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Introduction: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease
characterized by fat deposits in liver cells, which can lead to hepatitis and
fibrosis. This study attempted to explore the protective effect of vitamin D3
(VitD) against NAFLD.

Methods: Adult male albino rats were randomized into four separate groups: the
negative control group was fed a standard rat chow; the positive group received a
high-fat diet (20%) and 25% fructose water (NAFLD); the VitD control group was
intramuscularly treated with VitD (1,000 IU/kg BW) 3 days per week for 10 weeks;
and the NAFLD group was treated with VitD therapy. Biochemical and hepatic
histological analyses were performed. Hepatic oxidative stress and inflammatory
conditions were also studied. Hepatic expression of sterol regulatory element-
binding protein 1-c (SREBP-1-c), peroxisome proliferator-activated receptor
alpha (PPAR-α), and insulin receptor substrate-2 was analyzed by quantitative
real-time polymerase chain reaction.

Results and discussion: The NAFLD rats exhibited elevated terminal body weight,
hepatic injury markers, dyslipidemia, glucose intolerance, and insulin resistance.
Moreover, the NAFLD rats had increased SREBP-1-c expression and reduced
PPAR-α and IRS-2 expressions. Histological analysis showed hepatic steatosis and
inflammation in the NAFLD group. In contrast, VitD administration improved the
serum biochemical parameters and hepatic redox status in NAFLD rats. Also, VitD
treatment ameliorated hepatic inflammation and steatosis in the NAFLD group by
decreasing the expression of SREBP-1-c and increasing the expression of PPAR-α.
Overall, these results suggest that VitD could have a protective effect against
NAFLD and its associated complication.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common disease
characterized by the presence of triglyceride deposits in more than
5% of hepatocytes, in the absence of excessive alcohol consumption
or other documented causes of liver damage (Rahimi and
Landaverde, 2013; Shojaei Zarghani et al., 2018). It is divided
into two main forms: the non-progressive form, which rarely
develops into cirrhosis and is known as nonalcoholic fatty liver
disease, and the progressive form, which leads to cirrhosis and
hepatocellular carcinoma and is known as nonalcoholic
steatohepatitis (NASH) (Loomba and Sanyal, 2013). Since
NAFLD is related to obesity and insulin resistance, it is the best-
known liver disease that chronically affects people of different ages
(Kaufmann et al., 2021). Significant evidence suggests that excessive
consumption of high-fat diets and sugar-sweetened beverages is
related to the development and progression of NAFLD (Rahimi and
Landaverde, 2013; Softic et al., 2016). Additionally, excessive
carbohydrate and fat consumption increases the levels of blood
sugar and free fatty acids, resulting in excessive neutral lipid
deposition in the liver (Zivkovic et al., 2007). The severity of
NAFLD can be increased by excessive fructose consumption as it
promotes insulin resistance, de novo lipogenesis, and the
development of an inflammatory, oxidative stress state
(Jarukamjorn et al., 2016). Since NAFLD is a critical cause of
abnormal liver enzymes, cryptogenic cirrhosis, and liver
transplantation, it is important to manage and control NAFLD
(Souza et al., 2012; Softic et al., 2016).

Vitamin D is a fat-soluble prohormone that can be formed in the
skin after direct exposure to ultraviolet rays or taken with food
(Sharifi and Amani, 2019). To achieve its biological activity, a series
of sequential biochemical reactions must take place, including 25-
hydroxylation in the liver and then 1-hydroxylation in the kidney
(Yin et al., 2012). Classically, it has been implicated in calcium and
phosphorus hemostasis, but recent studies indicate its role in
managing diseases associated with inflammation and oxidative
stress in both human and animal models (Sharifi and Amani,
2019). It also plays a role in improving the lipid profile (Faraji
and Alizadeh, 2020). Several lines of evidence suggest that VitD can
modulate liver inflammation and improve hepatic responsiveness to
insulin by binding to its specific receptor in the liver (Barchetta et al.,
2017). It has been demonstrated that an active form of VitD can
reduce oxidative stress, generation of inflammatory factors, and
hepatic fibrosis in NAFLD resulting from a high-fat diet (Liu et al.,
2020). It can also alleviate fatty liver disease in an NAFLD rat model
by modulating lipid metabolism and/or impeding cell senescence
(Yin et al., 2012; Liu et al., 2020). Moreover, VitD intake could
reduce NAFLD severity and its risk factors including dyslipidemia
and obesity (Sangouni et al., 2019). Therefore, VitD
supplementation may be helpful in the prevention of NAFLD by
modulating some serum liver function markers, lipid profile, hepatic
redox status, selective molecules involved in the inflammatory and
antiinflammatory processes, and mRNA expression levels of
regulatory molecules, SREBP-1-c, PPAR-α, and IRS-2 involved in
lipogenesis, lipolysis, and insulin signaling, respectively.

2 Materials and methods

2.1 Materials

2.1.1 Chemicals
Cholecalciferol (vitamin D3) was brought from Memphis

Company for Pharmaceutical and Chemical Industries (Cairo,
Egypt) in the form of ampoules (100,000 IU/mL).

2.1.2 Experimental animals
A total of 32 healthy male albino rats (230–250 g) of about

9 weeks of age were procured from the Animal House of Zagazig
University. The rats were housed in standard polypropylene cages
(four rats per cage) under appropriate conditions of temperature
(25°C ± 2°C), humidity (60%–70%), and light (12-h dark/light
cycles). They were provided ad libitum with a commercial rodent
diet and plain water. The experimental protocol was approved by the
Ethical Animal Research Committee of Faculty of Veterinary
Medicine, Mansoura University, Egypt (Approval No. 2021; M/35).

2.2 Methods

2.2.1 Induction of NAFLD
To establish NAFLD, the rats received a high-fat diet (HFD)

with 20% fat. The HFD was prepared according to the work of Shin
et al. (2016) with some modifications (we used 19 g of butter oil and
1 g of soybean oil as a source of fat instead of corn oil and lard). In
addition, 25% fructose solution was added to the drinking water for
10 weeks (about 2.5 months) (high-fat, high-fructose diet).

2.2.2 Animal treatment
After 2 weeks of acclimatization, the experimental animals were

assigned to four groups (eight each), detailed as follows:

• Control group: Rats were maintained on standard chow and
fructose-free water

• NAFLD group: Rats were fed an HFD and 25% fructose water
• VitD group: Rats received standard chow, fructose-free water,
and VitD treatment

• NAFLD + VitD group: Rats received an HFD, 25% fructose
water, and VitD treatment

Vitamin D3 was diluted in sterile saline and then injected
intramuscularly (1,000 IU/kg BW) 3 days per week throughout
the experimental period as mentioned by BaSalamah et al.
(2018). The body weight of each rat was taken on day 0 and
then every week.

2.2.3 Collection and preparation of samples
After the 10th week, experimental rats were injected

intraperitoneally with xylazine and ketamine mixture at doses of
10 mg/kg and 50 mg/kg, respectively, and retro-orbital puncture was
performed to collect peripheral blood samples. The blood samples
were carefully centrifuged at 1,198 × g for 10 min to separate the
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sera. The obtained sera were then used to study some biochemical
parameters. After that, hepatic tissue specimens were collected from
the decapitated rats and cut into several parts. One part was used to
prepare liver homogenates to assess the hepatic redox status and
hepatic pro/antiinflammatory status. The protein content in the
homogenates was determined, as reported by Bradford (1976). A
hepatic specimen of 1 gm was maintained in RNAlater (Quigen,
Germany) for gene expression studies. For histological investigation,
hepatic tissue sections were formalin-fixed and then stained with
hematoxylin and eosin (H&E). In addition, other sections were
frozen, fixed, and stained with Oil Red O.

2.2.4 Serum biochemical analysis
Available commercial kits were utilized to evaluate the

biomarkers of liver function: alanine and aspartate
aminotransferases (ALT and AST, respectively) (Human
Diagnostics Worldwide, Wiesbaden, Germany); alkaline
phosphatase (ALP) (ELITech, Paris, France); bilirubin (total and
direct) (Diamond, Cairo, Egypt); and total protein and albumin
(Stanbio Laboratory, TX, United States). A Spinreact kit was used to
analyze the serum glucose level, while serum insulin and 25(OH)
VitD levels were quantified by enzyme-linked immunosorbent assay
using the appropriate kits (Biospes, Chongqing, China, and
DiaMetra SRL, Perugia, Italy, respectively). Homeostasis model
assessment of insulin resistance (HOMA-IR) was detected
according to the work of Matthews et al. (1985).

Different lipid parameters [triglyceride (TG), total cholesterol
(TC), and high-density lipoprotein cholesterol (HDL-C)] were
estimated using ready-made assay kits (Spinreact, Sant Esteve de
Bas, Spain), and exceptionally very-low- and low-density lipoprotein
cholesterol (VLDL-C and LDL-C) values were calculated as
recorded by Friedewald et al. (1972). The biochemical serum
analyses were performed following the manufacturer’s guidelines
and measured using a spectrophotometer (BM, Germany, 5010).

2.2.5 Assessment of hepatic redox status and
serum total antioxidant capacity

Malondialdehyde (MDA) concentration and the enzymatic
activities of both superoxide dismutase (SOD) and catalase
(CAT), together with the reduced glutathione (GSH) level, were
determined in the hepatic tissue using standard assay kits from Bio-
Diagnostic Co. (Cairo, Egypt), according to the instructions in each
corresponding pamphlet. Serum total antioxidant capacity (sTAC)
was also estimated by using Bio-Diagnostic kits.

2.2.6 Assessment of hepatic pro- and
antiinflammatory status

Specific rat ELISA kits purchased from Cusabio (Wuhan, China)
were utilized for the determination of the hepatic concentration of
nuclear factor kappa β (NF-κβ), whereas R&D Systems ELISA Kits
(Minneapolis, MN, United States) were used to measure hepatic
interleukin-10 (IL-10) levels, following the protocol in the assay kits.

2.2.7 Assessment of hepatic gene expression
RNA was first extracted from the hepatic tissue following the

RNeasy Mini Kit instructions (Qiagen, Hilden, Germany). Then,
cDNA was synthesized using RevertAid Reverse Transcriptase Kits
from Thermo Fisher Scientific (Massachusetts, United States),

following the manufacturer’s instructions. Quantitative RT-PCR
was performed to evaluate the relative expression levels of the
following genes: sterol regulatory element-binding protein 1-c
(SREBP-1-c), peroxisome proliferator-activated receptor alpha
(PPAR-α), and insulin receptor substrate-2 (IRS-2). Primer
sequences of SREBP-1-c (Ren et al., 2019), PPAR-α (Ding et al.,
2014), and IRS-2 (Kanuri et al., 2016) are shown in Table 1. RT-PCR
assay was performed using the MX3005P QPCR system. The
preparation of the PCR master mix and cycling conditions was
performed using the QuantiTect SYBR Green PCR Kit (Qiagen,
Germany), following the manufacturer’s instructions. Rat β-actin
(Banni et al., 2010) was used as a housekeeping gene, and a
comparative Ct method (2−ΔΔCT) was used to detect mRNA
expression levels, according to the work of Livak and Schmittgen
(2001).

2.2.8 Histopathological assessment of the liver
Liver sections were preserved in 10% formaldehyde solution and

then immersed in paraffin. The obtained tissue was sliced into 5 μm-
thick tissue blocks that were stained with hematoxylin and eosin
(H&E). The obtained blocks were inspected under a light
microscope, as mentioned by Kleiner et al. (2005). To assess
hepatic lipid deposition, 10-μm frozen liver sections were
prepared using a cryostat (LEICA CM 1800), fixed, and then,
stained with ORO (Green and Kehinde, 1974). Using the XSZ-
107BN microscope (China) and the Apex Minigrab (UK), the
obtained sections were randomly photographed and then
automatically analyzed using ImageJ (https://imagej.nih.gov/ij).

2.2.9 Data analysis
The outputs were given as means ± SEM. The Statistical Package

of Social Services, version 22 (SPSS 22), was used to perform all
statistics using ANOVA, followed by Duncan’s multiple-range test
to perform the comparisons between the tested groups. Statistical
significance was displayed at p < 0.05. Positive ORO-stained areas
were evaluated by ANOVA, followed by Tukey’s test for group
comparison (p-value ≤ 0.05), using GraphPad Prism for macOS,
version 9.2.0 (283).

3 Results

3.1 Effect of vitamin D treatment on body
weight

Figure 1 shows that the initial body weights were similar in all
the experimental groups. However, a remarkable increase was noted
in the terminal body weights of the NAFLD rats compared to the
control rats (p < 0.05). No substantial variation was observed in the
body weight of the NAFLD + VitD compared with the NAFLD
group.

3.2 Vitamin D treatment improved serum
biochemical parameters in NAFLD rats

As shown in Table 2, NAFLD rats showed marked (p < 0.05)
elevation in the serum ALT, AST, and ALP activities compared to
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the control rats. Conversely, VitD administration in rats with
NAFLD markedly (p < 0.05) normalized ALT and ALP serum
activities and caused a substantial (p < 0.05) decrease in serum
AST activity but did not return it to its normal value, suggesting
that VitD has hepatoprotective properties. Additionally, the total
and direct bilirubin concentrations were pronouncedly (p < 0.05)
increased in the NAFLD group (Table 2), whereas the total
protein and globulin levels were pronouncedly (p < 0.05)
decreased as opposed to the control rats (Table 2). VitD had
no significant (p > 0.05) effect on either bilirubin or
proteinogram serum results in the NAFLD + VitD group
versus NAFLD rats.

Serum glucose and insulin levels, together with HOMA-IR
index, were sustainably (p < 0.05) increased, while the serum 25
(OH)VitD level was decreased (p < 0.05) significantly in the NAFLD
group compared the control group, suggesting disorders of glucose
metabolism and a state of insulin resistance. However, VitD
treatment markedly (p < 0.05) attenuated the high-fat and
fructose diet (HFFD)-mediated increase in glucose, insulin, and
HOMA-IR values and significantly (p < 0.05) improved the serum

25(OH)VitD level in the NAFLD+ VitD group compared to the
untreated NAFLD rats (Table 2).

3.3 Vitamin D treatment improved the serum
lipid profile in NAFLD rats

Table 2 shows that rats in the NAFLD group had significantly (p <
0.05) higher TG, TC, VLDL-C, and LDL-C serum levels, while theHDL-
C serum level significantly decreased compared with the control rats,
indicating impaired lipid homeostasis. Serum levels of TG and VLDL-C
notably (p< 0.05) decreased, while TC andLDL-C levels almost returned
to their basal values, and the HDL-C serum concentration was
significantly increased in the NAFLD + VitD group by intramuscular
VitD treatment as opposed to the NAFLD group.

3.4 Vitamin D improved hepatic antioxidant
defense status and serum total antioxidant
capacity in NAFLD rats

As shown inTable 3, NAFLD rats exhibited an imbalance in hepatic
redox status, as evidenced by a substantial (p < 0.05) increment in the
hepatic MDA concentration and marked decreases in sTAC, hepatic
SOD, GSH, and CAT concentrations compared to the control group. In
contrast, VitD effectivity decreased theMDAhepatic concentration and
increased hepatic SOD and GSH concentrations in the NAFLD + VitD
group compared to the NAFLD group.

3.5 Vitamin D treatment modulated the
hepatic pro- and antiinflammatory status in
NAFLD rats

A significant (p < 0.05) increase in the NF-κB level and a
sustainable (p < 0.05) decrease in the IL-10 level were observed
in the liver of NAFLD rats with respect to the control group,
indicative of hepatic inflammation. As expected, vitamin D
treatment reduced hepatic inflammation and ameliorated the
antiinflammatory status as indicated in the NAFLD + VitD
group versus the untreated NAFLD group (Table 4).

TABLE 1 Forward and reverse primers for SREBP-1-c, PPAR-α, and IRS-2.

Rat β-actin F: 5′ -TCCTCCTGAGCGCAAGTACTCT-3′

R: 5′-GCTCAGTAACAGTCCGCCTAGAA- 3′

SREBP-1-c F: 5′-AGGAGGCCATCTTGTTGCTT- 3′

R: 5′-GTTTTGACCCTTAGGGCAGC- 3′

PPAR-α F: 5′-TCTGTGGGCTCACTGTTC- 3′

R: 5′-AGGGCTCATCCTGTCTTTG- 3′

IRS-2 F: 5′-GAAGCGGCTAAGTCTCATGG- 3′

R: 5′-GACGGTGGTGGTAGAGGAAA- 3′

SREBP-1-c, sterol regulatory element-binding protein 1-c; PPAR-α, peroxisome proliferator-activated receptor alpha; IRS-2, insulin receptor substrate.

FIGURE 1
Changes in the body weight (g) of experimental groups during
the study period. Data are expressed as means ± SEM, in which those
with different superscripts differed significantly (p < 0.05). a is used for
the high value, while b is used for the lower one. Cont., control;
NAFLD, nonalcoholic fatty liver disease; and VitD, vitamin D.
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3.6 Vitamin D improved gene expression in
the liver of NAFLD rats

Hepatic gene expression analysis shown in Figure 2 revealed that
the hepatic mRNA expression of SREBP-1-c wasmarkedly (p < 0.05)
upregulated, while hepatic PPAR-α and IRS-2 mRNA expressions

levels were markedly (p < 0.05) downregulated in the NAFLD rats
relative to the control group. Moreover, VitD treatment significantly
(p < 0.05) abolished the HFFD-mediated downregulation of SREBP-
1-c and significantly promoted the mRNA expression of PPAR-α
and IRS-2 in the liver of the NAFLD + VitD group versus the
NAFLD group.

TABLE 2 Impact of VitD on alterations in the serum liver injury indices, proteinogram, glucose hemostasis parameters, 25(OH)VitD, and lipid profile of NAFLD rats.

Groups

Items Control NAFLD VitD NAFLD+ VitD

ALT (U/L) 44.80 ± 2.15b 59.20 ± 3.02a 45.20 ± 1.59b 50 ± 2.43b

AST (U/L) 53.80 ± 2.31c 76.80 ± 2.21a 56.60 ± 1.11c 62.70 ± 0.86b

ALP (U/L) 333.14 ± 18.73b 424.74 ± 14.77a 316.88 ± 12.40b 342.40 ± 13.42b

Total bilirubin (mg/dL) 0.22 ± 0.19b 0.40 ± 0.02a 0.25 ± 0.03b 0.38 ± 0.03a

Direct bilirubin (mg/dL) 0.13 ± 0.03b 0.28 ± 0.02a 0.13 ± 0.02b 0.23 ± 0.02a

Indirect bilirubin (mg/dL) 0.09 ± 0.02a 0.12 ± 0.01a 0.12 ± 0.03a 0.15 ± 0.02a

Total protein (g/dL) 9.41 ± 0.20a 7.72 ± 0.06b 9.49 ± 0.23a 8.06 ± 0.15b

Albumin (g/dL) 4.73 ± 0.26a 4.39 ± 0.10a 4.33 ± 0.25a 4.59 ± 0.10a

Globulin (g/dL) 4.68 ± 0.12a 3.33 ± 0.12b 5.17 ± 0.42a 3.47 ± 0.18b

Glucose (mg/dL) 94.55 ± 3.71c 141.49 ± 5.01a 97.45 ± 1.20c 115.87 ± 3.64b

Insulin (μIU/mL) 5.37 ± 0.12c 8.20 ± 0.17a 5.40 ± 0.06c 6.53 ± 0.58b

HOMA-IR 1.21 ± 0.04c 2.82 ± 0.05a 1.27 ± 0.03c 1.93 ± 0.13b

25(OH)VitD (ng/mL) 36.27 ± 1.07c 16.05 ± 0.35d 150.00 ± 7.22a 112.50 ± 7.22b

TG (mg/dL) 182.78 ± 4.88c 262.06 ± 9.51a 177.49 ± 6.53c 231.70 ± 5.50b

TC (mg/dL) 182.99 ± 2.46b 199.20 ± 3.34a 182.59 ± 4.27b 186.60 ± 1.29b

VLDL-C (mg/dL) 36.55 ± 0.98c 52.41 ± 1.23a 35.49 ± 1.31c 46.34 ± 1.10b

LDL-C (mg/dL) 70.44 ± 4.80b 86.54 ± 4.79a 70.60 ± 5.50b 70.66 ± 5.08b

HDL-c (mg/dL) 76.00 ± 1.76a 60.25 ± 1.24c 76.50 ± 1.96a 69.60 ± 3.41b

Data for (n = 8) are presented as means ± SEM, in which those with different superscripts differed significantly (p < 0.05). a is used for the high value, b and c are used for intermediate values

between a and d, and d is used for the lower value. Cont., control; NAFLD, nonalcoholic fatty liver disease; VitD, vitamin D; ALT, alanine aminotransferase; AST, aspartate aminotransferase;

ALP, alkaline phosphatase;HOMA-IR: homeostatic model assessment for insulin resistance; TG, triglyceride; TC, total cholesterol; VLDL-C, very-low-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

TABLE 3 Impact of VitD on alterations in the hepatic redox system and serum total antioxidant capacity of NAFLD rats.

Groups

Items Control NAFLD VitD NAFLD+ VitD

MDA (nmol/g tissue) 54.58 ± 2.85b 76.40 ± 2.48a 48.62 ± 3.11b 52.49 ± 1.32b

SOD (U/g.tissue) 478.68 ± 14.54a 384.86 ± 11.70c 480.26 ± 8.44a 436.36 ± 11.58b

GSH (mg/g.tissue) 5.56 ± 0.29a 3.30 ± 0.20c 5.57 ± 0.15a 4.61 ± 0.16b

CAT (U/g.tissue) 1.93 ± 0.01a 1.75 ± 0.03b 1.90 ± 0.01a 1.82 ± 0.03b

sTAC (mM/L) 1.17 ± 0.15a 0.47 ± 0.03b 1.05 ± 0.05a 0.53 ± 0.06b

Data for (n = 8) are presented as means ± SEM, in which those with different superscripts differed significantly (p < 0.05). a is used for the high value, b and c are used for intermediate values

between a and d, and d is used for the lower value. Cont., control;NAFLD, nonalcoholic fatty liver disease;VitD, vitamin D;MDA,malondialdehyde; SOD, superoxide dismutase;CAT, catalase;

GSH, reduced glutathione; sTAC, serum total antioxidant capacity.
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3.7 Vitamin D ameliorated the hepatic
histopathological changes observed in
NAFLD rats

Histopathological analysis of the hepatic sections revealed that
the livers of the control and VitD-treated rats had normal tissue
architecture without any detected pathological changes (Figures 3A,
E). On the contrary, Table 5 shows that the liver of the NAFLD rats
showed parenchyma with intracytoplasmic fat vacuoles and a
centrally located nucleus indicating microvesicular fatty changes.
The hepatic parenchyma also showed ballooning degeneration and

lobular inflammation as opposed to the negative control group
(Figures 3B, C). In addition, the liver of the NAFLD rats showed
periportal microgranuloma, which can be defined as aggregates of
epithelioid cells and other inflammatory cells, including
lymphocytes. On the other hand, VitD effectively ameliorated
these histopathological abnormalities in the NAFLD + VitD
group, as evidenced by a decrease in the observed hepatic
microvesicular fatty changes and inflammatory infiltrates when
compared to the NAFLD group (Figures 3F, G).

Figure 4 shows photomicrographs of ORO-stained hepatic
sections. Histology of the liver was normal in the control and

TABLE 4 Impact of Vit D on changes in the hepatic inflammatory status of NAFLD rats.

Groups

Items Control NAFLD VitD NAFLD+ VitD

NF-κβ (pg/g protein) 40.00 ± 2.52c 474.67 ± 16.38a 48.67 ± 4.91c 115.33 ± 9.06b

IL-10 (pg/g protein) 143.00 ± 1.53a 74.00 ± 6.35c 137.64 ± 4.09a 121.33 ± 3.76b

Data for (n = 8) are presented as means ± SEM, in which those with different superscripts differed significantly (p < 0.05). a is used for the high value, b and c are used for intermediate values

between a and d, and d is used for the lower value. Cont., control; NAFLD, nonalcoholic fatty liver disease; VitD, vitamin D; NF-κβ, nuclear factor kappa β; IL-10, interleukin-10.

FIGURE 2
Impact of VitD on the hepatic mRNA expression levels of NAFLD rats. (A) SREBP-1-c, (B) PPAR-α, and (C) IRS-2. Data are shown as means ± SEM, in
which those with different superscripts differed significantly (p < 0.05). a is used for the high value, b and c are used for intermediate values between a and
d, and d is used for the lower value. Cont., control; NAFLD, nonalcoholic fatty liver disease; and VitD, vitamin D. SREBP-1-c, sterol regulatory element-
binding protein 1-c; PPAR-α, peroxisome proliferator-activated receptor alpha; and RS-2, insulin receptor substrate-2.
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VitD groups (Figures 4A, C), respectively. In the NAFLD group, the
liver showed widespread lipid droplets of varied sizes occupying the
cytoplasm of hepatocytes (Figure 4B). As expected, the liver of the
NAFLD + VitD group had a fewer number of lipid droplets than the
NAFLD group (Figures 4D, E).

4 Discussion

Nonalcoholic fatty liver disease is a common liver disorder
that can range from asymptomatic steatosis to inflammation and
fibrosis, which may lead to hepatic cirrhosis and carcinoma
(Katsiki et al., 2016). Routine treatments for NAFLD include
lifestyle adjustment and surgical therapy; however, the most
effective therapeutic regimens for NAFLD are still under study
(Liu et al., 2020). Nowadays, the various functions of VitD are
known due to its immunomodulatory, antiinflammatory, and
insulin-sensitizing properties (Barchetta et al., 2020).
Therefore, VitD could be effectively used as a therapy for
NAFLD (Eliades and Spyrou, 2015). From this point of view,
this study was conducted to explore the possible protective effects

of VitD administration against NAFLD caused by a high-fat and
fructose diet (HFFD).

In the current study, the HFFD caused a marked increase in the
body weight of rats, which may be attributed to the ability of fructose
to promote leptin resistance and serum ghrelin levels (Muriel et al.,
2021). Vitamin D could not modulate the increase in body weight
induced by the HFFD that was previously recorded in rats fed an
obesogenic diet and treated with vitamin D (Mazzone et al., 2018;
Shojaei Zarghani et al., 2018; Al-Badarein and Ahmad, 2021).

Evaluation of the serum activity of ALT is considered a valuable
tool for the detection of NAFLD. In our study, liver function
biomarkers, including ALT, AST, ALP, and total and direct
bilirubin, were markedly increased in the NAFLD group,
indicating hepatocellular damage. This may be due to the
lipogenic potential of fructose as it increases hepatic de novo
lipogenesis (DNL) at multiple levels, leading to intrahepatic fat
accumulation (Mouzaki and Allard, 2012; Charrez et al., 2015;
Jin and Vos, 2015; Softic et al., 2016). This was confirmed
histopathologically in our work with H&E and ORO staining.
Administration of VitD had a hepatoprotective effect, as detected
by lowering the elevated liver enzymes activities (Han et al., 2015;

FIGURE 3
Effect of VitD on hepatic histopathological alterations in NAFLD rats (H&E staining). (A,E) Micrographs of the control group and vitamin D-treated
group showing normal liver histology (10x). (B)Micrograph of the NAFLD group showing microvesicular steatosis and ballooning degeneration (10x). (C)
Micrograph of the NAFLD group showing lobular inflammation consisting mainly of polymorphonuclear cell infiltration (10x). (D) Micrograph of the
NAFLD group showing periportal microgranuloma (40x). (F) Micrograph of the NAFLD + VitD group showing decreased microvascular steatosis
(bottom inset) and hepatocyte ballooning injury (top inset) (10x) compared to the NAFLD group. (G)Micrograph of the NAFLD + VitD group showing mild
lobular inflammation (inset) (10x).
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TABLE 5 Hepatic scoring and histopathological changes in all experimental groups.

Item Definition Score Control NAFLD VitD NAFLD +
VitD

Steatosis grade Low- to medium-power evaluation of parenchymal involvement by
steatosis

<5% 0 + +

5%–33% 1 +

>33%–66% 2 +

“66%> 3

Location Predominant distribution pattern

Zone 3 or not present 0 + +

Zone 1 1

A zonal 2

Panacinar 3 + +

Microvesicular steatosis Contiguous patches

Not present 0 + +

Present 1 + +

Fibrosis stage None 0 + + + +

Lobular inflammation Overall assessment of all inflammatory foci

No foci 0 + +

<2 foci per 200X field 1 +

2–4 foci per 200X field 2 +

>4 foci per 200X field 3

Portal inflammation Assessed from low magnification

None to minimal 0 + + +

Greater than minimal 1 +

Microgranulomas Small aggregates of macrophages

Absent 0 + +

Present 1 + +

Liver cell injury Ballooning None 0 + +

Few balloon cells 1

Many cells/prominent ballooning 2 + +

Acidophil bodies None to rare 0 + + + +

Many 1

Pigmented macrophages None to rare 0 + + + +

Many 1

Megamitochondria None to rare 0 + +

Many 1 + +

Other findings

Mallory’s hyaline Visible on routine stains

None to rare 0 + +

Many 1 + +

(Continued on following page)
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Zhu et al., 2017), which was confirmed histopathologically by a
significant reduction in the hepatic lipid burden. The same findings
were reported previously by Shojaei Zarghani et al. (2018) in rats fed
an HFFD and treated with a vitamin D and calcium combination.
The prevention of intrahepatic fat accumulation and the reduction
in hepatic cholesterol content may be the cause of the reduction in
the hepatic lipid burden (Mazzone et al., 2018; Shojaei Zarghani
et al., 2018). Hence, VitD has been reported to downregulate
SREBP-1-c and stimulate PPAR-α (Yin et al., 2012).

In the current study, the NAFLD group showed glucose
intolerance and impaired insulin sensitivity, which is consistent

with the findings obtained by Geetha et al. (2014). This may be a
result of high fructose consumption, as it has been reported that
fructose-1-phosphate activates mitogen-activated protein kinase,
which phosphorylates insulin receptor substrate 1 at the serine
residue, leading to hepatic insulin resistance (IR) (Lim et al.,
2010; Chang et al., 2014). In addition, fructose itself promotes
forkhead box protein O1 synthesis in the liver, leading to an
increase in gluconeogenesis, which, together with IR, leads to
hyperglycemia and glucose intolerance (Mouzaki and Allard,
2012). In contrast, VitD administration improved glucose
hemostasis in the NAFLD group (Sergeev and Song, 2014). This

TABLE 5 (Continued) Hepatic scoring and histopathological changes in all experimental groups.

Item Definition Score Control NAFLD VitD NAFLD + VitD

Glycogenated nuclei Contiguous patches

None to rare 0 + + + +

Many 1

FIGURE 4
Photomicrographs of Oil Red O-stained hepatic sections (40x). (A,C) Cont. group and vitamin D-treated group: showing normal liver histology. (B)
NAFLD group: showing widespread lipid droplets of variable size occupying the cytoplasm of hepatocytes. (D) NAFLD + VitD group: showing decreased
lipid deposits compared with the NAFLD group. (E) Mean positive area percentage ±SEM in each group. Data were analyzed using one-way ANOVA,
followed by Tukey’s test for group comparison. ns = not significant. * = p value ≤ 0.05. ** = p value ≤ 0.01. *** = p value ≤ 0.001. **** = p value ≤
0.0001.
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improvement could be attributed to the ability of calcitriol to
activate AMPK via the calcium/calmodulin protein kinase beta
pathway, leading to attenuating gluconeogenesis and promoting
glycolysis (Leung, 2016; Szymczak-Pajor et al., 2020). Additionally,
Sung et al. (2012) claimed that VitD can promote insulin action
either directly by stimulating insulin receptor expression or
indirectly through the regulation of Ca++ levels.

Since NAFLD is associated with lipid disorders, serum lipid profile
parameters were investigated. The NAFLD group showed elevations in
the serum concentration of TG, TC, VLDL-C, and LDL-C but lower
serum HDL-C concentrations. This impairment may be contributed to
increase DNL induced by fructose consumption, leading to the
formation of fatty acids to produce hepatic TG. The increased
hepatic lipid content leads to a decrease in intracellular apo-B
degradation and increased production and secretion of VLDL-C
(Stanhope and Havel, 2010). On the other hand, the decreased HDL
blood level was contributed to the decreased post-heparin plasma LPL/
HL ratio and the increased VLDL levels (Mooradian et al., 2008).
Concerning the impact of VitD on lipid profile parameters, it
ameliorated lipid levels in the serum, which may refer to its ability
to promote calcium absorption from the intestine. This calcium forms
insoluble soap with fatty acids, especially saturated fatty acids, resulting
in increased fecal fat excretion and a decrease in its digestibility
(Christensen et al., 2009; Subih et al., 2018). It may also increase
lipoprotein lipase enzymes, promote the formation of high-density
lipoprotein cholesterol particles, and regulate serum apo-lipoprotein A-
1 levels (Hassan et al., 2020;Melguizo-Rodríguez et al., 2021). Our result
was previously reported by Farhangi et al. (2017)and El-Sherbiny et al.
(2018). In contrast, Shojaei Zarghani et al. (2018) reported insignificant
changes in the serum level of TG, TC, and LDL in groups fed with an
HFFD and treated with a vitamin D and calcium combination.

Hepatic redox imbalance has been known to be involved in the
development and progression of NAFLD from simple steatosis to a
more severe form (Spahis et al., 2016). Our data indicated that
NAFLD rats had increased hepatic MDA and decreased hepatic
antioxidant enzymes and GSH, which was previously reported by
Nasri et al. (2015). This may be due to increased superoxide and
hydrogen peroxide ions from HFFD feeding (Jarukamjorn et al.,
2016). In addition, the antioxidant potential of cells decreases when
the excess fructose activates DNL, leading to a reduction in NADPH
(Charrez et al., 2015). In agreement with Zhu et al. (2017), our data
demonstrated that VitD improved hepatic redox status. The
antioxidant effect of VitD may be associated with the inhibition
of NADPH oxidase and the enhancement of nuclear factor erythroid
2-related factor 2 nuclear translocation (Nakai et al., 2013; Zhu et al.,
2017). Additionally, VitD enhances the synthesis of metal ion
protein carriers. These metal ions are critical for the action of
various enzymes such as antioxidant enzymes (Hassan et al., 2020).

Our data revealed that NAFLD rats showed an increase in hepatic
NF-κB and a decline in the IL-10 levels. There are many potential
cellular mechanisms leading to activating inflammatory signaling in
NAFLD as a high-caloric diet activates the IKK/NF-κB pathway in
adipocytes, hepatocytes, and associated macrophages. IKK activation
leads to NF-κB translocation and increased expression of numerous
markers and potential mediators of inflammation (Pradhan, 2007).
Therefore, the activation of the NF-κB signaling pathway as the most
enriched pathway was associated with hepatic inflammation and
resulted in an increase in NF-κB expression in NAFLD (Sangouni

et al., 2019; Zhao et al., 2022). Meanwhile, the decreased IL-10 levels are
linked to T-helper-2 malfunctions (Cano Barquilla et al., 2014). Our
findings were previously recorded by Theodoro et al. (2021). On the
contrary, VitD administration reduced hepatic inflammation, which
was confirmed in our histopathological results by decreasing
inflammatory cell infiltration. This could be due to the ability of
calcitriol to interfere with NF-κB via increasing the expression of the
inhibitory protein (IκB) in peripheral blood mononuclear cells and
reducing the nuclear translocation of the NF-κB subunit p65 (Krishnan
and Feldman, 2011; Chen et al., 2020). Moreover, the IL-10 hepatic level
was significantly enhanced uponVitD treatment, which is in agreement
with a prior report (Refaat et al., 2021). This could be attributed to
enhancing T-helper-2 cell differentiation and overproduction of
antiinflammatory cytokines such as IL-10 after VitD administration
(Bishop et al., 2021; Sharma et al., 2021).

To further confirm the hepatic lipid burden in our NAFLD
model with a decrease in its oxidation, we performed qualitative
real-time PCR for analyzing the hepatic expression of lipid
metabolic genes including SREBP-1-c and PPAR-α. The results
revealed disturbances in the expression of both genes in the
NAFLD group including an increase in SREBP-1-c expression
and a decrease in PPAR-α expression, which was previously
observed by Wang et al. (2022). The explanation for the observed
changes in the hepatic SREBP-1-c and PPAR-α mRNA levels is
provided by Nagai et al. (2002), who observed that fructose can
stimulate SREBP-1-c but suppress PPAR-α expression levels in rat
liver. VitD administration resulted in reverse changes in both genes’
expression in the liver of the NAFLD group. This may be related to
the ability of VitD to interfere with the activation of SREBP-1-c by
enhancing the ubiquitin-mediated degradation of the SREBP
cleavage-activating protein (Asano et al., 2017). Similar results
were previously observed in male rats fed with an HFD and
treated with calcitriol at doses 5 μg/kg B.W, I/P, and 5 ng/g B.W,
I/M, twice per week, respectively (Yin et al., 2012; Kong et al., 2014).

The impairment of the insulin signal and insulin resistance was
further confirmed in our NAFLD model by a significant decrease in
the hepatic expression of IRS-2. This may refer to the ability of
SREBP-1-c to suppress IRS-2 promoter activity by competing with
its transactivator (Ide et al., 2004). Several studies confirmed that
hepatic IRS-2 mRNA expression was downregulated in HFD-fed
rodent models (Xing et al., 2011; Qiu et al., 2015; Yang et al., 2019).
Contrariwise, vitamin D administration enhanced hepatic IRS-2
expression in NAFLD rats. Our result is in parallel with that
obtained by Szymczak-Pajor et al. (2020), who speculated that
the active form of VitD enhances the transcriptional activation of
the IR gene, which improves insulin signaling.

5 Conclusion

This study clarified that an HFFD led to a substantial increase in
body weight and hepatic injury indices, along with disorders in glucose
hemostasis and lipid metabolism. In addition, hepatic inflammation
and oxidative damage occurred, which led to the development and
progression of NAFLD. We also concluded that VitD may protect
against HFFD-induced NAFLD through its antioxidant and
antiinflammatory effects. In addition, VitD had ameliorative effects
on glucose hemostasis and lipid profile.
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