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Background: Afatinib is an irreversible epidermal growth factor receptor tyrosine
kinase inhibitor, and it plays a role in hepatocellular carcinoma (LIHC). This study
aimed to screen a key gene associated with afatinib and identify its potential
candidate drugs.

Methods:We screened afatinib-associated differential expressed genes based on
transcriptomic data of LIHC patients from The Cancer Genome Atlas, Gene
Expression Omnibus, and the Hepatocellular Carcinoma Database (HCCDB). By
using the Genomics of Drug Sensitivity in Cancer 2 database, we determined
candidate genes using analysis of the correlation between differential genes and
half-maximal inhibitory concentration. Survival analysis of candidate genes was
performed in the TCGA dataset and validated in HCCDB18 and
GSE14520 datasets. Immune characteristic analysis identified a key gene, and
we found potential candidate drugs using CellMiner. We also evaluated the
correlation between the expression of ADH1B and its methylation level.
Furthermore, Western blot analysis was performed to validate the expression
of ADH1B in normal hepatocytes LO2 and LIHC cell line HepG2.

Results: We screened eight potential candidate genes (ASPM, CDK4, PTMA, TAT,
ADH1B, ANXA10, OGDHL, and PON1) associated with afatinib. Patients with higher
ASPM, CDK4, PTMA, and TAT exhibited poor prognosis, while those with lower
ADH1B, ANXA10, OGDHL, and PON1 had unfavorable prognosis. Next, ADH1Bwas
identified as a key gene negatively correlated with the immune score. The
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expression of ADH1B was distinctly downregulated in tumor tissues of pan-cancer.
The expression of ADH1B was negatively correlated with ADH1B methylation.
Small-molecule drugs panobinostat, oxaliplatin, ixabepilone, and seliciclib were
significantly associated with ADH1B. The protein level of ADH1B was significantly
downregulated in HepG2 cells compared with LO2 cells.

Conclusion: Our study provides ADH1B as a key afatinib-related gene, which is
associated with the immune microenvironment and can be used to predict the
prognosis of LIHC. It is also a potential target of candidate drugs, sharing a
promising approach to the development of novel drugs for the treatment of LIHC.
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Introduction

Globally, liver cancer significantly increases the world’s cancer
burden. Liver cancer ranks the sixth for incidence and the third for
cancer-related death according to the Global Cancer Statistics 2020
(Sung et al., 2021). The most common histologic type of liver cancer
is hepatocellular carcinoma (LIHC), and it is estimated that LIHC
accounts for 75%–85% of all liver cancer cases in the world (Sung
et al., 2021). Although non-viral risk factors including alcohol,
metabolic syndrome, obesity, diabetes, and non-alcoholic fatty
liver disease have had major impacts on the development of
LIHC, hepatitis B virus (HBV) and hepatitis C virus (HCV) are
still predominant viral causes of LIHC (McGlynn et al., 2021).
Currently, first-line drugs such as sorafenib, lenvatinib, and
nivolumab as well as second-line drugs including regorafenib and
cabozantinib are commonly used systemic treatments for LIHC
(Chen et al., 2020; Foerster and Galle, 2021). Unfortunately, most of
the patients were insensitive to systemic treatments, and the 5-year
overall survival of LIHC patients is approximately 19.6% and can
even decline to 2.5% for advanced and metastatic patients
(Chidambaranathan-Reghupaty et al., 2021). Therefore, it is
essential to develop potential targets and effective candidate
drugs for systemic treatments with the help of high-throughput
sequencing technology at the molecular level to improve prognosis
for patients with LIHC.

The epidermal growth factor receptor (EGFR), a
transmembrane receptor tyrosine kinase, plays an important role
in proliferation, differentiation, and survival and is involved in
tumorigenesis, especially in lung cancer, breast cancer, and
glioblastoma (Sun et al., 2018). Additionally, the tumor-
promoting function of the activated EGFR in LIHC has been
previously documented (Komposch and Sibilia, 2015).
Meanwhile, the EGFR contributes to drug resistance in tumors
(Jin et al., 2021). Afatinib is an FDA-approved irreversible
blocker of the tyrosine kinase of the EGFR for treating advanced
or metastatic non-small-cell lung cancer (NSCLC) (Wecker and
Waller, 2018). It has been reported that afatinib inhibits
epithelial–mesenchymal transition and tumorigenesis of LIHC
cells via inactivation of extracellular signal-regulated kinase
(ERK)-vascular endothelial growth factor (VEGF)/matrix
metalloproteinase (MMP) 9 signaling (Chen et al., 2019). The
combination of ethoxy-erianin phosphate and afatinib exerts
synergistic effects on LIHC tumor growth and angiogenesis
through VEGF/EGFR signaling (Chen et al., 2022). Moreover, a

recent study demonstrated that the application of EGFR inhibitor
WZ3146 and afatinib showed strong synergistic effects with
cabozantinib on LIHC cells (Ma et al., 2022). These compelling
pieces of evidence suggested that afatinib may have great potential as
a treatment for LIHC. Thus, screening afatinib-associated genes may
facilitate to mine potential targets and candidate drugs for LIHC
patients.

In this study, we screened potential candidate genes of afatinib
based on transcriptomic data of LIHC patients from The Cancer
Genome Atlas (TCGA), GSE14520, the Hepatocellular Carcinoma
Database (HCCDB), and the Genomics of Drug Sensitivity in
Cancer (GDSC) 2 database. Through immune characteristics
analysis, ADH1B was initially considered a key gene. Potential
regulatory pathway analysis revealed the underlying mechanism
of ADH1B in LIHC. We also found four potential small-molecule
drugs significantly associated with ADH1B. Our study reveals
ADH1B as a potential target for afatinib treatment and provides
promising drugs targeting ADH1B.

Materials and methods

Data collection and pre-processing

We downloaded transcriptomic data and corresponding clinical
information of LIHC patients from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). The samples
without survival time or survival status were eliminated from this
study, keeping samples with survival time longer than 0 days. A total
of 365 LIHC tissue samples and 50 para-carcinoma tissue samples
were included.

We also downloaded GSE14520 from the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database.
We converted the probe to a gene symbol. We removed normal
tissues and eliminated samples without follow-up information or OS
information, ensuring that all the samples had survival time greater
than 0 days. A total of 242 LIHC tissue samples were collected.

From the Hepatocellular Carcinoma Database (HCCDB)
(http://lifeome.net/database/hccdb/) (Lian et al., 2018), we
acquired transcriptomic data and survival information of
212 LIHC tissue samples after removing normal tissues and those
without follow-up information. Moreover, from the Genomics of
Drug Sensitivity in Cancer 2 (GDSC2) database (https://www.
cancerrxgene.org/) (Yang et al., 2012), we obtained afatinib
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treatment-related LIHC cell line expression profile data and half-
maximal inhibitory concentration (IC50) information.

Screening of potential candidate genes of
afatinib

Datasets from TCGA were used for identifying differentially
expressed genes (DEGs). We used the “limma” package (Ritchie
et al., 2015) to screen the differential genes between tumor and
para-carcinoma tissue samples under the threshold of |log2(fold
change)| > 1 and false discovery rate (FDR) < 0.05. Next,
univariate Cox regression analysis was performed to screen
genes using the “survival” package (Therneau and Lumley,
2015) in TCGA, HCCDB18, and GSE14520 datasets.
Furthermore, the correlation between these genes and the
IC50 value of afatinib was analyzed to screen candidate genes.
We performed Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) functional enrichment
analyses using the “clusterProfiler” R package (Yu et al., 2012)
for the common DEGs. The top 10 enriched pathways were
selected if the FDR <0.05.

Relationship of candidate genes with
clinicopathological features and survival

Furthermore, we assessed the distribution of candidate genes
in different clinicopathological features (T stage, stage, and
grade) in the TCGA dataset. Differences were determined
using the wilcox.test. The “survminer” package was used to
determine the cutoff values of gene expression (). LIHC
patients in the TCGA dataset were classified into the high-risk
group and low-risk group, and Kaplan–Meier curves were
generated for the two groups. The log-rank test was used to
assess the significance of differences. Validation was performed
in HCCDB18 and GSE14520 datasets.

Identification of the key gene based on
immune abnormalities

The immune score was predicted using the ESTIMATE
algorithm (Yoshihara et al., 2013) in the TCGA dataset, and
Spearmen correlation analysis was conducted to evaluate the
correlation between candidate genes and immune score. From
previous research (Charoentong et al., 2017), we collected
28 immune cells, the scores of which were calculated using the
CIBERSORT algorithm (Chen et al., 2018). Spearman correlation
analysis was utilized to assess the relationship between immune cells
and ADH1B.

Potential regulatory pathways of ADH1B

To study the potential function of ADH1B in the body, we
used the “GSVA” package (Hänzelmann et al., 2013) to calculate

the enrichment score of KEGG pathways. Significant pathways
were selected based on the t.test. Next, enrichment analysis in the
gene set of the HALLMARK database was performed using Gene
Set Enrichment Analysis (GSEA). We collected 31 cell cycle
progression (CCP)-related genes (Cuzick et al., 2011) and
scored them using single-sample GSEA (ssGSEA).
Additionally, we scored G1/S cell cycle, G2M checkpoint, and
inflammation pathways from KEGG. Spearman correlation
analysis was used to assess the relationship between ADH1B
and pathways.

Performance of ADH1B in pan-cancer

To evaluate the expression of ADH1B in pan-cancer, we
downloaded the gene expression of pan-cancer from TCGA and
GTEx using SangerBox (http://vip.sangerbox.com) (Shen et al.,
2022). The differences were compared using the wilcox.test
between tumor samples and normal samples. Based on a
previous study (Liu et al., 2018), we obtained the survival time
and survival status of pan-cancer and analyzed the relationship
between ADH1B and survival in each cancer type using the
“survival” package.

Drug sensitivity analysis of ADH1B

Using CellMiner (https://discover.nci.nih.gov/cellminer/home.
do), we screened the potential anticancer drugs in LIHC cells.
Spearman analysis was performed to study the relationship
between ADH1B and the sensitivity to small-molecule drugs.
Under the p-value <0.05, potential drugs were selected to have
significant correlation with ADH1B expression.

Correlation between ADH1B expression and
its methylation

We downloaded methylated data (450K) from TCGA and filled
in missing values through the KNN algorithm. After extracting the
peak value of the ADH1B gene, all peaks for each sample were
averaged. We analyzed the correlation between ADH1B gene
expression and the methylation value of the ADH1B gene using
Pearson correlation analysis.

Western blot analysis

LO2 and HepG2 were removed from the T25 culture flasks after
48 h of incubation. Proteins were separated by SDS-PAGE, and the
separated proteins were subsequently transferred to PVDF (0.45)
membranes. The membranes were first incubated with primary
antibodies: ADH1B (17165-1-AP, Proteintech) and GADPH
(60004-1-Ig, Proteintech) for one full day after blocking with 5%
bovine serum albumin for 2 hours. After treating the membranes
with secondary antibodies for 1 hour at room temperature, the
protein bands were detected the next day with ECL solution
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(Billerica Millipore, United States). Protein band signals were sought
using the ChemiDoc detection system (Bio-Rad, United States) and
quantified using ImageJ (National Institutes of Health,

United States). A t-test was used to compare the differences
between LO2 and HepG2 cells. p < 0.05 was considered
statistically significant.

FIGURE 1
Screening of potential candidate genes of afatinib. (A) Volcano plots displaying 2356 differential upregulated genes and 462 downregulated
differential genes between LIHC tumor and para-carcinoma tissue samples. (B, C) Venn diagram showing 178 risk genes and 42 protect genes among
TCGA, HCCDB18, and GSE14520 datasets. (D) Scatter plots of correlation analysis between 220 genes and IC50 value of afatinib from LIHC cells in the
GDSC2 database. (E-H) The GO and KEGG analysis of differentially expressed genes.
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Results

Screening of potential candidate genes of
afatinib

Through differential expression analysis, we screened
2818 differential genes, including 2356 upregulated genes and
462 downregulated genes, between tumor and para-carcinoma
tissue samples (Figure 1A). Next, the Venn diagram showed
178 risk genes and 42 protect genes among TCGA, HCCDB18,
and GSE14520 datasets (Figures 1B, C). Furthermore, we assessed
the relationship between 220 genes and the IC50 value of afatinib.
As displayed in Figure 1D, five candidate genes (CDK4, PTMA,
TAT, OGDHL, and ASPM) were negatively correlated with the
IC50 value of afatinib, while three candidate genes (PON1,
ADH1B, and ANXA10) were positively correlated with the
IC50 value of afatinib. Moreover, we performed functional
enrichment analysis for common DEGs, and we found that

these common DEGs were mainly enriched in mitotic spindle
organization, nuclear division, fatty acid degradation, bile
secretion, DNA replication, and cell cycle, indicating these
DEGs might contribute to tumorigenesis by regulating these
processes (Figures 1E–H).

Distribution of candidate genes in
clinicopathological features

We assessed the distribution of candidate genes in different
clinicopathological features (T stage, stage, and grade) in the TCGA
dataset. We found that the expression of ADH1B was significantly
decreased in patients with G3+G4 (Figure 2A); ANXA10, OGDHL,
PON1, and TAT were highly expressed in patients with early stage
and low grade (Figures 2B, E, F, H), whereas the expression of
ASPM, CDK4, and PTMA was remarkably unregulated in patients
with late stage and high grade (Figures 2C, D, G).

FIGURE 2
Distribution of eight candidate genes in clinicopathological features. The expression levels of ADH1B (A), ANXA10 (B), ASPM (C), CDK4 (D), OGDHL
(E), PON1 (F), PTMA (G), and TAT (H) between early and late stage or high and low grade. ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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Survival analysis of candidate genes

To analyze the relationship between candidate genes and
survival, we performed survival analysis of eight candidate genes

in TCGA, HCCDB18, and GSE14520 datasets. Patients in the TCGA
dataset with a higher expression of ASPM (p = 0.00019), CDK4 (p <
0.0001), and PTMA (p < 0.0001) exhibited poorer prognosis
compared with those with lower expression of ASPM, CDK4,

FIGURE 3
Survival analysis of candidate genes. (A) Kaplan–Meier curves of eight candidate genes in the TCGA dataset. (B), Kaplan–Meier curves of eight
candidate genes in the HCCDB18 dataset. (C) Kaplan–Meier curves of eight candidate genes in the GSE14520 dataset.
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and PTMA, while those with lower ADH1B (p = 0.00015), ANXA10
(p < 0.0001), OGDHL (p = 0.00031), PON1 (p < 0.0001), and TAT
(p = 0.0016) had unfavorable prognosis (Figure 3A). Similar results
could be found in HCCDB18 and GSE14520 datasets
(Figures 3B, C).

Identification of key genes based on immune
abnormalities

Furthermore, we analyzed the relationship between candidate
genes and immune score and found that ADH1B was significantly

negatively correlated with the immune score (R = −0.14, p = 0.009)
(Figures 4A, B). Additionally, ADH1B was positively correlated with
effector memory CD8 T cells, eosinophils, gamma delta T cells,
memory B cells, and type 1 T helper cells in GSE14520, HCCDB18,
or TCGA, while ADH1B was negatively correlated with several
immune cells such as activated CD4 T cells, activated dendritic cells,
central memory CD4 T cells, effector memory CD4 T cells,
macrophage, mast cells, and MDSC (Figure 4C). Moreover,
ADH1B had a positive correlation with resting mast cells,
macrophage M1, monocytes, and resting NK cells; ADH1B was
negatively correlated with macrophage M0, regulatory T cells
(Tregs), and CD4 memory activated T cells (Figure 4D).

FIGURE 4
Identification of key genes based on immune abnormalities. (A, B) Among eight candidate genes, ADH1Bwas negatively correlated with the immune
score. (C) ADH1Bwas significantly correlatedwith some immune cells among 28 immune cells. (D)Correlation heatmap displayed ADH1B correlatedwith
several immune cells among 22 immune cells.

Frontiers in Pharmacology frontiersin.org07

Zhou et al. 10.3389/fphar.2023.1166454

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1166454


Potential regulatory pathways of ADH1B

Subsequently, we assessed the potential regulatory pathways of
ADH1B. Figure 5A shows the significant enriched KEGG pathways in
the ADH1B-higher-expression group and ADH1B-lower-expression
group. We found that VEGF_SIGNALING, P53_SIGNALING_
PATHWAY, CELL_CYCLE, and DNA_REPLICATION were
significantly activated in the ADH1B-lower-expression group, while
FATTY_ACID_METABOLISM and some amino metabolism
pathways were enriched in the ADH1B-higher-expression group
(Figure 5A). Through GSEA, we also found that HALLMARK_
MITOTIC_SPINDLE, HALLMARK_GLYCOLYSIS, HALLMARK_

DNA_REPAIR, HALLMARK_G2M_CHECKPOINT, and
HALLMARK_E2F_TARGETS were significantly enriched in the
ADH1B-lower-expression group, while HALLMARK_
XENOBIOTIC_METABOLISM, HALLMARK_BILE_ACID_
METABOLISM, HALLMARK_FATTY_ACID_METABOLISM,
HALLMARK_COAGULATION, and HALLMARK_PEROXISOME
were significantly enriched in the ADH1B-higher-expression group
(Figure 5B). The CCP score was negatively correlated with ADH1B
(Figure 5C). Thereafter, we found that the G1/S cell cycle and G2M
checkpoint were negatively correlated with ADH1B (Figures 5D, E).
Meanwhile, most inflammation pathways were negatively correlated
with ADH1B (Figure 5F).

FIGURE 5
Potential regulatory pathways of ADH1B. (A) Differential enriched KEGG pathways between ADH1B-higher-expression group and ADH1B-
lower-expression group. (B) GSEA showed significant enriched hallmark terms between higher ADH1B and lower ADH1B groups. (C) Scatter plots
of correlation analysis between the CCP score and ADH1B. (D) Scatter plots of correlation analysis between G1/S cell cycle and ADH1B. (E) Scatter
plots of correlation analysis between G2M Checkpoint and ADH1B. (F) Scatter plots of correlation analysis between inflammation pathways
and ADH1B.
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Performance of ADH1B in pan-cancer

We subsequently compared the expression of ADH1B in pan-
cancer. The expression level of ADH1B was distinctly
downregulated in tumor tissue of each cancer type
(Supplementary Figure S1A). We also analyzed the relationship
between ADH1B and survival in each cancer type and observed that
ADH1B might increase the mortality risk in patients with lung
squamous cell carcinoma (LUSC), stomach adenocarcinoma
(STAD), and kidney renal papillary cell carcinoma (KIRP)
(Supplementary Figure S1B).

Correlation between ADH1B and its
methylation

To further investigate the relationship between ADH1B
expression and ADH1B methylation, we obtained methylated
data from TCGA and analyzed the correlation using Pearson
correlation analysis. As shown in Figure 6, the expression of
ADH1B had a significant negative correlation with the
methylation of ADH1B (R = −0.637, p = 6.88e−43).

Drug sensitivity analysis of ADH1B

Next, we analyzed the relationship between ADH1B and
sensitivity to small-molecule drugs. The results revealed that
ADH1B was positively correlated with panobinostat (R = 0.402,
p = 0.00146), oxaliplatin (R = 0.278, p = 0.0316), and ixabepilone

(R = 0.2666, p = 0.04), whereas ADH1B was negatively correlated
with seliciclib (R = −0.276, p = 0.0331) (Figure 7).

Decreased expression of ADH1B in
hepatocellular carcinoma cell line HepG2

To validate the expression of ADH1B in LIHC, ADH1B was
quantified in normal hepatocytes LO2 and hepatocellular
carcinoma cell line HepG2 by using Western blot analysis. As
shown in Figure 8, the protein level of ADH1B was significantly
decreased in the HepG2 cell line compared with the LO2 cell line
(p < 0.01).

Discussion

Using approved drugs to discover innovative biomarkers and
potential candidate drugs for specific disorders represents a promising
therapeutic approach. In the present study, we screened eight
potential candidate genes associated with afatinib between LIHC
and normal samples. To identify key genes of afatinib, we analyzed
the correlation between immune characteristics and candidate genes.
We found ADH1B as a key gene and that patients with lower ADH1B
had unfavorable prognosis. Finally, we identified that panobinostat,
oxaliplatin, ixabepilone, and seliciclib might be potential drugs in the
treatment of LIHC targeting ADH1B.

ASPM is an oncoprotein and activates the EGFR. A previous
study has shown that ASPM was highly expressed in glioma cells,
and the abnormal expression of ASPM regulated by transcriptional
regulation of FoxM1 contributed to the aggressiveness of gliomas
(Zeng et al., 2020). In addition, ASPM has been identified as a key
gene for HER-2, which is related to the poor prognosis of breast
cancer patients (Tjipta et al., 2022). Amplification of CDK4/6 is
considered as potential hallmarks for the de novo EGFR tyrosine
kinase inhibitor (TKI) resistance in sensitizing EGFR mutation
NSCLC (Sitthideatphaiboon et al., 2022). Inhibition of CDK4/
6 can overcome acquired resistance to third-generation EGFR
inhibitor osimertinib in patients with NSCLC (Qin et al., 2020).
The upregulated PTMA has been observed in esophageal cancer and
LIHC (Zhu et al., 2019; Yang et al., 2021) and served as a potential
biomarker associated with progression, early recurrence, and
unfavorable prognosis of LIHC (Ha et al., 2015). Aberrant
tyrosine catabolic enzyme TAT in patients with LIHC has been
found, and a recent study has indicated TAT as a potential gene
associated with prognosis of LIHC patients after hepatectomy
(Wang et al., 2019). ADH1B belongs to alcohol dehydrogenase
class I enzyme and converts ethanol to acetaldehyde via the
redox reaction. Downregulated ADH1B has been found in LIHC,
and polymorphisms on ADH1B and ALDH2 had distinct indirect
functions on the risk of LIHC (Liu et al., 2016). ANXA10 is related to
poor prognosis of patients with early gastric cancer, small bowel
adenocarcinoma, and lung adenocarcinoma (Ishikawa et al., 2020;
Ishikawa et al., 2021; Yumura et al., 2022). As previously reported,
the decreased level of ANXA10 was related to vascular invasion,
early relapse, and dismal prognosis in synergy with p53 mutation in
LIHC (Liu et al., 2002). Additionally, downregulated OGDHL is
associated with the advanced tumor stage, unfavorable outcome, and

FIGURE 6
Correlation between ADH1B expression and ADH1Bmethylation.
The expression of the ADH1B gene is negatively correlated with
ADH1B methylation.
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relapse in LIHC through reprogramming glutamine metabolism
(Dai et al., 2020). The serum level of PON1 can be considered as a
marker to estimate microvascular invasion in patients with LIHC
(Ding et al., 2020). Collectively, the eight candidate genes related to
afatinib may have great potential in the treatment of LIHC.

The dynamic interplay between tumor cells and the tumor
immune microenvironment (TIME) is involved in tumor growth
and progression (El-Kenawi et al., 2020). Understanding the TIME is
crucial for the mechanism of tumor progression and development of
therapeutic strategies (Binnewies et al., 2018). It has been
acknowledged that immune cell and inflammatory cell infiltrations

are important hallmarks for evaluating the characteristics of the TIME
(Ino et al., 2013). Under the conditions of hypoxia, other immune
cells, and extracellular matrix, macrophages can reversibly change or
alter polarization (Poh and Ernst, 2018). With macrophages, tumor
cells invade the circulatory system and escape from cytotoxic
lymphocytes and phagocytes through multiple pathways (El-
Kenawi et al., 2020). Increased macrophage infiltration is
associated with dismal prognosis of cancer patients (Poh and
Ernst, 2018). Meanwhile, the interplay between immune cells
within a tumor may affect the immunity. Macrophages,
monocytes, neutrophils, myeloid-derived suppressor cells (MDSCs),

FIGURE 7
Drug sensitivity analysis of ADH1B. Scatter plots of correlation analysis between ADH1B and drugs (panobinostat, oxaliplatin, ixabepilone, and
seliciclib).
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andTregs exert suppressive effects on cytotoxic lymphocytes (Cassetta
and Kitamura, 2018), which promote tumor growth, metastasis, and
drug resistance. ADH1B was negatively correlated with several
immune cells, such as CD4 T cells, activated dendritic cells,
macrophages, mast cells, MDSCs, and Tregs, which contributed to
the immunosuppression in LIHC. Moreover, we observed that
ADH1B was positively correlated with effector memory
CD8 T cells, eosinophils, and type 1 T helper cells. With reduced
ADH1B expression, infiltration of CD8 T cells, eosinophils, and type
1 T helper cells decreased, leading to a relevant weak ability of tumor
cell killing. These may explain the fact that patients with lower
ADH1B had an unfavorable prognosis.

Panobinostat is a histone deacetylase inhibitor that has been first
approved for treating refractory multiple myeloma (Eleutherakis-
Papaiakovou et al., 2020). Additionally, the combination of
panobinostat with Taxol showed synergistic effects on
proliferative arrest in head and neck squamous cell carcinoma
and NSCLC through inducing senescence (Samaraweera et al.,
2017). Panobinostat also had promising activity against other
hematologic and solid tumors (Wood et al., 2018; Goldberg et al.,
2020). Oxaliplatin is an FDA-approved platinum-based antitumor
drug to treat stage III colorectal cancer after tumorectomy and
metastatic colorectal cancer. Other indications for oxaliplatin
include refractory or relapsed neuroblastoma and non-Hodgkin
lymphoma, refractory chronic lymphocytic leukemia, advanced
biliary adenocarcinoma, ovarian cancer, and pancreatic cancer
(Devanabanda and Kasi, 2022). Ixabepilone is a semi-synthetic
analog of epothilone B and serves as a microtubule inhibitor that
has been first approved for treating metastatic breast cancer
(Ibrahim, 2021). Ixabepilone also shows potential activities
against meningioma and platinum/taxane-resistant/refractory
ovarian cancer (Roque et al., 2021; Jungwirth et al., 2023).
Seliciclib, an oral inhibitor of cyclin-dependent kinases, can be
used to treat Cushing disease and cystic fibrosis (Liu et al., 2022;
Meijer et al., 2022). At present, seliciclib has been developed as an
anticancer medicine for treating NSCLC, nasopharyngeal
carcinoma, prostate cancer, metastatic breast cancer, and
osteosarcoma (Aldoss et al., 2009; Keenan et al., 2019; Fu et al.,
2020; Alsfouk et al., 2021). The current study found that ADH1B
was positively correlated with panobinostat, oxaliplatin, and
ixabepilone, whereas ADH1B was negatively correlated with
seliciclib. Our findings suggested that small-molecule drugs

panobinostat, oxaliplatin, ixabepilone, and seliciclib could be
potential treatment medicines targeting ADH1B in LIHC.

There are still some limitations in this study. Although we
have identified ADH1B as the key gene of afatinib, the underlying
mechanism of ADH1B in LIHC remains unclarified. Thus,
further experimental studies should be carried out to reveal
the mechanism of its action. In addition, we only screened the
key gene related to afatinib, and further study on other potential
drugs and their related genes to develop potential drugs for the
treatment of LIHC should be implemented. Moreover, we used
CellMiner to screen the potential anticancer drugs for LIHC in
this study, other approaches such as network pharmacology and
protein–protein interaction network should be used for drug
repurposing for LIHC.

Conclusion

We screened eight potential candidate genes associated with
afatinib, ASPM, CDK4, PTMA, TAT, ADH1B, ANXA10, OGDHL,
and PON1. Then, we identified ADH1B as a key gene based on
immune abnormalities, which could predict the prognosis of LIHC
patients and negatively correlated with cell cycle progression and
inflammation pathways. We further found that small-molecule
drugs panobinostat, oxaliplatin, ixabepilone, and seliciclib were
significantly associated with ADH1B, which might be potential
drugs targeting ADH1B for LIHC management.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

All authors contributed to this work: LY and XZ designed the
study and acquired the data. PH drafted the manuscript. RH and YC
revised the manuscript. YZ provided financial support, data analysis
and experimental verification; BP provided article modification and
statistical analysis; CL provided financial support, article modification
and research design. All authors read and approved the manuscript.

Funding

This work was supported by the Beijing Xisike Clinical Oncology
Research Foundation (Y-Young2022-0188); Medjaden Academy &
Research Foundation for Young Scientists (MJR20220903); Opening
Research Fund of Key Laboratory of Gastrointestinal Cancer, Fujian
Medical University, Ministry of Education (FMUGIC-202203);
Opening Project of Key Laboratory of Environment and Health,
Ministry of Education (2022GWKFJJ01); Opening Project of Key
Laboratory of Functional and Clinical Translational Medicine,
Fujian Province University (XMMC-FCTM202205); Opening
Project of Key Laboratory of Biomarkers and In Vitro Diagnosis

FIGURE 8
Expression of ADH1B is decreased in the HepG2 cell line. (A)
Representative Western blot results for ADH1B. (B) Quantitative
analysis for ADH1B expression.

Frontiers in Pharmacology frontiersin.org11

Zhou et al. 10.3389/fphar.2023.1166454

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1166454


Translation of Zhejiang Province (KFJJ-2022002); Opening Project
of Guangxi Laboratory of Enhanced Recovery after Surgery for
Gastrointestinal Cancer (GXEKL202204); and Opening Project of
Jiangsu Province Engineering Research Center of Tumor Targeted
Nano Diagnostic and Therapeutic Materials (JETNM202210). The
Fundamental Research Funds for the Provincial Universities (2020-
KYYWF-1484) and Open project of State Key Laboratory of
Robotics and System (SKLRS-2020-KF-07).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1166454/
full#supplementary-material

References

Aldoss, I. T., Tashi, T., and Ganti, A. K. (2009). Seliciclib in malignancies. Expert Opin.
investigational drugs 18 (12), 1957–1965. doi:10.1517/13543780903418445

Alsfouk, A. A., Alshibl, H. M., Altwaijry, N. A., Alsfouk, B. A., and Al-Abdullah, E. S.
(2021). Synthesis and biological evaluation of seliciclib derivatives as potent and
selective CDK9 inhibitors for prostate cancer therapy. Monatsh. für Chemie-
Chemical Mon. 152, 109–120. doi:10.1007/s00706-020-02727-x

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al.
(2018). Understanding the tumor immune microenvironment (TIME) for effective
therapy. Nat. Med. 24 (5), 541–550. doi:10.1038/s41591-018-0014-x

Cassetta, L., and Kitamura, T. (2018). Macrophage targeting: Opening new
possibilities for cancer immunotherapy. Immunology 155 (3), 285–293. doi:10.1111/
imm.12976

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D.,
et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. 18 (1),
248–262. doi:10.1016/j.celrep.2016.12.019

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711,
243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, J., Liu, J., Xu, B., Cao, Y., Liang, X., Wu, F., et al. (2022). Ethoxy-erianin
phosphate and afatinib synergistically inhibit liver tumor growth and angiogenesis via
regulating VEGF and EGFR signaling pathways. Toxicol. Appl. Pharmacol. 438, 115911.
doi:10.1016/j.taap.2022.115911

Chen, Y., Chen, X., Ding, X., and Wang, Y. (2019). Afatinib, an EGFR inhibitor,
decreases EMT and tumorigenesis of Huh-7 cells by regulating the ERK-VEGF/
MMP9 signaling pathway. Mol. Med. Rep. 20 (4), 3317–3325. doi:10.3892/mmr.
2019.10562

Chen, Z., Xie, H., Hu, M., Huang, T., Hu, Y., Sang, N., et al. (2020). Recent progress in
treatment of hepatocellular carcinoma. Am. J. cancer Res. 10 (9), 2993–3036.

Chidambaranathan-Reghupaty, S., Fisher, P. B., and Sarkar, D. (2021). Hepatocellular
carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. cancer Res.
149, 1–61. doi:10.1016/bs.acr.2020.10.001

Cuzick, J., Swanson, G. P., Fisher, G., Brothman, A. R., Berney, D. M., Reid, J. E., et al.
(2011). Prognostic value of an RNA expression signature derived from cell cycle
proliferation genes in patients with prostate cancer: A retrospective study. lancet
Oncol. 12 (3), 245–255. doi:10.1016/S1470-2045(10)70295-3

Dai, W., Xu, L., Yu, X., Zhang, G., Guo, H., Liu, H., et al. (2020). OGDHL silencing
promotes hepatocellular carcinoma by reprogramming glutamine metabolism.
J. hepatology 72 (5), 909–923. doi:10.1016/j.jhep.2019.12.015

Devanabanda, B., and Kasi, A. (2022). Oxaliplatin, StatPearls. United States:
StatPearls Publishing.

Ding, G-Y., Zhu, X-D., Ji, Y., Shi, G-M., Shen, Y-H., Zhou, J., et al. (2020). Serum
PON1 as a biomarker for the estimation of microvascular invasion in hepatocellular
carcinoma. Ann. Transl. Med. 8 (5), 204. doi:10.21037/atm.2020.01.44

El-Kenawi, A., Hänggi, K., and Ruffell, B. (2020). The immune microenvironment
and cancer metastasis. Cold Spring Harb. Perspect. Med. 10 (4), a037424. doi:10.1101/
cshperspect.a037424

Eleutherakis-Papaiakovou, E., Kanellias, N., Kastritis, E., Gavriatopoulou, M., Terpos,
E., and Dimopoulos, M. A. (2020). Efficacy of panobinostat for the treatment of multiple
myeloma. J. Oncol. 2020, 7131802. doi:10.1155/2020/7131802

Foerster, F., and Galle, P. R. (2021). The current landscape of clinical trials for
systemic treatment of HCC. Cancers 13 (8), 1962. doi:10.3390/cancers13081962

Fu, H., Zhao, H., Yang, Y., Duan, K., and Guo, T. (2020). CDK5 inhibitor seliciclib
promotes osteoblastic differentiation of MSCs and suppresses the migration of MG-63
osteosarcoma cells. bioRxiv 2020, 415612.

Goldberg, J., Sulis, M. L., Bender, J., Jeha, S., Gardner, R., Pollard, J., et al. (2020). A
phase I study of panobinostat in children with relapsed and refractory hematologic
malignancies. Pediatr. Hematol. Oncol. 37 (6), 465–474. doi:10.1080/08880018.2020.
1752869

Ha, S. Y., Song, D. H., Hwang, S. H., Cho, S. Y., and Park, C-K. (2015). Expression of
prothymosin alpha predicts early recurrence and poor prognosis of hepatocellular
carcinoma. Hepatobiliary Pancreat. Dis. Int. 14 (2), 171–177. doi:10.1016/s1499-
3872(14)60326-x

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14 (1), 7–15. doi:10.1186/1471-
2105-14-7

Ibrahim, N. K. (2021). Ixabepilone: Overview of effectiveness, safety, and tolerability
in metastatic breast cancer. Front. Oncol. 11, 617874. doi:10.3389/fonc.2021.617874

Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki, M., Kosuge, T., Kanai, Y., et al.
(2013). Immune cell infiltration as an indicator of the immune microenvironment of
pancreatic cancer. Br. J. cancer 108 (4), 914–923. doi:10.1038/bjc.2013.32

Ishikawa, A., Kuraoka, K., Zaitsu, J., Saito, A., Kuwai, T., Shimizu, Y., et al. (2021).
Annexin A10 expression is associated with poor prognosis in small bowel
adenocarcinoma. Anticancer Res. 41 (3), 1349–1355. doi:10.21873/anticanres.14892

Ishikawa, A., Kuraoka, K., Zaitsu, J., Saito, A., Kuwai, T., Suzuki, T., et al. (2020). Loss
of annexin A10 expression is associated with poor prognosis in early gastric cancer.Acta
Histochem. Cytochem. 53 (5), 113–119. doi:10.1267/ahc.20-00014

Jin, H., Shi, Y., Lv, Y., Yuan, S., Ramirez, C. F., Lieftink, C., et al. (2021). EGFR
activation limits the response of liver cancer to lenvatinib. Nature 595 (7869), 730–734.
doi:10.1038/s41586-021-03741-7

Jungwirth, G., Yu, T., Liu, F., Cao, J., Alaa Eddine, M., Moustafa, M., et al. (2023).
Pharmacological landscape of FDA-approved anticancer drugs reveals sensitivities to
ixabepilone, romidepsin, omacetaxine, and carfilzomib in aggressive meningiomas.
Clin. Cancer Res. 29 (1), 233–243. doi:10.1158/1078-0432.CCR-22-2085

Kassambara, A., Kosinski, M., Biecek, P., and Fabian, S. (2012). Survminer: Drawing
Survival Curves using ‘ggplot2’, R package version 03. Berlin, Germany: Springer.

Keenan, T., Liu, D., Elmarakeby, H., Stover, D., Kochupurakkal, B., Tracy, A., et al.
(2019). Abstract CT050: Expansion cohort of Phase I study of oral sapacitabine and oral
seliciclib in patients with metastatic breast cancer and BRCA1/2 mutations. Cancer Res.
79 (13), CT050. doi:10.1158/1538-7445.am2019-ct050

Komposch, K., and Sibilia, M. (2015). EGFR signaling in liver diseases. Int. J. Mol. Sci.
17 (1), 30. doi:10.3390/ijms17010030

Lian, Q., Wang, S., Zhang, G., Wang, D., Luo, G., Tang, J., et al. (2018). Hccdb: A
database of hepatocellular carcinoma expression atlas. Genomics, proteomics
Bioinforma. 16 (4), 269–275. doi:10.1016/j.gpb.2018.07.003

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A. D.,
et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-
quality survival outcome analytics. Cell 173 (2), 400–416. doi:10.1016/j.cell.2018.02.052

Liu, J., Yang, H-I., Lee, M-H., Jen, C-L., Hu, H-H., Lu, S-N., et al. (2016). Alcohol
drinking mediates the association between polymorphisms of ADH1B and ALDH2 and

Frontiers in Pharmacology frontiersin.org12

Zhou et al. 10.3389/fphar.2023.1166454

https://www.frontiersin.org/articles/10.3389/fphar.2023.1166454/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1166454/full#supplementary-material
https://doi.org/10.1517/13543780903418445
https://doi.org/10.1007/s00706-020-02727-x
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1111/imm.12976
https://doi.org/10.1111/imm.12976
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/j.taap.2022.115911
https://doi.org/10.3892/mmr.2019.10562
https://doi.org/10.3892/mmr.2019.10562
https://doi.org/10.1016/bs.acr.2020.10.001
https://doi.org/10.1016/S1470-2045(10)70295-3
https://doi.org/10.1016/j.jhep.2019.12.015
https://doi.org/10.21037/atm.2020.01.44
https://doi.org/10.1101/cshperspect.a037424
https://doi.org/10.1101/cshperspect.a037424
https://doi.org/10.1155/2020/7131802
https://doi.org/10.3390/cancers13081962
https://doi.org/10.1080/08880018.2020.1752869
https://doi.org/10.1080/08880018.2020.1752869
https://doi.org/10.1016/s1499-3872(14)60326-x
https://doi.org/10.1016/s1499-3872(14)60326-x
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.3389/fonc.2021.617874
https://doi.org/10.1038/bjc.2013.32
https://doi.org/10.21873/anticanres.14892
https://doi.org/10.1267/ahc.20-00014
https://doi.org/10.1038/s41586-021-03741-7
https://doi.org/10.1158/1078-0432.CCR-22-2085
https://doi.org/10.1158/1538-7445.am2019-ct050
https://doi.org/10.3390/ijms17010030
https://doi.org/10.1016/j.gpb.2018.07.003
https://doi.org/10.1016/j.cell.2018.02.052
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1166454


hepatitis B-related hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev. 25
(4), 693–699. doi:10.1158/1055-9965.EPI-15-0961

Liu, N-A., Ben-Shlomo, A., Carmichael, J. D., Wang, C., Swerdloff, R. S., Heaney, A.
P., et al. (2022). Treatment of cushing disease with pituitary-targeting seliciclib. J. Clin.
Endocrinol. Metabolism 108, 726–735. doi:10.1210/clinem/dgac588

Liu, S-H., Lin, C-Y., Peng, S-Y., Jeng, Y-M., Pan, H-W., Lai, P-L., et al. (2002). Down-
regulation of annexin A10 in hepatocellular carcinoma is associated with vascular
invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am.
J. pathology 160 (5), 1831–1837. doi:10.1016/S0002-9440(10)61129-7

Ma, X., Wu, S., Li, B., Zhang, Q., Zhang, J., Liu, W., et al. (2022). EGFR blockade
confers sensitivity to cabozantinib in hepatocellular carcinoma. Cell Discov. 8 (1), 82.
doi:10.1038/s41421-022-00425-y

McGlynn, K. A., Petrick, J. L., and El-Serag, H. B. (2021). Epidemiology of
hepatocellular carcinoma. Hepatology 73, 4–13. doi:10.1002/hep.31288

Meijer, L., Hery-Arnaud, G., Leven, C., Nowak, E., Hillion, S., Renaudineau, Y., et al.
(2022). Safety and pharmacokinetics of Roscovitine (Seliciclib) in cystic fibrosis patients
chronically infected with Pseudomonas aeruginosa, a randomized, placebo-controlled
study. J. Cyst. Fibros. 21 (3), 529–536. doi:10.1016/j.jcf.2021.10.013

Poh, A. R., and Ernst, M. (2018). Targeting macrophages in cancer: From bench to
bedside. Front. Oncol. 8, 49. doi:10.3389/fonc.2018.00049

Qin, Q., Li, X., Liang, X., Zeng, L., Wang, J., Sun, L., et al. (2020). CDK4/6 inhibitor
palbociclib overcomes acquired resistance to third-generation EGFR inhibitor
osimertinib in non-small cell lung cancer (NSCLC). Thorac. cancer 11 (9),
2389–2397. doi:10.1111/1759-7714.13521

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic acids Res. 43 (7), e47–e. doi:10.1093/nar/gkv007

Roque, D., Siegel, E., Buza, N., Bellone, S., Silasi, D-A., Huang, G., et al. (2021).
Randomized phase II trial of weekly ixabepilone with or without biweekly bevacizumab
for platinum-resistant or refractory ovarian/fallopian tube/primary peritoneal cancer.
Gynecol. Oncol. 162, S58. doi:10.1016/s0090-8258(21)00753-8

Samaraweera, L., Adomako, A., Rodriguez-Gabin, A., and McDaid, H. M. (2017). A
novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep. 7
(1), 1900. doi:10.1038/s41598-017-01964-1

Shen,W., Song, Z., Zhong, X., Huang, M., Shen, D., Gao, P., et al. (2022). Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform. Imeta 1
(3), e36. doi:10.1002/imt2.36

Sitthideatphaiboon, P., Teerapakpinyo, C., Korphaisarn, K., Leelayuwatanakul, N.,
Pornpatrananrak, N., Poungvarin, N., et al. (2022). Co-occurrence CDK4/
6 amplification serves as biomarkers of de novo EGFR TKI resistance in sensitizing
EGFR mutation non-small cell lung cancer. Sci. Rep. 12 (1), 2167. doi:10.1038/s41598-
022-06239-y

Sun, J., Jiang, W., Tian, D., Guo, Q., and Shen, Z. (2018). Icotinib inhibits the
proliferation of hepatocellular carcinoma cells in vitro and in vivo dependently on EGFR

activation and PDL1 expression. OncoTargets Ther. 11, 8227–8237. doi:10.2147/OTT.
S179844

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA a cancer J. Clin. 71 (3), 209–249. doi:10.
3322/caac.21660

Therneau, T. M., and Lumley, T. (2015). Package survival. R. Top. Doc. 128 (10),
28–33.

Tjipta, A., Hermansyah, D., Suzery, M., Cahyono, B., and Amalina, N. D. (2022).
Application of bioinformatics analysis to identify important pathways and hub genes in
breast cancer affected by HER-2. Int. J. Cell Biomed. Sci. 1 (1), 18–26.

Wang, X., Liao, X., Yang, C., Huang, K., Yu, T., Yu, L., et al. (2019). Identification of
prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy.
Oncol. Rep. 41 (3), 1586–1602. doi:10.3892/or.2019.6953

Wecker, H., and Waller, C. F. (2018). Afatinib. Small Mol. Oncol. 211, 199–215.
doi:10.1007/978-3-319-91442-8_14

Wood, P. J., Strong, R., McArthur, G. A., Michael, M., Algar, E., Muscat, A., et al.
(2018). A phase I study of panobinostat in pediatric patients with refractory solid
tumors, including CNS tumors. Cancer Chemother. Pharmacol. 82, 493–503. doi:10.
1007/s00280-018-3634-4

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2012). Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic
biomarker discovery in cancer cells. Nucleic acids Res. 41 (1), D955–D961. doi:10.1093/
nar/gks1111

Yang, Y., Ma, Y., Yuan, M., Peng, Y., Fang, Z., and Wang, J. (2021). Identifying the
biomarkers and pathways associated with hepatocellular carcinoma based on an
integrated analysis approach. Liver Int. 41 (10), 2485–2498. doi:10.1111/liv.14972

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4 (1), 2612–2711. doi:10.1038/ncomms3612

Yu, G., Wang, L-G., Han, Y., and He, Q-Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics a J. Integr. Biol. 16 (5),
284–287. doi:10.1089/omi.2011.0118

Yumura, M., Nagano, T., Jimbo, N., Dokuni, R., Kiriu, T., Tanaka, Y., et al. (2022).
Annexin A10 expression as a novel prognostic marker in lung adenocarcinoma.
Anticancer Res. 42 (3), 1289–1294. doi:10.21873/anticanres.15595

Zeng, W. J., Cheng, Q., Wen, Z. P., Wang, J. Y., Chen, Y. H., Zhao, J., et al. (2020).
Aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes
the progression of gliomas. J. Cell. Mol. Med. 24 (17), 9613–9626. doi:10.1111/jcmm.
15435

Zhu, Y., Qi, X., Yu, C., Yu, S., Zhang, C., Zhang, Y., et al. (2019). Identification of
prothymosin alpha (PTMA) as a biomarker for esophageal squamous cell carcinoma
(ESCC) by label-free quantitative proteomics and Quantitative Dot Blot (QDB). Clin.
Proteomics 16, 12–20. doi:10.1186/s12014-019-9232-6

Frontiers in Pharmacology frontiersin.org13

Zhou et al. 10.3389/fphar.2023.1166454

https://doi.org/10.1158/1055-9965.EPI-15-0961
https://doi.org/10.1210/clinem/dgac588
https://doi.org/10.1016/S0002-9440(10)61129-7
https://doi.org/10.1038/s41421-022-00425-y
https://doi.org/10.1002/hep.31288
https://doi.org/10.1016/j.jcf.2021.10.013
https://doi.org/10.3389/fonc.2018.00049
https://doi.org/10.1111/1759-7714.13521
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/s0090-8258(21)00753-8
https://doi.org/10.1038/s41598-017-01964-1
https://doi.org/10.1002/imt2.36
https://doi.org/10.1038/s41598-022-06239-y
https://doi.org/10.1038/s41598-022-06239-y
https://doi.org/10.2147/OTT.S179844
https://doi.org/10.2147/OTT.S179844
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3892/or.2019.6953
https://doi.org/10.1007/978-3-319-91442-8_14
https://doi.org/10.1007/s00280-018-3634-4
https://doi.org/10.1007/s00280-018-3634-4
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1111/liv.14972
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.21873/anticanres.15595
https://doi.org/10.1111/jcmm.15435
https://doi.org/10.1111/jcmm.15435
https://doi.org/10.1186/s12014-019-9232-6
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1166454

	Identification of afatinib-associated ADH1B and potential small-molecule drugs targeting ADH1B for hepatocellular carcinoma
	Introduction
	Materials and methods
	Data collection and pre-processing
	Screening of potential candidate genes of afatinib
	Relationship of candidate genes with clinicopathological features and survival
	Identification of the key gene based on immune abnormalities
	Potential regulatory pathways of ADH1B
	Performance of ADH1B in pan-cancer
	Drug sensitivity analysis of ADH1B
	Correlation between ADH1B expression and its methylation
	Western blot analysis

	Results
	Screening of potential candidate genes of afatinib
	Distribution of candidate genes in clinicopathological features
	Survival analysis of candidate genes
	Identification of key genes based on immune abnormalities
	Potential regulatory pathways of ADH1B
	Performance of ADH1B in pan-cancer
	Correlation between ADH1B and its methylation
	Drug sensitivity analysis of ADH1B
	Decreased expression of ADH1B in hepatocellular carcinoma cell line HepG2

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


