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Introduction: This study aims to further characterize cannabidiol’s
pharmacological and molecular profile as an antidepressant.

Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR),
were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic
mild stress (UCMS) procedure. Once the model was established (4 weeks), mice
received CBD (20mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for
28 days. The efficacy of CBD was evaluated using the light-dark box (LDB),
elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and
novel object recognition (NOR) tests. Gene expression changes in the serotonin
transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were
evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time
PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in
the Hipp.

Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of
treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of
treatment to show efficacy. CBD improved cognitive impairment and anhedonia
more significantly than STR. CBD plus STR showed a similar effect than CBD in the
LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI
tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR
and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp.

Discussion: These results pointed out CBD as a potential new antidepressant with
faster action and efficiency than STR. Particular attention should be given to the
combination of CBD with current SSRI since it appears to produce a negative
impact on treatment.
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1 Introduction

Major depressive disorder (MDD) is one of the most frequently
diagnosed mental diseases, affecting more than 260 million people
worldwide. According to World Health Organization, this
psychiatric disorder presents devastating prevalence, mortality,
morbidity, and disability rates (WHO, 2021). With a lifetime
prevalence of up to 17%, MDD is the leading cause of disability
worldwide and the fourth leading cause of disease burden (Friedrich,
2017; WHO, 2021). Suffering MDD reduces average life expectancy
by 10–12 years (Jia et al., 2015). Its high comorbidity with other
psychiatric diseases, such as anxiety disorders, is one of the main
factors contributing to the increased mortality and disability
associated with this disorder (Ploski and Vaidya, 2021; Serra-
Blasco et al., 2021; Bassett et al., 2022; Chen, 2022). The complex
symptomatology of this disease, often chronic or recurrent, limits
patients’ functioning, affecting their social relationships, including
family breakdown, absence from work, and reduced productivity in
the workplace. Likewise, depressive disorders represent one of the
main risk factors for suicide (Hawton et al., 2013).

Despite the significant impact of MDD, the biological bases of
this disease remain incompletely understood. This lack of
knowledge is the main reason for the low clinical response rate
of current antidepressant drugs. Indeed, only one-third of patients
achieve complete remission. A series of trials sponsored by the
National Institute of Mental Health (NIMH) in the United States
provided relevant data. In the Sequenced Treatment Alternatives to
Relieve Depression (STAR*D) study, only 31% of patients with
MDD were in remission after treatment with a selective serotonin
reuptake inhibitor for 14 weeks (Fava et al., 2003; Rush et al., 2004;
Rush et al., 2006). All these results highlight the urgent need to
identify new drugs with a different mechanism of action than
classical antidepressants that improve the clinical outcome and
our understanding of the molecular mechanisms of depression.

Cannabidiol (CBD), one of the main compounds in the plant
Cannabis sativa, presents a wide range of pharmacological
properties, such as anxiolytic, antidepressant, antipsychotic,
anticonvulsant and neuroprotective (Garcia-Gutierrez et al., 2020;
Kwee et al., 2022; Atalay Ekiner et al., 2022; Yousaf et al., 2022; V
Micale et al., 2015; Stark et al., 2021; Di Bartolomeo et al., 2021; Stark
et al., 2019). These actions have considerably increased the number
of studies aimed at clarifying its therapeutic role in various
neuropsychiatric diseases, including depressive disorders. Besides,
CBD does not display potential as a drug of abuse according to
animal models (Parker et al., 2004; Vann et al., 2008; Viudez-
Martinez et al., 2019) and open trials carried out with healthy
volunteers (Fusar-Poli et al., 2009; Winton-Brown et al., 2011;
Martin-Santos et al., 2012).

Cumulative evidence showed that CBD reduces anxiety and
behavioral despair in rats and mice, depending on the dose and the
strain of rodents evaluated (Guimaraes et al., 1990; Moreira et al.,
2006; Resstel et al., 2006; Casarotto et al., 2010; Reus et al., 2011;
Viudez-Martinez et al., 2018). However, most of these studies used
acute behavioral tests with little power of clinical translation because
they partially reproduce the clinical condition (Krishnan and
Nestler, 2008). In this respect, the unpredictable chronic mild
stress model (UCMS) is a well-validated animal model of
depression due to its reliable predictive face and construct

validities. It is the ideal model for selecting optimal
antidepressants (Willner, 1997; Willner, 2017; Nollet, 2021). To
date, only a few studies have evaluated CBD effects using this animal
model. The results reported by these studies indicate that both
acutely and chronically CBD administration reduces depressive-like
behaviors, including anhedonia. Although these results appear
promising, they also present certain limitations. Gall et al. (2020)
administered CBD from the beginning of the UCMS, hampering the
possibility of evaluating its ability to modulate depressive-like
behaviors once already established. In the study by Xu et al.
(2019), CBD was administered weekly for 2 weeks, starting the
treatment from the second week of the UCMS, evaluating CBD
effects only on the forced swimming test. Finally, Ma et al. (2021)
only assessed the impact of an acute administration of CBD,
remaining to be demonstrated its sustained and long-term effects
of a chronic administration. More importantly, CBD has not been
compared to any reference antidepressant drug.

This study aims to answer fundamental aspects necessary to
further characterize CBD’s pharmacological andmolecular profile as
an antidepressant. Thus, we evaluated CBD antidepressant-like
effects in mice exposed to the UCMS. The treatment started on
the 4-week of the UCMS, once the model was established, and was
given for 28 days. Antidepressant-like effects were assessed by using
a complete behavioral test battery evaluating anxiety (light-dark box
and elevated plus maze), behavioral despair (tail suspension test),
cognitive impairment (novel object recognition) and anhedonia
(sucrose intake). Furthermore, we compared if CBD displays
antidepressant-like effects faster than sertraline (STR), an
antidepressant reference drug, and/or its effectiveness in
modulating the behavioral and molecular disturbances induced
by the UCMS was different. In addition, we analyzed if the
combination of CBD and STR may present additive or
synergistic effects. The molecular neuroadaptations closely related
to its mechanism of action were analyzed by measuring changes in
the gene expression of key targets of the serotoninergic system
(serotonin transporter reuptake (Scl6a4), 5-HT1A and 5-HT2A
serotonin receptors), neuroplasticity (BDNF, Vglut1, PPARdelta)
in the dorsal raphe (DR), hippocampus (Hipp), and amygdala
(AMY) of stressed mice by real-time PCR. Immunohistological
studies also evaluated BDNF, NeuN and caspase-3
immunoreactivity in the Hipp.

2 Materials and methods

2.1 Animals

Male CD1 mice were used in all experiments (Charles River,
Barcelona, Spain). At the beginning of the experiments, mice were
5 weeks old and weighed 20–25 g. All animals were maintained
under a controlled temperature (23°C ± 2°C) and with a light-dark
cycle from 08.00 to 20.00 h, with free access to food (commercial diet
for rodents A04 Panlab, Barcelona, Spain) and water. All the
behavioral tests were carried out between 8.00 and 14.00 h. All
the studies were conducted in compliance with the Spanish Royal
Decree 1201/2005, the Spanish Law 32/2007, and the European
Union Directive of 22 September 2010 (2010/63/UE), regulating the
care of experimental animals.
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TABLE 1 The chronic unpredictable mild stress procedure.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Week
1

10–11 h Restraint
Stress

9–12 h
Stroboscopic
illumination

10–10.30 h Fox urine
exposure

10–13 h Stroboscopic
illumination

9.00–9.30 h Fox
urine exposure

8.30–19 h Inversion
light/dark cycle

10–11 h Retraint
Stress

12–15 h
Stroboscopic
illumination

13–14 h Restraint
Stress

15–17 h Loud noise 14–15 h Restraint
Stress

13–14 h Restraint
Stress

19-8.30 h
(+1 day)

17–18 h Loud
noise

19-8 h (+1 day)
Titled cage

18–19 h Restraint Stress 16–18 h Loud noise 16–19 h
Stroboscopic
illumination

Wet cage

Week
2

11–13 h
Stroboscopic
illumination

10–11 h Restraint
Stress

8-14h Behavioral
test= LDB

9–11 h Loud noise 10–13 h
Stroboscopic
illumination

10.30–12.30 h Loud
noise

8.30h–14 h
Inversion light/

dark cycle

16–18 h Loud
noise

13–13.30 h Fox
urine exposure

18–19 h Restraint stress 12–15 h Stroboscopic
illumination

19-8.30 h (+1 day)
Tilted cage

15–15.30 h Fox urine
exposure

16–17 h Restraint
stress

16–18 h Loud
noise

17–17.30 h Fox urine
exposure

Week
3

10–11 h Restraint
Stress

8-14h Behavioral
test= EPM

9–11 h Loud noise 10–13 h Stroboscopic
illumination

10–10.30 h Fox
urine exposure

9–18 h Wet cage 8.30–19 h
Inversion light/

dark cycle
12–14 h Loud

noise
18–18.30 h Fox
urine exposure

12–15 h Stroboscopic
illumination

19-8.30 h (+1 day)
Tilted cage

13–14 h Restraint
Stress

16–18 h
Stroboscopic
illumination

18–19 h Restraint Stress 16–19 h
Stroboscopic
illumination

Week
4

8-14h Behavioral
test= TS

10–11 h Restraint
Stress

9–11 h Loud noise 9–12 h Stroboscopic
illumination

11–11.30 h Fox
urine exposure

19-13 h (+1 day) Food
and water deprivation

13-14h
Behavioral
test= SI

17–19 h Loud
noise

13–13.30 h Fox
urine exposure

12–15 h Stroboscopic
illumination

13–14 h Restraint
Stress

13–14 h Restraint
Stress

16–19 h
Stroboscopic
illumination

18–19 h Restraint stress 19–8.00 (+1 day) Wet
cage

19-14 h (+1 day)
Titled cage

Week
5

Start of treatment 9–11 h Loud noise 10–13 h Stroboscopic
illumination

8-14h Behavioral
test= LDB

9–11 h Loud noise 8.30–19 h Inversion
light/dark cycle

8.00-14h
Behavioral
test= TS

10–11 h Restraint
Stress

13–14 h Restraint
Stress

15–17 h Loud noise 18–18.30 h Fox urine
exposure

12–15 h
Stroboscopic
illumination

13–13.30 h Fox
urine exposure

19-8 h (+1 day)
Titled cage

18–19 h Retraint stress 18–19 h Restraint
stress

Week
6

11–13 h
Stroboscopic
illumination

10–11 h Restraint
Stress

10–12 h Loud noise 10–13 h Stroboscopic
illumination

11–13 h Loud
noise

9–10 h Restraint
Stress

8.00-14h
Behavioral
test= EPM

16–18 h Loud
noise

13–15 h Loud
noise

13–13.30 h Fox urine
exposure

14–15 h Restraint
Stress

16–19 h
Stroboscopic
illumination

12–19 h Tilted cage

16–19 h
Stroboscopic
illumination

16–17 h Restraint Stress 19-8 h (+1 day) Wet
cage

Week
7

9–12 h
Stroboscopic
illumination

10–11 h Restraint
Stress

8-14h Behavioral test=
NOR 16–18 h Loud

noise

8-14h Behavioral test=
NOR 17–18 h Restraint

Stress

10–10.30 h Fox
urine exposure

9.30–11.30 h Loud
noise

8.30–19 h
Inversion light/

dark cycle

13–14 h Restraint
Stress

12–14 h Loud
noise

12–15 h
Stroboscopic
illumination

14–19 h Wet cage

19-8 h (+1 day)
Titled cage

16–18 h
Stroboscopic
illumination

18–19 h Restraint
stress

(Continued on following page)
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2.2 Treatments

CBD was obtained from STI Pharmaceuticals (Essex,
United Kingdom), dissolved in ethanol:cremophor:saline (1:1:18)
and injected i.p. at the correspondent dose (20 mg·kg-1 in 0.3 mL of
solution, twice daily). This dose was selected based on our previous
dose-response experiments in CD1-stressed mice exposed to the
UCMS (Supplemenary Figure S1).

STR was purchased (Besitran, Pfizer, 20 mg·ml-1, concentrated
oral solution), dissolved in water and administered p.o. at the
corresponding dose (10 mg·kg-1 in 0.3 mL of solution, once
daily). This dose was selected based on previous studies (Lu
et al., 2019; Zhang et al., 2022).

For mice receiving the combination of CBD and STR, drugs
were prepared as described above and given CBD + STR during the
morning and CBD + VEH during the evening.

2.3 Behavioral analyses

2.3.1 Chronic unpredictable mild stress
Mice were exposed to UCMS for 8 weeks, following the

previously published protocol with some modifications
(Willner et al., 1992; Willner, 1997; Garcia-Gutierrez et al.,
2010). Briefly, mice were exposed several times a day to one
or more of the following stressful stimuli (stressors): wet cage,
food deprivation, restraint stress, period of stroboscopic
illumination (150 flashes·min-1), inversion of light/dark cycle,
tilted cage (45°), loud noise (90–105 dB) and fox urine exposure.
All stressors and/or sequences were applied at different time
points to avoid habituation and add unpredictability to the
stressors (Table 1).

During the exposure to the UCMS, behavioral alterations
were analyzed using different tests at various time points
(Figure 1). Once the UCMS was established (4 weeks), drug
treatment was initiated, randomly dividing the mice into the
following groups: 1) VEH-treated UCMS, 2) CBD-treated UCMS,
3) CBD + STR-treated UCMS, 4) STR-treated UCMS. Mice not
exposed to the UCMS were also treated with the VEH of CBD and
the VEH of STR (VEH-treated non-UCMS). Treatment was given
for a total of 28 days.

2.3.2 Light-dark box test (LDB)
This test uses the natural aversion of rodents to bright areas

compared with darker ones (Crawley and Goodwin, 1980; Garcia-
Gutierrez and Manzanares, 2011). In a two-compartment box,
rodents prefer dark areas, whereas anxiolytic drugs should
increase the time spent in the light compartment. The apparatus
consisted of two methacrylate boxes (20 × 20 × 15 cm), one
transparent and one black and opaque, separated by an opaque
tunnel (4 cm). Light from 60W desk lamp placed 25 cm above the
light box provided room illumination. Mice were individually tested
in 5 min sessions. During this period, the time spent in the light box
and the number of transitions between the two compartments were
recorded. A mouse whose four paws were in the new box was
considered as having changed boxes. The floor of each box was
cleaned between sessions with paper towels moistened with ethanol
70% and thoroughly dried. At the beginning of the session, mice
were placed in the lightbox facing the tunnel that connects to the
dark box.

2.3.3 Elevated plus maze (EPM)
This test consisted of two open arms and two enclosed

horizontal perpendicular arms 50 cm above the floor (Lister,
1987; Garcia-Gutierrez and Manzanares, 2011). The junction of
four arms formed a central squared platform (5 × 5 cm). The test
began with the animal being placed in the center of the apparatus
facing one of the enclosed arms and allowed to explore freely for
5 min. During this period, the time spent in the open arms (as
percentages of total test time) and the number of entries from open
arms to closed arms (and vice versa) were recorded. An arm entry
was considered the entry of four paws into the arm. The floor of each
arm was cleaned between sessions with paper towels moistened with
ethanol 70% and fully dried.

2.3.4 Tail suspension test (TS)
Mice were individually suspended by the tail at the edge of a

lever above the table top (the distance to the table surface was
35 cm), affixed with the adhesive tape placed approximately 1–2 cm
from the tip of the tail (Vaugeois et al., 1997; Garcia-Gutierrez et al.,
2010). The duration of immobility was measured for 6 min. In this
situation, mice develop escape-orientated behaviors interspersed
with temporally increasing bouts of immobility.

TABLE 1 (Continued) The chronic unpredictable mild stress procedure.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Week
8

9–11 h Loud noise 10–13 h
Stroboscopic
illumination

10–11 h Restraint Stress 11–11.30 h Fox urine
exposure

13-14h
Behavioral
test= SI

13–14 h Restraint
Stress

15–17 h Loud
noise

12–15 h Stroboscopic
illumination

13–14 h Restraint stress

19-8 h (+1 day)
Titled cage

18–19 h Restraint
stress

17–19 h Loud noise 19-13 h (+1 day) Food
and water deprivation

LBD: light-dark box; EPM: elevated plus maze; TS: tail suspension; NOR: novel object recognition; SI: sucrose intake. Regarding bold values, are the hours at which mice were exposed to the

stimuli or the schedule in which the behavioral tests were performed.
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2.3.5 Novel object recognition test (NOR)
Rodents have an innate preference towards novelty, meaning

less cognitive impairment. This paradigm is based on the natural
tendency of mice to explore new objects and environments and
compare them with familiar ones (Busquets-Garcia et al., 2018;
Brambilla-Pisoni et al., 2022). The NOR was carried out in an open
field cage of 40 × 40 × 50 cm of transparent methacrylate with two
identical objects in texture, color, size, and shape: Object A (familiar)
on the habituation day. On the trial day, one of Objects A remained,
and the other was changed with a new different object in texture,
color, size and shape: Object B (novel). On the first day, mice were
habituated to the arena with two identical Objects A for 5 min. To
long-term assessed memory, 24 h later, the habituation took place,
mice were exposed to one Object A (familiar object) and Object B
(novel object), again for 5 min. In both sessions, the exploration time
for each object was quantified. Exploration time was defined as when
the animal orientates the nose, sniffs, or touches the object with its
front legs at a less or equal distance to 1 cm. The discrimination
index was calculated as the difference between time spent exploring
the novel and familiar object divided by the total exploration time of
the two objects: [(Object B–Object A)/(Object A+ Object B)] (or see
formula). Values for the discrimination ratio ranged from 0 to 1,
where a score closer to 0 indicated a preference for the familiar
object, while a score closer to 1 indicated a greater preference for the
novel object. This way, high discrimination index reflects better
memory retention for the familiar object.

DI � Object B − Object A( )/ Object A +Object B( )( )

2.3.6 Sucrose intake test (SI)
Sucrose intake (5% sucrose solution) was measured after 18 h of

food and water deprivation during a period of 1 h (Li et al., 2007).
Consumption of sucrose solution was estimated simultaneously in
the control and experimental groups by measuring and comparing
the volume before and after the 1-h window. Sucrose intake was
expressed as mg sucrose·g-1 body weight.

2.4 Gene expression studies by real-
time PCR

Mice were killed 2 h and a half after the last administration of CBD,
STR, its combination or vehicle. Briefly, brains were removed from the
skull, frozen over dry ice, and stored at −80°C until the day of the assay.
Brain sections of 500 μmwere cut at different levels containing the regions
of interest (AMY, Hipp and DR), according to Paxinos and Franklin,
(2001). Sections were mounted on slides and stored at −80°C. One section
of each level was dissected following the method described by Palkovits,
(1983). Total RNA was obtained from brain punches using Biozol® Total
RNAextraction reagent (Bioflux, Inilab,Madrid, Spain) in theAMY,Hipp
andDRareas.AfterDNAsedigestion, reverse transcriptionwas carried out
to obtain the complementary DNA (cDNA) following the manufacturer’s
instructions (High-Capacity cDNAReverse Transcription Kit with RNase
Inhibitor, Applied Biosystems,Madrid, Spain).Quantitative analyses of the
relative gene expression of Scl6a4 (Mm00439391_m1), 5-HT1A
(Mm00434106_s1), 5-HT2A (Mm00555764_m1), BDNF
(Mm00432069_m1), PPARdelta (Mm00803184_m1), and mVglut1
(Mm00812886_m1) were measured using Taqman Gene Expression
assay (Applied Biosystems, Madrid, Spain) as a double-stranded DNA-
specific fluorescent dye and performed on the StepOnePlus™ Real-Time
PCR System (Applied Biosystems,Madrid, Spain). The reference genewas
18S rRNA, detected using Taqman ribosomal RNA control reagents.
Briefly, the data for each target gene were normalized to the endogenous
reference gene, and the fold change in target gene abundance was
determined using the 2−ΔΔCT method (Livak and Shmittgen, 2001;
Garcia-Gutierrez and Manzanares, 2011).

2.5 Conventional histology and
immunohistochemistry

The general criteria reported by Amaral et al. (1995) were used to
define the hippocampal areas and strata. The study focused on the
dentate gyrus (DG) and the CA3 and CA1 regions of Cornu Ammonis

FIGURE 1
Schematic representation of the experimental design. Mice were exposed to the Unpredictable Chronic Mild Stress Model (UCMS) for 8 weeks.
During the first 4 weeks, the model was established, being behavioral alterations evaluated at 10, 16, 22 and 28 days by the light-dark box (LDB), elevated
plus maze (EPM), tail suspension (TS) and sucrose consumption (SC) tests, respectively. Once themodel was established, mice were distributed randomly
to receive CBD (20 mg·kg-1, i.p., twice daily, at 9.00h and 19.00 h), STR (10 mg·kg-1, p.o., once daily, at 9.00 h), their combination or VEH, during
28 days. The efficacy of each treatment in modulating the effects of UCMS were evaluated at different time points by the LBD, TS, EPM, Novel Object
Recognition (NOR) and SC tests. Finally, mice were decapitated or perfused to perform real-time PCR (qPCR) and immunohistological studies.
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(CA). Briefly, after 12–14 h of the last administration of the
corresponding drug and/or exposure to stressful stimuli, mice were
weighed, anesthetized with isoflurane, and intracardially perfused with
50 mL of saline followed by 200 mL of 4% paraformaldehyde, 0.1M
sucrose, and 0.002% CaCl2 in 0.1M phosphate buffer (PB; 1.4%
K2HPO4 14 g/L, NaH2PO4.2H2O ~3 g/L to pH 7.3–7.4). Brains
were dissected, post-fixed by immersion in the same perfusion
medium at room temperature for 4 h and then stored in 0.05%
sodium azide in PB at 4°C. Eight parallel series of coronal sections
containing the DG and CA rostromedial portion were cut with a
Microm HM 650 V vibratome (Thermo Fisher Scientific, Inc.,
Barcelona, Spain) at 50 μm and stored in 0.05% sodium azide in PB
at 4°C. For BDNF, one series was immunostained with rabbit anti-
BDNF polyclonal antibody (1:400; EMO, Millipore, United States). All
sections were then incubated with goat anti-rabbit antibody, Alexa
Fluor 488, labeled (1:200, Molecular Probes, Invitrogen, Barcelona,
Spain) and mounted using ProLong Gold (Molecular Probes,
Invitrogen).

The adjacent series were double immunostained for
fluorescence, starting with mouse anti-neurons neuronal nuclei
(NeuN) monoclonal Ab (mAb) (1:400; Chemicon International
Inc., Temecula, CA) and rabbit anti-Caspase 3 (1: 300, Cell
Signaling Technology, United States). All sections were then
incubated with goat anti-mouse antibody, Alexa Fluor
Rhodamine Red labeled (1:200, Molecular Probes, Invitrogen,
Barcelona, Spain), followed by goat anti-rabbit Alexa Fluor
488 labeled (1:200, Molecular Probes, Invitrogen, Barcelona, Spain).

All samples were examined in a Leica SPEII confocal laser
fluorescence microscope, with images captured using Leica
Application Suite X software.

2.6 Statistical analyses

Statistical analyses were performed using the Student’s t-test for
comparing two groups, and one-way analysis of variance (ANOVA)
followed by the Student-Newman-Keuls posthoc test for comparing four
groups of stressed mice treated with VEH, CBD, STR or its combination.
Differences were considered significant if the error probability was less
than 5%. SigmaPlot 11 software (Systat Software Inc., Chicago, IL,
United States) was used to analyze the data and create the graphs.

3 Results

3.1 Assessment of behavioral alterations in
mice exposed to the UCMS before
pharmacological administration

In UCMS, anxiogenic- and depressogenic-like behaviors were
evaluated at different time points using the LDB (10 days) and EPM
(16 days), and the TS (22 days) and sucrose intake tests (28 days),
respectively.

3.1.1 LBD and EPM tests
In the LDB, stressed mice spent less time in the lighted box

compared to the non-UCMS group (Figure 2A) (Student’s t-test: t =
3.641, 57 df, p < 0.001) (n = 12 non-UCMS; n = 48 UCMS). No

difference was found in the number of transitions (Figure 2B) (Student’s
t-test: t = −0.352, 57df, p = 0.726) (n = 12 non-UCMS; n = 48 UCMS).

Similar results were obtained in the EPM since mice exposed to
the UCMS showed a significant reduction in the time spent (%) in
the open arms in comparison with the non-UCMS group
(Figure 2C) (Student’s t-test: t = 4.873, 57df, p < 0.001) (n =
12 non-UCMS; n = 48 UCMS). No difference was observed in
the number of transitions (Figure 2D) (Student’s t-test: t = −1.279,
57df, p = 0.206) (n = 12 non-UCMS; n = 48 UCMS).

3.1.2 TS test
On day 22, a significant increase in the immobility time was

found in mice exposed to the UCMS compared with its
corresponding control group (Figure 2E) (Student’s t-test:
t = −4.587, 57 df, p < 0.001) (n = 12 non-UCMS; n = 48 UCMS).

3.1.3 Sucrose intake test
On day 28, stressed mice displayed a significant reduction of

sucrose intake (mg sucrose·g-1 body weight) compared with the
non-UCMS group (Figure 2F) (Student’s t-test: t = 6.051, 57 df, p <
0.001) (n = 12 non-UCMS; n = 48 UCMS).

3.2 Effects of chronic CBD, STR and its
combination administration on modulating
behavioral alterations induced by the UCMS

3.2.1 Effects at 4 days of treatment: LDB test
Firstly, we evaluated if there was a difference in the speed with

which the antidepressant-like effect was established between CBD
and the reference drug STR using the LBD after 4 days of treatment.

As expected, VEH-treated UCMSmice presented a reduced time
spent in the lighted box compared with the VEH-treated non-
UCMS mice (Figure 3A) (Student’s t-test: t = 2.452, 22df, p =
0.023) (n = 12/group). No differences were found in the number of
transitions between both groups (Figure 3D) (Student’s t-test: t =
0.915, 22df, p = 0.371) (n = 12/group).

CBD treatment, alone or combined with STR, increased the time
spent in the lighted box. Interestingly, no statistically significant
differences were found between the STR-treated UCMS group and
the vehicle-treated UCMS group (Figure 3C) (One-way ANOVA
followed by Student-Newman- Keuls: F(3,44) = 3.753, p = 0.018)
(n = 12/group). Regarding the number of transitions, there were no
differences between the different groups (Figure 3D) (One-way
ANOVA followed by Student-Newman-Keuls: F(3,44) = 2.469,
p = 0.075) (n = 12/group).

3.2.2 Effects at 7 days of treatment: TS test
Stressed mice treated with vehicle increased immobility time in

the TS test compared to VEH-treated non-UCMS mice (Figure 3E)
(Student’s t-test t = −3.209, 19df, p = 0.005) (n = 11 VEH-treated
non UCMS; n = 12 VEH-treated UCMS).

Curiously, after 7 days of treatment, CBD significantly reduced
the immobility time, alone or in combination with STR. In contrast,
STR failed to induce any effect in comparison to its corresponding
control group, UCMS treated with VEH (Figure 3F) (One-way
ANOVA followed by Student-Newman-Keuls: F(3,40) = 7.991,
p < 0.001) (n = 12/group).
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3.2.3 Effects at 14 days of treatment: EPM test
Mice exposed to the UCMS and treated with VEH increased the

time spent (%) in open arms compared to VEH non-UCMS mice
(Figure 3G) (Student’s t-test t = 3.970, 22df, p < 0.001) (n = 12/
group). No differences were found in the number of transitions
between both groups (Figure 3I) (Student’s t-test t = −0.213, 22df,
p = 0.833) (n = 12/group).

Notably, the three pharmacological treatments significantly
increased the time spent (%) in the open arms (Figure 3H)
(One-way ANOVA followed by Student-Newman-Keuls:
F(3,44) = 7.373, p < 0.001) (n = 12/group). No differences were
identified in the number of transitions between the different groups
(Figure 3J) (One-way ANOVA followed by Student-Newman-Keuls:
F(3,44) = 0.792, p = 0.505) (n = 12/group).

3.2.4 Effects at 18 days of treatment: NOR test
As shown in Figure 4A, VEH-treated UCMS mice presented a

significant reduction of the discrimination index compared with its
corresponding control group, VEH-treated non-UCMS (Student’s
t-test, t = 4.179, 22df, p < 0.001) (n = 12/group).

The statistical analysis revealed that despite STR increased the
discrimination index, this change did not reach statistical
significance compared to VEH-treated UCMS mice. The
treatment with CBD restored this alteration since CBD- and
CBD + STR-treated UCMS mice showed a significant increase in

the discrimination index compared to VEH- and STR-treated
UCMS groups (Figure 4B) (One-way ANOVA followed by
Student-Newman-Keuls: F(3,44) = 9.783, p < 0.001) (n = 12/group).

3.2.5 Effects at 26 days of treatment: SI test
Mice exposed to the UCMS and treated with VEH showed a

significant reduction in sucrose consumption compared to the VEH-
treated non-UCMS group (Figure 4C) (Student’s t-test, t = 16.183,
22df, p = 0.001) (n = 12/group). STR, CBD and their combination
significantly increased sucrose intake. Nonetheless, CBD was the
drug that induced the most significant increase, being statistically
significant compared to the groups treated with STR and CBD + STR
(Figure 4D) (One-way ANOVA followed by Student-Newman-
Keuls: F(3,44) = 212.745, p < 0.001) (n = 12/group).

3.3 Effects of chronic CBD, STR and its
combination administration on modulating
neuromolecular alterations induced by the
UCMS

3.3.1 Gene expression analyses by Rt-PCR
3.3.1.1 Scl6a4, 5-HT1A and 5-HT2A in the DR, Hipp and AMY

The results revealed that UCMS significantly reduced
Scl6a4 gene expression levels in the DR (Figure 5A, Student’s

FIGURE 2
Behavioral evaluation of mice exposed to the unpredictable chronic mild stress model (UCMS) before starting pharmacological treatment.
Panels (A, B) Light-dark box, Panels (C, D) Elevated plus maze, Panel (E) Tail suspension and Panel (F) Sucrose intake. Columns represent the means and
vertical lines the ±SEMof each parameter evaluated. *Values from theUCMS-exposed group that differ significantly from the non-UCMS group (Student’s
t-test, p < 0.05).
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t-test, t = 6.876, 19df, p < 0.001) (n = 11/group). Interestingly, STR,
CBD and their combination significantly reversed that reduction.
Notably, the increase induced by CBD, alone or in combination with
STR, was more significant than that caused by STR alone (Figure 5B)
(One-way ANOVA followed by Student-Newman-Keuls: F(3,40) =
15.626, p < 0.001) (n = 11/group).

In the Hipp, UCMS induced a significant increase of both 5-HT1A
(Figure 5C) (Student’s t-test t = −2.923, 16df, p = 0.01) (n = 9/group)
and 5-HT2A gene expressions (Figure 5E) (Student’s t-test t = −3.375,
18df, p = 0.003) (n = 11 VEH-treated non-UCMS; n = 9 VEH-treated
UCMS). Among all treatments, only CBD reduced 5HT1A gene
expression. No change was found in the UCMS groups treated with
STR or with the CBD + STR combination (Figure 5D) (One-way
ANOVA followed by Student-Newman-Keuls: F(3,32) = 9.554,
p < 0.001) (n = 9/group). All the pharmacological interventions
reduced 5-HT2A gene expression without any differences among
them (Figure 5F) (One-way ANOVA followed by Student-Newman-
Keuls: F(3,29) = 8.404, p < 0.001) (n = 9 VEH-treated UCMS;
n = 8 STR-, CBD- and CBD + STR-treated UCMS groups).

In the AMY, UCMS induced opposite effects in the gene expression
of both serotoninergic receptors since it reduced 5-HT1A (Figure 5G)
(Student’s t-test t = 3.447, 18df, p = 0.003) (n = 10/group) but increased
5-HT2A gene expression (Figure 5I) (Student’s t-test t = −3.453, 18df,
p = 0.003) (n = 10/group). Indeed, differences were also found between
the different pharmacological approaches tested. On the one hand, CBD
and STR increased 5-HT1A gene expression; however, in the case of the
CBD + STR combination, no statistically significant change was found,
although there was a tendency to reduce it (Figure 5H) (One-way
ANOVA followed by Student-Newman-Keuls: F(3,34) = 3.861, p =
0.018) (n = 10 VEH-, STR- and CBD-treated UCMS groups; n = 8 CBD
+ STR treated UCMS). On the other hand, no change in 5-HT2A was
found in the UCMS groups treated with STR or with the CBD + STR
combination compared to VEH-treated UCMS mice. Notably, CBD
was the only treatment reducing 5-HT2A gene expression, being this
change statistically different from the other groups (Figure 5J) (One-
way ANOVA followed by Student-Newman-Keuls: F(3,37) = 7.932,
p < 0.001) (n = 11 VEH-treated UCMS; n = 10 STR-treated UCMS;
n = 12 CBD-treated UCMS; n = 8 CBD + STR-treated UCMS).

FIGURE 3
Chronic effects of treatment with CBD, STR or their combination in modulating anxiety and behavioral despair in mice exposed to the
unpredictable chronic mild stress model (UCMS). Anxiolytic and antidepressant-like effects were evaluated at different time points (4, 7 and 14 days)
using the light-dark box (panels A–D), tail suspension (panels E and F) and elevated plus maze (panels G–J) tests. Columns represent the means and
vertical lines the ±SEM of each parameter evaluated. *Values from the VEH-treated UCMS group that differ significantly from VEH-treated non-
UCMS group (Student’s t-test, p < 0.05). $ Values from STR-, CBD-, and/or CBD + STR-treated UCMS mice that were different from VEH-treated UCMS
mice. # Values from CBD- and/or CBD + STR-treated UCMS mice that were different from STR-treated UCMS mice (One-way ANOVA followed by
Student-Newman-Keuls, p < 0.05).
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3.3.1.2 BDNF, PPARdelta and mVglut1 in the Hipp
As shown in Figure 6A, relative gene expression of BDNF in

the Hipp was reduced in mice exposed to the UCMS compared
with the non-UCMS group (Figure 6A) (Student’s t-test, t =
5.281, 19df, p < 0.001) (n = 12 VEH-treated non-UCMS; n =
11 VEH-treated UCMS). Surprisingly, only CBD treatment
reversed this alteration, increasing BDNF levels. No changes
were induced by STR or the combination CBD + STR
compared with the VEH-treated UCMS group (Figure 6B)
(One-way ANOVA followed by Student-Newman-Keuls:
F(3,38) = 19.676, p < 0.001) (n = 11 VEH-, STR- and CBD-
treated UCMS groups; n = 9 CBD + STR UCMS).

Similarly, UCMS significantly reduced the relative gene
expression of PPARdelta in the Hipp (Figure 6C) (Student’s
t-test, t = 3.898, 19df, p < 0.001) (n = 12 VEH-treated non-
UCMS; n = 11 VEH-treated UCMS). Notably, this alteration was
reversed only by CBD treatment, with no effect induced by STR
or CBD + STR combination. Besides, there was a statistical
difference between CBD- and STR-treated UCMS mice
(Figure 6D) (One-way ANOVA followed by Student-Newman-
Keuls: F(3,34) = 5.288, p = 0.004) (n = 11 VEH- and CBD-treated
UCMS groups; n = 8 CBD-treated UCMS and CBD + STR-treated
UCMS).

Regarding mVglut1, there was a reduction in the UCMS group
compared to VEH non-UCMS group (Figure 6E) (Student’s t-test,
t = 2.203, 17df, p = 0.042) (n = 10/group). All pharmacological
treatments reversed the effects induced by UCMS since they
significantly increased mVglut1 gene expression. No differences
were found among the different pharmacological approaches
(Figure 6F) (One-way ANOVA followed by Student-Newman-
Keuls: F(3,33) = 4.691, p = 0.008) (n = 10 VEH-treated UCMS
and n = 9 STR-, CBD- and CBD + STR-treated groups).

3.3.2 Conventional and confocal
immunohistochemistry
3.3.2.1 BDNF immunoreactive in the Hipp

BDNF immunostaining revealed a lower labeling intensity of the
cells in all Hipp areas in the VEH-treated UCMS group compared
with VEH-treated non-UCMS mice at low magnification (Figures
7A,B). On the other hand, a decrease of BDNF-ir cells in the hilus
and granular layer of DG (double arrow Figures 7A–E), and the
pyramidal layer of CA1 and CA3 was found in VEH-treated UCMS
compared with VEH-treated non-UCMS. Interestingly, all the
pharmacological approaches increased BDNF-ir compared with
VEH-treated UCMS mice. In CBD- and CBD + STR-treated
UCMS groups, the labeling intensity of BDNF-ir in pyramidal
and granular cells was higher than in the STR-treated UCMS
mice (Figures 7C–E). On the other hand, BDNF-ir in CA1 and
CA3 decreased in VEH-treated UCMS compared with the VEH-
treated non-UCMS group (Figures 7A,B). All the treatments
increased BDNF-immunostained in both fields of Hipp
(arrowhead in Figures 7C–E). Likewise, BDNF-ir in the hilus and
the DG areas (arrow and double arrow Figures 7C–E) were
decreased in the VEH-treated UCMS group (Figure 7B).

At high magnification, BDNF-ir in the hilus and the granular cells
of DG in CBD-, STR- and CBD + STR UCMS groups increased
compared with VEH-treated UCMS (Figures 7F–J). Even though
BDNF-immunostained intensity was higher in STR-treated UCMS
than in VEH-treated UCMS, the increase was more significant in
the granular layer of DG in CBD and CBD + STR groups compared
with STR-treated UCMSmice (arrow in Figures 7H–J). All these results
revealed increased cell survival and plasticity in the UCMSmice treated
with the different pharmacological approaches compared with VEH-
treated UCMS mice. This increase was even more significant in mice
treated with CBD and CBD + STR than with STR alone.

FIGURE 4
Chronic effects of treatment with CBD, STR or their combination in modulating cognitive impairment and anhedonia in mice exposed to the
unpredictable chronic mild stress model (UCMS). Panels (A, B) Novel Object Recognition Test (NOR) and panels (C, D) sucrose intake. Columns
represent the means and vertical lines the ±SEM of each parameter evaluated. * Values from the VEH-treated UCMS group that differ significantly from
VEH-treated non-UCMS group (Student’s t-test, p < 0.05). $ Values from STR-, CBD- and/or CBD + STR-treated UCMS mice that were different
from the VEH-treated UCMS group. # Values from CBD- and/or CBD + STR-treated UCMS mice that were different from STR-treated UCMS mice. and
Values from CBD-treated UCMS mice that were different from CBD + STR treated UCMS mice (One-way ANOVA followed by Student-Newman-Keuls,
p < 0.05).
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3.3.2.2 NeuN and Caspase-3 immunoreactive in the Hipp
In VEH-treated UCMS mice, the results of NeuN-Caspase-

3 double-immunostained sections at low magnification
(Figure 8A, C, E, G, I) revealed a decrease in NeuN-ir in CA1,
CA3 and the hilus and granular cells of DG (arrows in Figure 8A, C,
E, G, I) compared with its corresponding control group, VEH-
treated non-UCMS. Interestingly, CBD, STR and the combination
CBD + STR increased NeuN-ir.

On the other hand, Caspase-3-ir increased in VEH-treated
UCMS compared to VEH-treated non-UCMS mice (Figure 8B,
D). In contrast, Caspase-3-ir was lower in CBD-, STR-, and CBD
+ STR-treated mice compared with the VEH-treated UCMS group
(arrows in Figure 8D, F, H, J). Between treatments, Caspase-3-ir was
lower in UCMSmice treated with CBD- or CBD + STR than in those
treated with STR alone (arrows in Figure 8F, H, J). Details of the
CA1 region showed a decrease in NeuN-ir pyramidal cells in
CA1 and an increase of Caspase-3-ir in VEH-treated UCMS
compared with non-UCMS. Both CBD and STR, as well as their
combination, reversed these alterations (arrow in Figure 8A, C, E, G,

I). These results revealed higher cellular death, as noted by the
decrease in NeuN-ir and the increase of Caspase-3-ir in VEH-
treated UCMS compared with the VEH-treated non-UCMS
group. Notably, the number of apoptotic cells decreased in mice
treated with CBD- or CBD + STR even more than in those treated
only with STR (arrows in Figure 8F, H, I).

4 Discussion

The present study revealed that the antidepressant action of
CBD is faster and more effective than the reference drug used, STR,
in modulating the behavioral and molecular disturbances induced
by the UCMS. Indeed, the combination of CBD plus STR showed a
worse outcome than CBD alone. These assumptions are based on the
following observations: 1) CBD reversed anxiety and behavioral
despair of stressed mice at 4, 7 and 14 days of treatment, while STR
required 14 days to modulate the anxiogenic-like behavior induced
by UCMS, 2) CBD significantly improved cognitive impairment and

FIGURE 5
Relative gene expression of the serotonin transporter (Slc6a4) and receptors (5-HT1A and 5-HT2A) in the dorsal raphe (DR), DG of the
hippocampus (DG) and AMY (amygdala) of mice exposed to the UCMS and treated with CBD, STR or their combination by real-time PCR. Columns
represent the means and vertical lines the ±SEM of the Slc6a4 in the DR (panels A, B), 5-HT1A and 5-HT2A in the Hipp (panels C–F, respectively) and the
AMY (panels G–J, respectively). *Values from the VEH-treated UCMS group that differ significantly from VEH-treated non-UCMS group (Student’s
t-test, p < 0.05). $ Values from STR-, CBD- and/or CBD+ STR-treated UCMSmice that were different fromVEH-treated UCMSmice. # Values fromCBD-
and/or CBD + STR-treated UCMSmice that were different from STR-treated UCMS group, and Values from CBD-treated UCMSmice that were different
from CBD + STR treated UCMS mice (One-way ANOVA followed by Student-Newman-Keuls, p < 0.05).

Frontiers in Pharmacology frontiersin.org10

García-Gutiérrez et al. 10.3389/fphar.2023.1171646

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1171646


anhedonia of UCMS mice more than STR, 3) CBD normalized all
the gene expression disturbances induced by the UCMS in critical
elements within the serotoninergic system (Scl6a4, 5-HT1A and 5-
HT2A) in the DR, Hipp and AMY compared to STR, 4) CBD
increased BDNF and PPARdelta gene expressions in the Hipp of
UCMS mice, whereas STR was without effects, 5) CBD increased
BDNF and reduced caspase-3 immunoreactivities in the Hipp more
than STR, 6) the combination of CBD plus STR showed a similar
efficacy than CBD alone in the LBD, TST and EPM, however, a
worse outcome was found in the improvement of cognitive
impairment and anhedonia, and 8) the combination of CBD plus
STR did not reverse the alterations induced by the UCMS in 5-
HT1A, BDNF and PPARdelta in the Hipp, and 5-HT1A and 5-
HT2A in the AMY; and increased BDNF and caspase-3
immunoreactivities in the Hipp less than CBD alone.

This study evaluated the antidepressant-like effects of
chronic CBD administration compared with STR and the
combination of both drugs in mice previously exposed to the
UCMS experimental paradigm (Papp et al., 1996; Willner, 1997).
The selective reuptake inhibitor STR was selected based on the
fact that it is the first-line treatment of major depressive disorder
(Cipriani et al., 2010) and one of the most common
antidepressant drugs for treating other psychiatric diseases
such as obsessive-compulsive disorder (Fenske and Schwenk,

2009), panic disorder (Hobgood and Clayton, 2009),
posttraumatic stress disorder (Buhmann and Andersen, 2017)
and social anxiety disorder.

Current antidepressant treatments, such as STR, require several
weeks to reduce depressive symptomatology in patients and rats
exposed to the UCMS, as previously reported (Ramanathan et al.,
2003; Machado-Vieira et al., 2010; Lu et al., 2019). The LBD and TS
tests revealed that CBD normalized the anxiogenic- and
depressogenic-like effects induced by UCMS after 4 and 7 days
of treatment, respectively. In contrast, the administration of STR
required 14 days to produce a significant antidepressant action. This
is the first evidence of the faster antidepressant-like effect of CBD
compared to a reference antidepressant as STR.

In addition, CBD restored the cognitive impairments induced by
UCMS, whereas STR tended to improve the cognitive impairment
without reaching statistical significance. This finding contradicts
previous results showing that STR reversed cognitive impairments
caused by the UCMS in rats in the Water Morris and step-down
inhibitory avoidance (SDIA) tests (Luo et al., 2016). These
discrepancies may be due to differences in the strain used
(CD1 mice vs. Sprague-Dawley rats), the duration of the UCMS
(4 or 6 weeks) before the beginning of the pharmacological
treatment, the STR doses (10 mg/kg vs. 5 mg/kg), and/or the
behavioral test used (NOR vs. Water Morris and SDIA).

FIGURE 6
Relative gene expression of brain-derived neurotrophic factor (BDNF), peroxisome proliferator-activated receptor delta (PPARdelta) and
vesicular glutamate transporter 1 (mVglut1) in the hippocampus (Hipp) of mice exposed to the UCMS and treated with CBD, STR or their
combination by real-time PCR. Columns represent themeans and vertical lines the ±SEM of the BDNF (panels A, B), PPARdelta (panelsC, D) andmVglut1
(panels E, F). *Values from the VEH-treated UCMS group that differ significantly from VEH-treated non-UCMS group (Student’s t-test, p < 0.05). $
Values from STR-, CBD- and/or CBD + STR-treated UCMS mice that were different from VEH-treated UCMS mice. # Values from CBD- and/or CBD +
STR-treated UCMSmice that were different from the STR-treated UCMS group. and Values from CBD-treated UCMSmice that were different from CBD
+ STR treated UCMS mice (One-way ANOVA followed by Student-Newman-Keuls, p < 0.05).
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The results found in this study provide new relevant information
suggesting that chronic CBD administration reversed all the
behavioral alterations (increased anxiety, behavioral despair,
cognitive impairment and anhedonia) induced by UCMS earlier
than STR. Thus, these results lay the groundwork for future studies
to explore the antidepressant profile of CBD, which could provide a
better clinical benefit by inducing the effects faster and more
effectively than other antidepressants.

The mechanisms of action of CBD were explored by measuring
changes in the gene and protein expression of key targets closely related
to depression. In this respect, monoaminergic neurotransmitters,
especially serotonin (5-HT), have been widely involved in the
pathophysiology of depressive disorders (Cowen and Browning,
2015). Recent studies have suggested that dopamine receptors
D2 and D3 are involved in the mechanism of action of CBD
(Seeman, 2016; Stark et al., 2020). Despite inconclusive results,
numerous studies identified reduced activity of serotonin pathways,
disruption of the 5-HTT and serotonin imbalance in depressive patients
(Newberg et al., 2005; Savitz and Drevets, 2013). In rodents exposed to

theUCMS, 5-HT concentrations (Gamaro et al., 2003; Bekris et al., 2005;
Chengfeng et al., 2014), 5-HTT density and gene expression were
reduced in several brain regions (Grecksch et al., 1997; Jahng et al.,
2007; Lee et al., 2007; Liang et al., 2015). In this study, 5-HTT (Slc6a4)
gene expression was significantly reduced in the DR of mice exposed to
the UCMS compared with non-UCMS. Several reports related the
increase of 5-HTT produced by antidepressants with the reduction
of depressive-like behaviors and anhedonia (Tang et al., 2013; Qiu et al.,
2014). Interestingly, CBD and STR increased Scl6a4 gene expression,
although the effect was more pronounced with CBD. This may explain,
at least in part, whyCBDdisplays higher efficacy than STR in controlling
the behavioral alterations induced by the UCMS.

Fourteen serotonin receptor subtypes have been identified. Among
them, the 5-HT1A receptor plays a crucial role in controlling the
concentrations of 5-HT. This receptor is widely distributed in the brain,
with postsynaptic receptors in the cortex, Hipp and AMY, and
somatodendritic autoreceptors in the raphe nucleus (Hjorth et al.,
2000). Several studies support the involvement of the 5-HT1A
receptor in the regulation of anxiety and depression, and

FIGURE 7
Low magnification confocal images of BDNF-immunolabeling in mice exposed to the UCMS and treated with CBD, STR or their combination.
Collages of confocal photomicrographs showing BDNF-ir (green labeling; A–E) in the hippocampus of VEH-treated non-UCMS (A), VEH-treated UCMS
(B), CBD-treated UCMS (C), STR-treated UCMS (D) and CBD + STR treated UCMS (E) in adults’ mice. Note the decrease in the number and labeling of
BDNF-in cells in the pyramidal layer of CA1 and CA3 (arrowhead), the granular layer (double arrow), and hilus (arrow) of DG in VEH-treated UCMS (B)
compared with VEH-treated non UCMS (A). These data show that BDNF-ir is recovered after treatment with CBD (C), STR (D), and CBD + STR (E). The
density and intensity of labeling are higher with CBD (C) and CBD + STR (E) treatment than with STR (D) alone in the pyramidal layer of CA1 and CA3
(arrowhead), the granular layer (double arrow), and hilus (arrow) of DG. Highmagnification of DGofmice exposed to the UCMS and treatedwith CBD, STR
or their combination showed that the intensity of labeling is higher with CBD (H) and CBD + STR (J) treatments than with STR (I) (Arrows in (F–J)). G:
granular; H: hilus.
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FIGURE 8
Low magnification confocal image sowing NeuN/Caspase-3 double immunostaining coronal section of the hippocampus of mice exposed to
the UCMS and treated with CBD, STR or their combination. Low magnification photomicrographs of coronal sections of the hippocampus showing
NeuN-ir neurons in red and Caspase-3-ir in green in VEH-treated non-UCMS (A, B), VEH-treated UCMS (C, D), CBD-treated UCMS (E, F), STR-treated
UCMS (G, H), and CBD + STR treated UCMS (I, J). Details of NeuN in DG (K, M, O, Q, S) and Caspase-3 (L, N, P, R, T) in CA1 of VEH-treated non-
UCMS, VEH-treated UCMS, CBD-treated UCMS, STR-treated UCMS, and CBD + STR treated UCMS mice. Note the decrease of Caspase-3-ir in the
granular layer of DG and pyramidal and stratum radiatum of CA1 in CBD-, STR-, and CBD + STR treated UCMS groups compared with VEH-treated UCMS
group. The VEH-treated UCMS (C, D) group showed an increase in Caspase-3-ir in CA1, CA3, and DG compared with the treated groups (D–I) and VEH-
treated non-UCMS group (A, B). The UCMSmice treatedwith CBD (E, F, O, P) or CBD plus STR (I, J, S, T) showed lower Caspase-3-ir than mice treated

(Continued )
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neuroplasticity (Gross et al., 2002; Savitz et al., 2009; Zhang et al., 2010;
Garcia-Garcia et al., 2014; Albert et al., 2019). Alterations of 5-HT1A
gene expression and bindingwere found in the brain of rodents exposed
to chronic stress (Albert et al., 2014; Bravo et al., 2014; Puglisi-Allegra
and Andolina, 2015; Carneiro-Nascimento et al., 2021; Hale et al.,
2021). PET studies showed alterations of 5-HT1A binding in cortical
and raphe regions of depressive patients (Meltzer et al., 2004; Drevets
et al., 2007). In our study, UCMS increased 5-HT1A receptor gene
expression in the Hipp and decreased in the AMY. These results are
consistent with previous reports suggesting that stressful stimuli
induced opposite changes in 5-HT1A gene expression depending on
the brain region analyzed (Bravo et al., 2014; Viudez-Martinez et al.,
2018). CBD reversed both alterations, while STR only increased 5-
HT1A in AMY. Based on previous studies, it is possible to suggest that
CBD behaves as an agonist of the 5-HT1A receptor, which is
responsible for its antidepressant properties (Russo et al., 2005;
Zanelati et al., 2010; Gomes et al., 2013; Marinho et al., 2015; Linge
et al., 2016; Sartim et al., 2016). Mood stabilizers and antidepressants
significantly modify 5-HT1A functional activity in several brain regions
(Hjorth et al., 2000; Nugent et al., 2013). In general, the antidepressant
effects of SSRIs are potentially mediated by 5-HT1A receptors. In the
raphe nuclei, the increase of serotonin concentrations induced by the
inhibition of 5-HTT stimulates the presynaptic somatodendritic 5-
HT1A receptors. This action results in an inhibition of serotonin
release, which consequently delays the onset of antidepressant
action. However, in chronic treatment, desensitization of the
presynaptic 5-HT1A receptors occurs, increasing 5-HT
concentrations in the synapse with the subsequent activation of
postsynaptic 5-HT1A receptors and the appearance of
antidepressant actions (Dong et al., 1999; El Mansari et al., 2005).
Thus, the agonism of the 5-HT1A receptor, in combination with the 5-
HTT inhibition, has been proposed to contribute to a faster
antidepressant action (Hughes et al., 2005; Montalbano et al., 2019;
Albert et al., 2021). Recently, it has been observed that repeated CBD
treatment increased 5-HT firing activity by desensitizing 5-HT1A
autoreceptors (Blier and De Montigny, 1983; De Gregorio et al.,
2019), and this mechanism was associated with relieving pain-
induced anxiety-like behavior in a rat model of neuropathic pain
(De Gregorio et al., 2019). Thus, it is possible to hypothesize that
the most efficient actions of CBD compared with STR on 5-HTT gene
expression in theDR and the normalization of 5-HT1A gene expression
alterations in Hipp and AMY produced by UCMS may be due to the
activation of the 5-HT1A receptor. Future studies, for example, by
blocking the 5-HT1A receptor in mice exposed to the UCMS and
treated with CBD, are required to determine the significance of this
serotonin receptor in the antidepressant effects of CBD.

An additional serotonin receptor affected by stress and involved in
multiple psychiatric disorders is the 5-HT2A. Activation of this
receptor in the AMY has been closely related to generalized
anxiety disorder (GAD) (Nikolaus et al., 2010; Baeken et al., 2021),

borderline personality disorders (Soloff et al., 2007) and PTSD
(Murnane, 2019). Besides, cortical 5-HT2A increase was reported
in suicide victims (Underwood et al., 2018; Odagaki et al., 2021) and
several brain areas of rodents exposed to UCMS (McKittrick et al.,
1995; Ossowska et al., 2001). In line with these findings, UCMS
significantly increased 5-HT2A in the Hipp and AMY. Chronic CBD
administration reduced these alterations, while STR decreased 5-
HT2A gene expression only in the Hipp. Previous reports
indicated that the increased expression of 5-HT2A is associated
with unmitigated stress, increasing the intensity and consequences
of stress rather than the relief of stress consequences (Pandey et al.,
2002). Thus, it is tempting to speculate that reducing 5-HT2A induced
by CBD may contribute to a more significant efficacy in reversing the
behavioral disturbances induced by UCMS compared to STR.
However, there is no information on how CBD interacts with the
5-HT2A receptor. The fact that it reduces the expression of 5-HT2A
would indicate that it acts more as an agonist of this receptor. This
should be further explored due to the emerging interest in 5-HT2A
agonists for treating anxiety and depression, such as the LSD-like
psychedelic drugs that acting as 5-HT2A agonists display rapid
antidepressant effects related to their neuroplastic actions (Corne
and Mongeau, 2019; Carhart-Harris et al., 2021; Tariq, 2022).

Impairment in brain neuroplasticity is one of the main
etiopathogenic mechanisms underlying depressive disorders. It is
known that the antidepressants’ efficacy lies in their ability to
increase neuroplasticity. BDNF is a crucial regulator of synaptic
plasticity, neurite outgrowth and neuronal connections in the brain
(McAllister et al., 1999; Mamounas et al., 2000; Park and Poo, 2013)
and mediates the plastic changes induced by antidepressants
(Nibuya et al., 1995; Bjorkholm and Monteggia, 2016; Castren
and Antila, 2017). In animal stress models, BDNF is
downregulated in the Hipp (Nibuya et al., 1995; Nibuya et al.,
1996; First et al., 2013; Gong et al., 2017; Zhu et al., 2019). The
involvement of hippocampal BDNF in antidepressant efficacy has
been demonstrated in different previous studies (Shirayama et al.,
2002; Adachi et al., 2008; Castren and Rantamaki, 2010; First et al.,
2013; Bjorkholm and Monteggia, 2016). In this study, BDNF gene
and protein expressions were significantly reduced in the Hipp of
mice exposed to the UCMS.

Interestingly, CBD treatment increased BDNF gene expression in
the Hipp, in contrast to STR. Moreover, immunohistological studies
revealed that the treatment with CBD increased BDNF
immunoreactivity in different fields of the Hipp more significantly
than STR. Our results are in agreement with previous reports showing
that CBD increased BDNF gene expression and synaptophysin in the
PFC and Hipp of ICR mice exposed to the UCMS (Xu et al., 2019).
Besides, acute administration of CBD showed antidepressant effects
associated with increased synaptophysin and PSD95 in the mPFC and
BDNF protein expression in mPFC and Hipp (Sales et al., 2019). In
additional animal models of brain ischemia, CBD increased

FIGURE 8 (Continued)
with STR (G, H, K, R). Same scale for (A–J) and for (S, L, M, N, O, P, Q, R, S). High magnification of the CA1 showing the Caspase-3 positive cells in
green in non-UCMS, UCMS, and treatedwith CBD, STR, or their combination (L, N, P, R, T) andNeuN/Caspase-3 double immunostaining (Caspase-3-ir in
green and NeuN-ir in red, in the DG of the hippocampus (K, M, O, S). Note that CBD-treated UCMS, STR-treated UCMS, and CBD+STR treated UCMS
groups have less Caspase -3-ir than the VEH-treated UCMS (see details on the right). m: molecular; g: granular; h: hilus; o: oriens; p: pyramidal; r:
radiatum.
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hippocampal BDNF protein levels, stimulated neurogenesis and
promoted dendritic restructuring (Mori et al., 2017). Similarly, in
an animal model of mania induced by D-amphetamine, CBD
increased BDNF expression in the Hipp (Valvassori et al., 2011).
Furthermore, CBD treatment increased NeuN-ir and decreased
caspase-3-ir more significantly than STR. Therefore, CBD was
more effective in reversing the UCMS-induced increase in
apoptosis and neuronal loss than STR.

The analyses of PPARdelta gene expression in the DG of the Hipp
provided different results about the significant enhancement of
neuroplasticity by CBD. PPARdelta belongs to the PPAR nuclear
receptor family with a widespread brain distribution (Girroir et al.,
2008; Tyagi et al., 2011). Recently, this receptor that regulates 5-HTT
in the Hipp (Liu et al., 2017) is essential in reducing depressive-like
behaviors (Ji et al., 2015) induced by stress.Moreover, the activation of
PPARdelta induces neuroprotection and reverses neurodegeneration
in Alzheimer’s disease (Tong et al., 2016), Parkinson’s disease (Martin
et al., 2013) and Huntington’s disease (Dickey et al., 2016). Notably,
the treatment with CBD was the only one that reversed the reduction
of PPARdelta gene expression in the Hipp induced by the UCMS.

Potential changes in the vesicular glutamate transporter 1,
mVGlut1, were also analyzed. This glutamate transporter is
located in the presynaptic glutamate-releasing neurons,
transporting glutamate into presynaptic vesicles and promoting
synaptic glutamate release (Trudeau and El Mestikawy, 2018).
The control of glutamate levels is essential to protect the brain
from excess synaptic glutamate and excitotoxicity, which can lead to
cell death (Shigeri et al., 2004). Unbalance between inhibitory and
excitatory neurotransmission has been proposed to be involved in
different psychiatric conditions, including depressive disorders
(Selten et al., 2018; Duman et al., 2019). Recently, the
modulation of glutamate neurotransmission has been related to
the antidepressant effects of ketamine and its effects on
neuroplasticity (Aleksandrova et al., 2017; Silberbauer et al.,
2020). In this study, UCMS reduced mVGlut1 gene expression,
which may be related to changes in glutamate concentrations in the
synaptic cleft, whereas CBD and STR increased the expression of this
gene in the Hipp. It is remarkable to mention that CBD was the only
drug that reversed all the molecular alterations induced by
the UCMS.

Another aspect analyzed in the present study was if the
combination of CBD and STR may show additive or
synergistic potential. Combining different drugs is a standard
procedure for treating depressive disorders to achieve a more
significant effect than individual drug therapies. This strategy
also prevents specific dose-related side effects. Unexpectedly, the
combination of CBD plus STR resulted in less effective than CBD
modulating behavioral and molecular disturbances induced by
UCMS, and similar, in some respects, to STR. These results raise
the question about the nature of the interaction between STR and
CBD, which makes their combination less valuable than CBD
alone. One possible explanation is a potential pharmacokinetic
interaction between CBD and STR since both drugs are
hepatically metabolized by the cytochrome P450 (CYP450)
enzymes (Wang et al., 2001; Watanabe et al., 2007; Jiang et al.,
2011). Recently, in vivo and in vitro studies pointed out that CBD
significantly inhibits CYP2C19, decreasing the metabolism of
STR and additional SSRIs (Jiang et al., 2013; Anderson et al.,

2021). This would increase plasma STR concentration and
serotonin concentrations, reducing tolerability secondary to
activation. Thus, the combined use of CBD plus STR appears
to increase the risk of concentration-related SSRI side effects
(Jakubovski et al., 2016; Vaughn et al., 2021). A recent case report
showed a pharmacokinetic interaction between CBD and STR in
a patient treated with STR for depression and anxiety. CBD
inhibited CYP2C19 increasing STR exposure, producing
hyponatremia and subsequent cognitive dysfunction (Nanan
et al., 2022). This fact may be critical since the behaviors
related to an excess of serotonin are similar to symptoms of
anxiety and depressive disorders (Jukic et al., 2018). Moreover,
CBD and STR bind to plasma proteins (Shahlaei et al., 2015; Liu
et al., 2022). Thus, it would be interesting to explore a potential
interaction that may cause STR or CBD concentrations to change
and explains, at least in part, why the combination of both drugs
has less efficacy than the administration of CBD alone.

On the other hand, time course and differences in the molecular
neuroadaptations induced by the combination in comparison to
CBD alone suggest some interaction between CBD and STR at the
pharmacodynamic level. At the beginning of the treatment
(1–14 days), CBD plus STR showed the same efficacy as CBD
alone and less with STR. Notably, the time point (14 days) at
which the effectiveness of the combination starts to be less
effective than CBD is the same as when STR presents efficacy by
itself. As treatment becomes chronic, the combination results in
significantly less effectiveness than CBD, as shown by the results at
18 and 26 days for NOR and SC tests. Similarly, molecular
neuroadaptation analyses showed that 5-HT1A, BDNF and
PPARdelta are the main critical targets in which CBD differs
from the combination and STR. CBD restored changes in 5-
HT1A receptor gene expression in the Hipp, whereas neither the
combination nor STR modified this target. CBD and STR separately
changed the effects of UCMS on 5-HT1A receptor gene expression
in the Amy, but not the combination. Notably, BDNF and
PPARdelta gene expressions increased with CBD but not with
STR or the combination. Altogether, these results suggest that the
lack of effect modulating 5-HT1A, BDNF and PPARdelta in the
Hipp is similar between STR and the combination. Despite further
studies being necessary to determine the mechanisms underlying
these observations, it is tempting to hypothesize that CBD and STR
interact negatively in the modulation of the serotonergic system and
neuroplasticity, reducing the efficacy of CBD when both drugs are
administered together.

Taken together, the results of this study revealed that CBD
induced an antidepressant-like effect in the UCMS accompanied by
molecular neuroadaptations in crucial targets of the serotonin
system and neuroplasticity, expanding the knowledge about its
mechanism of action. CBD presents advantages over the
antidepressant STR, notably significant speed and efficiency, to
modulate behavioral despair, cognitive impairment and
anhedonia, and all the molecular disturbances analyzed. More
importantly, special attention should be given to the combination
of CBD with current antidepressants since it appears to produce a
negative impact on treatment.

In summary, this study lays the groundwork for future clinical
studies to determine CBD’s efficacy and therapeutic positioning in
treating depressive and anxiety disorders in humans.
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