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Background: Ubiquitin-proteasome system (UPS) is implicated in cancer
occurrence and progression. Targeting UPS is emerging as a promising
therapeutic target for cancer treatment. Nevertheless, the clinical significance
of UPS in hepatocellular carcinoma (HCC) has not been entirely elucidated.

Methods: Differentially expressed UPS genes (DEUPS) were screened from LIHC-
TCGA datasets. The least absolute shrinkage and selection operator (LASSO) and
stepwise multivariate regression analysis were conducted to establish a UPS-
based prognostic risk model. The robustness of the risk model was further
validated in HCCDB18, GSE14520, and GSE76427 cohorts. Subsequently,
immune features, clinicopathologic characteristics, enrichment pathways, and
anti-tumor drug sensitivity of the model were further evaluated. Moreover, a
nomogram was established to improve the predictive ability of the risk model.

Results: SevenUPS-based signatures (ATG10, FBXL7, IPP, MEX3A, SOCS2, TRIM54,
and PSMD9) were developed for the prognostic risk model. Individuals with HCC
with high-risk scores presented a more dismal prognosis than those with low-risk
scores. Moreover, larger tumor size, advanced TNM stage, and tumor grade were
observed in the high-risk group. Additionally, cell cycle, ubiquitin-mediated
proteolysis, and DNA repair pathways were intimately linked to the risk score.
In addition, obvious immune cell infiltration and sensitive drug response were
identified in low-risk patients. Furthermore, both nomogram and risk score
showed a significant prognosis-predictive ability.

Conclusion: Overall, we established a novel UPS-based prognostic risk model in
HCC. Our results will facilitate a deep understanding of the functional role of UPS-
based signature in HCC and provide a reliable prediction of clinical outcomes and
anti-tumor drug responses for patients with HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent type of
liver neoplasm, with a global high incidence andmortality rate (Sung
et al., 2021). Notably, the incidence of HCC will rise greatly in the
future due to excessive drinking, viral hepatitis infection, and
emerging fatty liver diseases (Kirstein and Vogel, 2014).
Although the early diagnosis of HCC has been improved,
patients usually present pathognomonic symptoms (Mao et al.,
2019). Nowadays, surgery intervention, liver transplantation, local
ablation, and trans-arterial chemoembolization (TACE) radiation
therapy are the main treatments for patients with HCC (Zhou et al.,
2020). However, the prognosis of patients with HCC remains
unfavorable. Drug resistance and precise therapeutic approaches
are still challenging problems (Koulouris et al., 2021). Moreover,
heterogeneity within a tumor is one of the main reasons contributing
to currently ineffective therapies for most types of cancers, including
HCC (Chan et al., 2022). Lesions within the same tumor may have
different genomic alterations, biological behaviors, and local
microenvironments, and may respond differently to a treatment.
Even tumor cells in different areas of the same lesion may have
different somatic mutations (Zhang et al., 2019). Due to tumor
heterogeneity, there are significant differences in the prognosis of
patients with HCC. Therefore, it is necessary to explore novel

biomarkers that can accurately predict prognosis and guide
clinical management for patients with HCC.

The ubiquitin-proteasome system (UPS) plays an essential role
in maintaining cellular protein homeostasis through the degradation
of short-life, misfolded, or non-essential cellular proteins (Colberg
et al., 2020). UPS is a complex containing E1, E2, and
E3 ubiquitinating enzymes and deubiquitinating enzymes as well
as 26 S proteasome. It has been found that UPS is involved in various
biological processes including in cell cycle, apoptosis, autophagy,
epigenetic regulation, signaling transduction, and inflammatory and
immune response (Zhou et al., 2019) (Çetin et al., 2021) (El
Yaagoubi et al., 2021). Furthermore, the alteration of UPS leads
to the initiation and progression of multiple diseases, such as kidney
disease, Alzheimer’s disease, schizophrenia, and psoriasis (Yang
et al., 2018) (Meyer-Schwesinger, 2019) (Al Mamun et al., 2020)
(Luza et al., 2020). Recently, accumulating evidence has
demonstrated that UPS dysregulation contributes to human
malignancies progression (Yerlikaya et al., 2021). For instance,
E3 ligases-mediated P53 degradation was clarified to be
responsible for tumor development and progression (Bang et al.,
2019). Targeting UPS may help to find potential therapeutic
strategies for cancer patients (Zhang et al., 2020). Notably, a
recent study has revealed the pivotal role of UPS in HBV viral
replication and the pathogenesis of HCC (Kong et al., 2019). For

FIGURE 1
Identification of DEUPS in HCC. (A) Volcano plots displayed 6,682 upregulated and 816 downregulated genes between HCC samples and adjacent
normal samples. (B) Venn diagram of overlap analyses for differential genes and UPS genes. (C) Heatmap showing the expression pattern of DEUPS
between HCC samples and adjacent normal samples. (D) Scatter plot of univariate Cox regression analyses for screening prognosis-associated genes.
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example, ubiquitin-protein ligase E3 component N-recognin 7
(UBR7) is a key negative regulator of aerobic glycolysis and HCC
oncogenesis (Zhao et al., 2022). However, the functional role and
clinical value of UPS-related genes in HCC have not been fully
investigated.

In this study, differentially expressed UPS genes (DEUPS) were
screened based on the LIHC-TCGA dataset. Key UPS-associated
genes were selected using univariate Cox regression and LASSO
regression analyses. Next, we constructed a UPS-based prognostic
risk model to accurately predict the clinical outcome of HCC.
Furthermore, clinicopathologic characteristics, enrichment
pathways, immune features, and drug sensitivity were further
evaluated between the two risk groups. Collectively, our study
sheds deeper insights into the underlying mechanisms of HCC
pathogenesis and facilitates clinical decision-making based on
targeting the UPS to manage HCC.

Results

Identification and functional enrichment
analysis of DEUPS in HCC

We first analyzed the differentially expressed genes based on the
LIHC-TCGA datasets. A total of 6,682 upregulated genes and

816 downregulated genes were identified in HCC (Figure 1A). Next,
366 differentially expressed UPS (DEUPS) were filtered out through
overlap analysis of the differentially expressed genes and UPS-related
genes (Figure 1B). Then, the expression pattern of these DEUPS between
HCC samples and adjacent normal samples was visualized, as shown in
Figure 1C. Through screening prognosis-related genes by univariate Cox
regression analysis, one protective gene and 249 risk genes were finally
identified in HCC (Figure 1D).

To gain insights into the biological function of DEUPS, GO and
KEGG enrichment analyses were performed using 366 DEUPS. Under
FDR <0.05, 119 items in biological process (BP), 26 items in cellular
component (CC), 37 items in molecular function (MF), and 3 KEGG
pathways were identified. The top 10 GO terms in BP, CC, andMFwere
shown (Figures 2A–C). KEGG analysis displayed that DEUPS were
mainly enriched in the proteasome, ubiquitin-mediated proteolysis, and
Epstein-Barr virus infection pathways in HCC (Figure 2D). This finding
revealed a potential role of UPS in hepatocarcinogenesis.

Development and verification of UPS-based
prognostic model in HCC

Firstly, we reduced the gene number for further analysis based on
LASSO regression analyses. It was discovered that as lambda increased,
the number of independent variable coefficients steadily tended toward

FIGURE 2
Enrichment analyses of DEUPS in HCC. (A–C) Top 10 terms in BP, CC, and MF categories. (D) KEGG Pathway analyses of DEUPS.
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zero (Figure 3A). Figure 3B presents the confidence interval for each
lambda under the results of 10-fold cross-validation. Through further
stepwisemultivariate regression analyses with stepAIC, seven genes were
selected for the risk model construction using the formula: RiskScore =
0.398*ATG10 + 0.193*FBXL7 + 0.282*IPP + 0.191*MEX3A-
0.415*SOCS2 + 0.096*TRIM54 + 0.563*PSMD9.

We then divided the TCGA-LIHC cohort’s samples into high-
risk and low-risk groups based on the risk scores (Figure 3C).
Kaplan-Meier survival analysis showed that HCC patients with
high-risk scores had a worse prognosis in comparison to those
patients showing a low-risk score (p < 0.0001) (Figure 3D).
Furthermore, the area under the receiver operating characteristic
curve (ROC) was 0.82 (95% CI, 0.75–0.88) in predicting 1-year OS,
0.75 (95% CI, 0.68–0.82) in predicting 3-year OS, and 0.74 (95% CI,

0.65–0.82) in predicting 5-year OS. (Figure 3E). Then, we validated
the robustness of this risk model in the HCCDB18, GSE14520, and
GSE76427 cohorts and found a strong predictive performance of
this risk model (Figures 4A–C). The KM survival analysis in 32 pan-
cancer showed that the RiskScore could predict prognosis in
23 cancers (Supplementary Figure S1). Those results indicated
the robustness of the RiskScore.

Correlation analyses of the prognostic risk
model with clinicopathologic characteristics

Next, we examined the distribution of the risk score across
various clinicopathological characteristics in the TCGA-LIHC

FIGURE 3
Determination of key genes for risk model construction. (A) Independent variable coefficients. (B) 10-fold cross-validation determining the
confidence interval under each lambda.2 (C) Distribution of seven UPS-based signatures. (D) Kaplan-Meier curves of high- and low-risk patients in the
TCGA cohort. (E) ROC curves with AUCs for 1-year, 3-year, and 5-year OS.
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cohort. We observed a significant increase in the risk score among
patients with larger tumor sizes, advanced TNM stage, higher tumor
grade, and poorer clinical outcomes (Figure 5A). Similar results are
shown in Figure 5B. These findings suggest that patients with higher
risk scores display more advanced clinicopathological features and
have a poorer prognosis in HCC. The copy number of six genes
manifested varying degrees of amplification or deletion. The
FBXL7 gene had the highest mutation (Supplementary Figure S2).

Pathway enrichment analysis of UPS-based
prognostic risk signature

Pathway analyses deciphered that several pathways, including
DNA_REPLICATION, OOCYTE_MEIOSIS, CELL_CYCLE,
UBIQUITIN_MEDIATED_PROTEOLYSIS, and HOMOLOGOUS_
RECOMBINATION, and MISMATCH_REPAIR, were positively
correlated with the risk score, while some metabolism-associated
pathways, such as DRUG_METABOLISM_CYTOCHROME_P450,
PRIMARY_BILE_ACID_METABOLISM, FATTY_ACID_
METABOLISM, and ARACHIDONIC_ACID_METABOLISM, were
negatively correlated with the risk score (Figure 6A). The heatmap
showed pathways enriched in low- and high-risk groups (Figure 6B).
These results suggested the underlying mechanism of UPS involved
in HCC.

Assessment of the prognostic risk model on
immunophenotype

The ESTIMATE algorithm was utilized to assess the immune
characteristics of the risk model. The results revealed that patients
with HCC from the high-risk group had lower stromal scores and
ESTIMATE scores (Figure 7A). ssGSEA showed a significant
differentiation in immunophenotype between the two risk
groups. Notably, effector memory CD8+ T cell, activated B cell,
natural killer cell, neutrophil, activated CD8+ T cell, CD56dim natural
killer cell, eosinophil, and type 1 T helper cell were significantly
increased in the low-risk group, while the type 2 T helper cell,
activated CD4+ T cell, and effector memory CD4+ T cell were
elevated in high-risk patients (Figure 7B). Further correlation
analyses showed that the risk score was negatively associated
with effector memory CD8+ T cell, activated B cell, neutrophil,
type 1 T helper cell, natural killer cell, eosinophil, CD8+ T cell, and
CD56dim natural killer cell, whereas positively associated with type
2 T helper cell, activated CD4+ T cell, and effector memory CD4+

T cell (Figure 7C). In addition, 15 immune-related pathways were
downloaded from KEGG, and the scores were calculated by ssGSEA
analysis. The score differences of 15 pathways between high- and
low-risk groups indicated that three immune pathways had
significant differences between high- and low-risk groups
(Supplementary Figure S3).

FIGURE 4
Validation of UPS-based prognostic model in three independent datasets. ROC analyses of the risk model for 1-year, 3-year, and 5-year OS (up) and
Kaplan-Meier curves of high- and low-risk patients (down) in the HCCDB18 cohort (A), GSE14520 cohort (B), and GSE76427 cohort (C), respectively.
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Evaluation of the prognostic risk model on
drug sensitivity

Subsequently, the sensitivity of high- and low-risk groups to
chemotherapeutic drugs was evaluated. The risk score showed a
positive correlation with XMD8-85, Parthenolide, Paclitaxel,
TAE684, CGP-60474, BMS-509744, WH-4-023, JW-7-52-1,

Dasatinib, Saracatinib, WZ-1-84, Z-LLNle-CHO, and CMK, but
negative correlation with PHA-665752, GNF-2, NSC-87877,
Vinorelbine, Embelin, Cyclopamine, Imatinib, AKT inhibitor
VIII, Pyrimethamine, QS11, and Bexarotene. (Figure 8A).
Moreover, high-risk patients were more sensitive to Bexarotene,
QS11, Pyrimethamine, AKT inhibitor VIII, Imatinib, Cyclopamine,
Embelin, Vinorelbine, NSC-87877, GNF-2, PHA-665752, while low-

FIGURE 5
Clinicopathologic characteristics analyses in high- and low-risk groups. (A)Distribution of the risk score in different clinicopathologic characteristics
including sex, age, tumor size (T), TNM stage, Grade, and survival status. (B) Distribution of the clinicopathologic characteristics in the high- and low-risk
groups. ns, no significance, ***p < 0.001, and ****p < 0.0001.
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risk patients were more sensitive to CMK, Z-LLNle-CHO,WZ-1-84,
Saracatinib, Dasatinib, JW-7-52-1, WH-4-023, BMS-509744, CGP-
60474, TAE684, Paclitaxel, Parthenolide, and XMD8-85 (Figure 8B),
which revealed that this risk model could significantly distinguish
the clinical therapeutic response.

Establishing a nomogram integrated with a
prognostic risk score and
clinicopathological features

Using univariate and multivariate Cox regression analyses, we
identified risk scores combined with the TNM stage as
independent prognostic markers of patients with HCC
(Figure 9A). We evaluated the predictive effectiveness of this

risk model using a nomogram, and the risk score showed the
highest influence on survival prediction (Figure 9B). The
anticipated calibration curves for 1-year, 3-year, and 5-year
were nearly identical to the reference curves, indicating a
strong predictive ability of the nomogram analyses
(Figure 9C). Furthermore, the DCA results demonstrated that
both the nomogram and risk score had the strongest survival
prediction ability (Figures 9D, E).

Discussion

The UPS serves a critical role in cancer initiation and
progression. Emerging evidence has highlighted the role of
UPS as a promising therapeutic target for cancer

FIGURE 6
Potential regulatory pathways of the risk model. (A) Correlation analyses between risk score and enriched pathways. (B)Distribution of the enriched
pathways in high- and low-risk groups are shown in the Heatmap.
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management. Recently, UPS-based prognostic signatures have
been identified in pancreatic cancer, head and neck squamous
cell carcinoma (HNSCC), and papillary renal cell carcinoma
(Lankes et al., 2020; Wang et al., 2021; Zhang et al., 2022). The
present study screened DEUPS and developed a UPS-based
prognostic risk model that could predict the prognosis and
anti-tumor drug sensitivity of patients with HCC.

In the present study, we established a UPS-based prognostic
signature in HCC including ATG10, FBXL7, IPP, MEX3A,
SOCS2, TRIM54, and PSMD9. The risk model exhibited a
strong performance in survival prediction. Previous studies
have identified that ATG10 was associated with autophagy,
immune response, and tumor metastasis in HCC (Zhang
J. et al., 2021; Chen et al., 2021; Xu et al., 2021), which
suggested that UPS-related genes might contribute to HCC
development through regulating biological process. FBXL7, an
F-box protein that binds to substrates via SKP1-Cullin-1-F-box
(SCF) E3 ubiquitin ligase, could enhance polyubiquitylation and
degradation of substrates in tumor occurrence and aggression
(Wang et al., 2022). Additionally, FBXL7 reduces chemotherapy

resistance by promoting the ubiquitination and degradation of
survivin (Dong et al., 2022). IDO-targeting PROTAC
peptide (IPP), generated and activated from UPS, leads to the
activation of effector T cells that could further suppress tumor
growth and metastasis (Zhang C. et al., 2021). MEX3A, an RNA-
binding ubiquitin ligase, has been verified to be involved in
glioblastoma multiforme initiation and progression (Bufalieri
et al., 2020). Furthermore, SOCS2 enhances the radiotherapy
sensitivity of patients with HCC through mediated
SLC7A11 ubiquitination (Chen et al., 2022). Furthermore,
TRIM54 was identified as an oncogene in HCC (Zhu et al.,
2021). Köster et al. have demonstrated that a high level of
PSMD9 is strongly associated with clinical relapse after
radiotherapy in patients with cervical cancer (Köster et al.,
2020). Collectively, UPS-related molecules might contribute
to hepatocarcinogenesis.

High immune cell infiltration and immunosuppression
characterize the tumor microenvironment (TME), which
represents a critical prognostic factor (Cariani and Missale,
2019). Natural killer cells are considered the first-line effector

FIGURE 7
Immune characteristics of the risk model. (A) The Stromal score, Immune score, and ESTIMATES score in high- and low-risk groups. (B) The
enrichment scores of 28 immune cells in high- and low-risk groups (C) Scatter plots display the correlation between risk score and 12 immune cells. ns,
no significance, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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in innate immunity that can shape the TME of HCC and exert
cytotoxic effects (Chen et al., 2023). Immunotherapeutic
strategies targeting natural killer cells were evidenced as
promising approaches to improve the clinical outcomes of
patients with HCC (Habif et al., 2019). To induce an adaptive
immune response in HCC, activated dendritic cells present
process antigens that bind to class II Human Leukocyte
Antigen molecules to naïve CD4+T cells, and then provoke
the differentiation of CD4+ T cells into type 1 T helper cells,
leading to differentiation into effector CD8+ cytotoxic T
lymphocytes (Cariani and Missale, 2019). It has been reported
that the abundance of intertumoral CD3+ and CD8+ cytotoxic
T cells was strongly associated with the relapse-free survival rate
in HCC (Gabrielson et al., 2016). Moreover, tumor-specific
CD8+ T cells are crucial in immunotherapies (Hofmann et al.,
2021). In this study, we observed that tumor-inhibiting

associated immune cells were significantly increased in low-
risk patients, suggesting that UPS-related risk genes might
facilitate reshaping the evolution of HCC through regulating
immune cell infiltration.

Increasing evidence has clarified the role of UPS in tumor cell
proliferation (Wei et al., 2022). In this study, we found that UPS-based
risk score was significantly positively correlated with DNA_
REPLICATION, OOCYTE_MEIOSIS, CELL_CYCLE,
MISMATCH_REPAIR, UBIQUITIN_MEDIATED_PROTEOLYSIS,
and HOMOLOGOUS_RECOMBINATION. The results indicated
that these seven UPS-based signatures were involved in HCC
progression via regulating cell cycle and DNA repair pathways.

In the present study, we also performed drug sensitivity
analyses and the results showed that these drugs were
closely associated with the risk score, which indicated the
potential clinical value of UPS in HCC treatment.

FIGURE 8
Evaluation of the risk model on drug sensitivity. (A) Correlation analyses between risk score and chemotherapeutic drugs are shown in the
Histogram. (B) Estimated IC50 values of chemotherapeutic drugs between the high- and low-risk groups. p < 0.0001.

Frontiers in Pharmacology frontiersin.org09

Zhang et al. 10.3389/fphar.2023.1172908

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1172908


Moreover, patients with high-risk scores were more sensitive to
anti-tumor drugs such as Bexarotene, QS11, Pyrimethamine,
AKT inhibitor VIII, Imatinib, Cyclopamine, Embelin,
Vinorelbine, NSC-87877, GNF-2, and PHA-665752, while
patients with low-risk scores were more sensitive to CMK,
Z-LLNle-CHO, WZ-1-84, Saracatinib, Dasatinib, JW-7-52-1,
WH-4-023, BMS-509744, CGP-60474, TAE684, Paclitaxel,
Parthenolide, and XMD8-85. Our findings might offer new
ideas for HCC management and guide the clinical
personalized therapeutic strategies.

However, there are several limitations to this study. Firstly, the
expression profiles of patients with HCC were retrieved from public
databases including TCGA, HCCDB, and GEO. Therefore, the
reliability of this signature needs to be validated by further
prospective studies with a larger sample size. Additionally,
functional experiments should be conducted to investigate the
detailed mechanism of seven UPS-related genes. Further, the
reliability of this prognostic signature should be iteratively
improved with long-term clinical use.

Conclusion

In summary, we identified seven UPS-based signatures that can
accurately predict the clinical outcome and drug sensitivity of patients
with HCC. Meanwhile, the UPS-based signatures might reveal the
underlying mechanism of hepatocarcinogenesis and provide basic
evidence for personalized therapies for patients with HCC.

Material and methods

Datasets

Gene expression profiles and survival data of patients with HCC
were downloaded from The Cancer Genome Atlas (TCGA) database
(Tumor, n = 365, Normal, n = 50) and Hepatocellular Carcinoma
Database (HCCDB) (Tumor, n = 212) (Lian et al., 2018). Gene
expression profiles of 242 HCC samples in GSE14520 and 115 HCC
samples in GSE14520 were downloaded from the Gene-Expression

FIGURE 9
Construction of nomogram based on risk score and clinicopathological characteristics. (A) Independent prognostic factors were determined by
univariate andmultivariate Cox regression analyses. (B) Construction of nomogram to assess the predictive efficiency of risk score. (C) Calibration curves
for nomogram predicted OS and observed OS for 1 year, 3 years, and 5 years. (D) DCA curves showed the reliability of the nomogram. (E) AUCs of
different clinicopathologic characteristics for 1, 2, 3, 4, and 5-year OS.
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Omnibus (GEO) database. Additionally, a total of 804 UPS-related
gene datasets were collected according to a previous study (Wang
et al., 2021).

Differentially expressed genes analyses

To screen the differentially expressed UPS (DEUPS) between
HCC samples and adjacent normal samples, the “limma” package
(Ritchie et al., 2015) in R software was used. Genes with fold change
(FC) > 1.5 or <0.67, and false discovery rate (FDR) < 0.05 were
considered differentially expressed. Furthermore, univariate Cox
regression analyses were employed using the “survival” package
(Therneau and Lumley, 2015) to identify prognosis-associated
genes.

Functional enrichment analyses

Gene Ontology (GO) and KEGG enrichment analyses were
conducted using the “WebGestaltR” package (Liao et al., 2019).
The GO functional enrichment included cellular component (CC),
molecular function (MF), and biological process (BP) categories.
Candidates with FDR <0.05 were considered as having significantly
enriched pathways.

Construction and validation of UPS-based
prognostic model

To identify key UPS-related genes for prognostic model
construction, the LASSO regression analyses were performed
using the “glmnet” package (Hastie et al., 2021). Subsequently,
we performed stepwise multivariate regression analyses with
stepwise Akaike information criterion (stepAIC) to determine key
prognostic genes.

The risk score of individuals in the TCGA cohort was calculated
as the following formula: RiskScore = 0.398*ATG10 +
0.193*FBXL7+0.282*IPP + 0.191*MEX3A-0.415*SOCS2 +
0.096*TRIM54 + 0.563*PSMD9. “timeROC” package was used
for receiver operating characteristic (ROC) analyses (Blanche,
2015). Areas under the ROC curve (AUCs) for 1-year, 3-year,
and 5-year OS were evaluated. After standardization, patients in
the TCGA cohort were grouped into high-risk (z score >0) and low-
risk (z score <0). To validate the robustness of the risk model, the
seven UPS-based signature was evaluated in the HCCDB18,
GSE14520, and GSE76427 cohorts.

Pathway enrichment analyses

To evaluate the underlying regulatory pathways of the risk
model, we downloaded KEGG-related datasets from the Gene Set
Enrichment Analyses (GSEA) website and scored them using the
“GSVA” package (Hänzelmann et al., 2013). Correlation analyses of
risk scores and pathway scores were performed using the “Hmisc”
package (Harrell Jr and Harrell Jr, 2019). Significant differential
pathways were selected based on |cor| > 0.4 and p < 0.05.

Immune characteristics analyses

Furthermore, the immune score was calculated in the TCGA cohort
using the ESTIMATE algorithm, and the scores of 28 immune cells
from published research (Charoentong et al., 2017) were calculated
using the ssGSEA method. The relationship between risk score and
12 immune cells was determined by Spearman correlation analyses.

Drug sensitivity evaluation of risk groups

The half-maximal inhibitory concentration (IC50) was analyzed
using the “pRRophetic” package to evaluate the anti-neoplastic drug
sensitivity of patients with HCC in different risk groups (Geeleher
et al., 2014). Correlation analyses between the risk score and
estimated IC50 were conducted and candidates with |cor| >
0.4 were selected as having significantly correlated pathways.

Construction of the nomogram

Univariate andmultivariate Cox regression analyses were performed
to evaluate the predictive efficiency of the risk model. Thereafter, a
calibration curvewas generated to quantify the prediction accuracy of the
nomogram. Decision curve analyses (DCA) were further utilized to
assess the reliability of the nomogram.

Statistical analyses

All the statistical analyses were completed by the R program
(Version 4.0.2). TheWilcoxon rank-sum test and the Student’s t-test
were used to compare the two groups. The Kaplan-Meier method
and the log-rank test were used to compare the survival probability.
p < 0.05 was considered as a statistical significance.
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