells: Two cornerstones of vasculogenic mimicry in malignant tumors.
Oncotarget 8 (18), 30502–30510. Epub 2016/04/02. doi:10.18632/oncotarget.8461

Tan, L. Y., Cockshell, M. P., Moore, E., Myo Min, K. K., Ortiz, M., Johan, M. Z., et al.
(2022). Vasculogenic mimicry structures in melanoma support the recruitment of
monocytes.Oncoimmunology 11 (1), 2043673. Epub 2022/03/18. doi:10.1080/2162402x.
2022.2043673

Witjes, J. A., Bruins, H. M., Cathomas, R., Compérat, E. M., Cowan, N. C., Gakis, G.,
et al. (2021). European association of urology guidelines on muscle-invasive and
metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol. 79 (1),
82–104. Epub 2020/05/04. doi:10.1016/j.eururo.2020.03.055

Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., et al. (2018). Tip: A web server
for resolving tumor immunophenotype profiling. Cancer Res. 78 (23), 6575–6580. Epub
2018/08/30. doi:10.1158/0008-5472.Can-18-0689

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). Clusterprofiler: An R package for
comparing biological themes among gene clusters. Omics 16 (5), 284–287. Epub 2012/
03/30. doi:10.1089/omi.2011.0118

Zhang, X., Zhang, J., Zhou, H., Fan, G., and Li, Q. (2019). Molecular mechanisms and
anticancer therapeutic strategies in vasculogenic mimicry. J. Cancer 10 (25), 6327–6340.
Epub 2019/11/28. doi:10.7150/jca.34171

Frontiers in Pharmacology frontiersin.org15

Zhang et al. 10.3389/fphar.2023.1163115

https://doi.org/10.1084/jem.20181827
https://doi.org/10.1084/jem.20181827
https://doi.org/10.1158/0008-5472.Can-16-1553
https://doi.org/10.1158/0008-5472.Can-16-1553
https://doi.org/10.1172/jci91190
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1016/j.ejca.2013.07.148
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.ccr.2014.01.009
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1073/pnas.1318376111
https://doi.org/10.7554/eLife.73150
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1038/nrclinonc.2018.29
https://doi.org/10.1038/nrclinonc.2018.29
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1158/1078-0432.Ccr-16-0387
https://doi.org/10.1158/1078-0432.Ccr-16-0387
https://doi.org/10.1186/s12916-021-02163-6
https://doi.org/10.7150/thno.53649
https://doi.org/10.1016/j.eururo.2019.09.006
https://doi.org/10.1016/j.phrs.2020.104957
https://doi.org/10.1016/j.phrs.2020.104957
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.18632/aging.202871
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.3389/fimmu.2021.791924
https://doi.org/10.3389/fimmu.2021.791924
https://doi.org/10.3892/ijo.2013.1897
https://doi.org/10.1186/s13045-020-00858-6
https://doi.org/10.1016/s0002-9440(10)65173-5
https://doi.org/10.1016/s0002-9440(10)65173-5
https://doi.org/10.1038/s41598-018-22126-x
https://doi.org/10.1038/s41598-018-22126-x
https://doi.org/10.1093/jnci/djx243
https://doi.org/10.1093/jnci/djx243
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1126/scitranslmed.3008970
https://doi.org/10.1016/j.cell.2017.09.007
https://doi.org/10.1016/j.ajpath.2012.07.013
https://doi.org/10.1016/j.ajpath.2012.07.013
https://doi.org/10.3322/caac.21708
https://doi.org/10.1158/1078-0432.Ccr-12-0077-t
https://doi.org/10.1016/j.redox.2018.101084
https://doi.org/10.18632/oncotarget.8461
https://doi.org/10.1080/2162402x.2022.2043673
https://doi.org/10.1080/2162402x.2022.2043673
https://doi.org/10.1016/j.eururo.2020.03.055
https://doi.org/10.1158/0008-5472.Can-18-0689
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.7150/jca.34171
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1163115

	Molecular vasculogenic mimicry–Related signatures predict clinical outcomes and therapeutic responses in bladder cancer: Re ...
	1 Introduction
	2 Material and methods
	2.1 Workflow
	2.2 Data retrieval and preprocessing
	2.2.1 External public cohorts
	2.2.2 Xiangya cohort

	2.3 Determination of molecular VM-related gene sets
	2.4 Development and validation of VM_Score
	2.5 Description of immunological features in BLCA TME
	2.6 Prediction of molecular subtypes in BLCA
	2.7 Gene set variation analysis
	2.8 Response prediction of BLCA therapy
	2.9 Statistical analysis

	3 Results
	3.1 Landscape and functional analysis of VM-related DEGs in BLCA
	3.2 Pan-cancer multiomics analysis of VM DEGs
	3.3 Development and validation of VM_Score in BLCA cohorts
	3.4 Relationship between VM_score and clinicopathological features
	3.5 Prediction of VM_score for immune phenotypes and clinical response of ICB in BLCA
	3.6 Effect of VM_score for molecular subtypes and therapeutic response
	3.7 Validating roles of VM_score in Xiangya cohort and GSE32894

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


