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Background: Patients with diabetes have a two-to four-fold increased incidence
of cardiovascular diseases compared with non-diabetics. Currently, there is no
recognizedmodel to predict the occurrence and progression of CVDs in diabetics.

Objective: This work aimed to develop a metabolic biomarker-assisted model, a
combination of metabolic markers with clinical variables, for risk prediction of
CVDs in diabetics.

Methods: A total of 475 patients with diabetes were studied. Each patient
underwent coronary angiography. Plasma samples were analyzed by liquid
chromatography-quadrupole time-of-flight mass spectrometry. Ordinal logistic
regression and random forest were used to screen metabolites. Receiver
operating characteristic (ROC) curve, nomogram, and decision curve analysis
(DCA) were employed to evaluate their prediction performances.

Results: Ordinal logistic regression screened out 34 differential metabolites
(adjusted-false discovery rate p < 0.05) from 2059 ion features by comparisons
of diabetics with and without CVDs. Random forest identified
methylglutarylcarnitine and lysoPC (18:0) as the metabolic markers (mean
decrease gini >1.0) for non-significant CVDs (nos-CVDs) versus normal
coronary artery (NCA), 1,3-Octadiene and 3-Octanone for acute coronary
syndrome (ACS) versus nos-CVDs, and lysoPC (18:0) for acute coronary
syndrome versus normal coronary artery. For risk prediction, the metabolic
marker-assisted models provided areas under the curve of 0.962–0.979 by
ROC (0.576–0.779 for the base models), and c-indices of 0.8477–0.9537 by
nomogram analysis (0.1514–0.5196 for the base models). Decision curve analysis
(DCA) showed that the models produced greater benefits throughout a wide
range of risk probabilities compared with the base model.

Conclusion: Metabolic biomarker-assisted model remarkably improved risk
prediction of cardiovascular disease in diabetics (>90%).
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Introduction

Patients with diabetes are at increased risk of developing
cardiovascular diseases (CVDs), and worse outcomes when CVDs
are present (Haffner et al., 1998; Hayward et al., 2015; Writing Group
et al., 2016). CVD-stimulated heart attack and stroke are by far the
most frequent causes of death in diabetics (Colhoun et al., 2004;

Wannamethee et al., 2004; Hu et al., 2005; Emerging Risk Factors
et al., 2010; Nicholls, 2017). Diabetics with concomitant CVDs can be
categorized into two broad groups (Haffner et al., 1998): those with
non-significant cardiovascular diseases (nos-CVDs) consisting of
non-obstructive coronary atherosclerosis and stable angina, and
(Hayward et al., 2015) those with acute coronary syndrome (ACS)
consisting of unstable angina and acute myocardial infarction.

TABLE 1 Basic information in training and test sets.

Training set p-value Test set p-value

NCA Nos-CVD ACS NCA Nos-CVD ACS

20 69 202 9 51 124

Gender 0.004 0.012

Female 11 36 70 7 31 55

Male 9 33 132 2 20 69

Age,years 0.101 0.152

Median 57.5 62 64 62 64 64

IQR 51.7-66.5 57.0-67.0 57.0-70.0 59.0-65.0 58.0-68.5 59.8-70.3

HH 0.700 0.249

Yes 16 58 171 6 43 108

No 4 11 31 3 8 16

SH 0.361 0.711

Yes 5 14 50 1 10 25

No 15 55 152 8 41 99

HbA1c,% 0.129 0.230

Median 6.4 6.8 7.1 6.7 7.2 7.25

IQR 6.04-7.53 6.22-7.82 6.41-8.42 6.10-6.80 6.60-8.50 6.56-8.53

TG,mmol/l 0.150 0.791

Median 1.2 1.78 1.74 1.23 2.14 1.76

IQR 1.02-2.10 1.13-2.56 1.21-2.70 1.03-1.62 1.45-3.13 1.36-2.78

TC,mmol/l 0.869 0.773

Median 4.61 4.47 4.46 3.78 4.5 4.25

IQR 4.16-5.22 3.66-5.16 3.68-5.33 3.65-4.43 3.81-5.45 3.60-5.02

HDL,mmol/l <0.001 0.346

Median 1.17 1.07 0.97 1.12 0.99 0.99

IQR 0.96-1.46 0.86-1.26 0.83-1.13 0.81-1.28 0.82-1.24 0.83-1.11

LDL,mmol/l 0.239 0.598

Median 2.7 2.63 2.74 2.01 2.45 2.55

IQR 2.21-3.30 2.04-3.12 2.16-3.34 1.94-2.73 2.07-3.30 1.88-3.09

IQR, inter-quartile range; ACS, acute coronary syndrome; nos-CVD, non-significant cardiovascular disease; NCA, normal coronary artery; HH, hypertension history; SH, smoking history;

HbA1c = glycosylated hemoglobin; TG, triglyceride; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
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If the progression of CVDs can be accurately predicted in
patients with diabetes, early intervention may be achieved to
avoid or delay the development of heart diseases. Timely
secondary prevention was shown to improve the prognosis of
CVD-patients with diabetes (Collins et al., 2003; Hu et al., 2005;
Keech et al., 2005). To date, few recognized models have been
developed to predict the presence and progression of CVDs in
diabetics (Gyberg et al., 2015). There is therefore the need for
improved risk stratification tools for diabetics.

Biomarkers continue to be discovered to complement clinical
assessment of disease risk (Dunn et al., 2011; Gouveia et al., 2013;
Menni et al., 2013; Rodriguez-Gallego et al., 2015). Metabolomics is
a rapidly expanding field in system biology to measure alterations of
metabolites and to identify metabolic biomarkers in response to
disease processes. Discovery of metabolite signatures improves early
diagnosis, prognostic prediction, and therapeutic intervention of
CVD (Keech et al., 2005). This study aims to develop metabolic
biomarker-assisted models, combining metabolites and clinical
variables, for risk prediction of CVDs in patients with diabetes.

Methods

Study Population. A total of 475 diabetic patients were recruited
from the Sir Run Run Hospital of Nanjing Medical University
during August 2017 and December 2022. Each patient underwent

coronary angiography for confirmation of presence and severity of
CVDs. Samples were randomly distributed into the training set
(291 individuals) and the test set (184 individuals).

Plasma samples of the patients were collected before the
coronary angiography surgery and quickly stored at −80°C for
further metabolomic analyses. Blood biochemical indices (HbA1c;
triglyceride, TG; total cholesterol, TC; high-density lipoprotein,
HDL; and low-density lipoprotein, LDL) were performed, and
the history of diseases and smoking history were recorded using
questionnaire. Those patients with other cardiac-related diseases,
blood-related disorders, infectious diseases, and malignant tumors
were excluded. All subjects signed the informed consent forms. This
study was approved by the ethics committee of Sir Run Run Hospital
of Nanjing Medical University and complied with the Helsinki
Declaration.

Sample Preparation. To eliminate the protein in the plasma,
150 μL of acetonitrile was added to a 50 μL aliquot of plasma and
vortexed for 10 s. Precipitated protein was subsequently removed by
centrifugation (13,000 rpm, 10 min) at 4°C. Then, 150 μL of the
supernatant was transferred to a tube and dried under a gentle
stream of nitrogen gas at room temperature. Finally, the supernatant
was reconstituted in 100 μL of aqueous acetonitrile (8:2, v/v) for LC/
MS detection.

Quality Control Sample. To ensure data quality for metabolic
profiling, quality control (QC) sample was proceeded. The detail
process of QC referred to Fan et al (Fan et al., 2016).

Metabolomics Study. Liquid chromatographic separation was
conducted using a 1,290 Infinity System (Agilent Technologies,
United States), with 100 × 2.1-mm Zorbax Eclipse Plus 1.8-mm
C18 column maintained at 45°C. The mobile phase consisted of
water with 5 mM ammonium acetate (A) and 10% aqueous
acetonitrile with 5 mM ammonium acetate (B). Gradient
program of elution was: 5%–80% B at 0–7 min, 80%–100% B at
7–12 min, 100% B at 12–13 min, and then back to initial conditions,
and 2 min for equilibration. The sample volume injected was 1 μL
and the flow rate was 0.4 mL/min.

The mass spectrometric detection was performed on an Agilent
6530 Q/TOF-MS system (Agilent Technologies, United States) in
positive mode. The parameters were set as: the fragmental voltage at
100 V, nebulizer gas at 35 psig, capillary voltage at 3500 V, drying
gas flow rate at 10 L/min, and temperature at 300°C. Reference
masses at m/z 121.0509 and 922.0098 were introduced for accurate
mass calibration.

MassHunter Workstation Software (version B.06.00, Agilent
Technologies) was used to convert mass spectrometry data (d) into
data format (.mzdata) files. XCMS package (Scripps Center for
Metabolomics and Mass Spectrometry, La Jolla, California) was used
to conduct the data pre-treatment, including non-linear retention time
alignment, peak discrimination, filtering, alignment, matching, and
identification. The detailed information of the experiment has been
described in previous study (Fan et al., 2016).

Statistical Analysis. Prior to statistical analysis, log2
transformation of metabolite profiles was performed to transform
data approximated to normal distribution. Continuous variables
were described as mean (standard deviation) or median
(interquartile range (IQR)). For validating our findings, the test
sets were essential. At any exploratory stage, follow-up test sets
verified the reliability of the results of training set.

FIGURE 1
Flow Chart of the study. NCA = normal coronary artery; Nos-
CVDs = non-significant cardiovascular diseases; ACS = acute
coronary syndrome; LC-Q-TOF/MS = liquid chromatography-
quadrupole time-of-flight mass spectrometry; FDR = false
discovery rate; MDG = mean decrease gini; HH = hypertension
history; SH = smoking history; HbA1c = glycosylated hemoglobin;
TG = triglyceride; TC = total cholesterol; HDL = high-density
lipoprotein cholesterol; LDL = low-density lipoprotein cholesterol;
ROC = receiver operating characteristic; AUC = area under the curve;
c-index = concordance index; DCA = decision curve analysis.
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TABLE 2 The metabolites identified by both in the training and test sets.

Metabolizes NCA Nos-CVD ACS p-valuea

Median (IQR, μM/L) Median (IQR, μM/L) Median (IQR, μM/L)

bGlycocholic acid 2.64 (2.19–3.52) 1.73 (1.23–2.28) 0.30 (0.20–0.33) 6.32e-44

Decenyl acetate 0.10 (0.08–0.11) 0.11 (0.09–0.15) 0.04 (0.04–0.05) 1.33e-28

3-Octanone 2.24 (1.68–2.38) 2.42 (2.03–3.15) 1.06 (0.79–1.26) 7.33e-25

bLysoPC(18:1) 19.84 (17.41–21.38) 13.32 (10.50–18.15) 7.21 (5.69–7.92) 8.00e-25

bFumaric acid 2.72 (2.60–2.79) 2.64 (2.53–2.77) 2.32 (2.22–2.41) 1.38e-22

Indole-3-ethanol 0.07 (0.07–0.08) 0.05 (0.04–0.05) 0.04 (0.03–0.04) 2.33e-22

1,3-Octadiene 3.92 (2.58–4.29) 3.82 (2.76–5.11) 1.67 (1.42–1.88) 8.89e-22

bLysoPC(18:0) 32.67 (25.13–38.51) 21.58 (15.04–28.92) 13.14 (10.73–15.32) 1.34e-21

Trimethylamine N-oxide 0.22 (0.18–0.31) 0.32 (0.29–0.40) 0.46 (0.40–0.56) 2.72e-19

N-Phenylacetyl-L-glutamine 2.02 (1.84–2.23) 3.27 (2.64–3.82) 5.03 (3.95–6.15) 3.30e-19

bLysoPC(24:0) 0.37 (0.30–0.38) 0.31 (0.28–0.34) 0.22 (0.18–0.27) 1.06e-18

Phosphocholine 3.21 (2.61–3.97) 2.89 (2.25–3.99) 2.01 (1.46–2.42) 1.64e-13

Phosphatidylcholine 0.42 (0.39–0.49) 0.47 (0.38–0.60) 0.29 (0.22–0.35) 3.33e-13

2-Hydroxylauric acid 0.44 (0.38–0.58) 0.56 (0.44–0.67) 0.76 (0.62–0.89) 9.51e-12

PI (20:4/0:0) 1.77 (1.43–2.14) 1.66 (0.97–2.27) 2.81 (2.14–3.43) 2.12e-11

bEthylchenodeoxycholic acid 3.34 (2.30–3.94) 4.08 (3.26–4.62) 2.61 (1.84–3.32) 3.42e-11

bLysoPC(22:6) 7.35 (5.75–9.05) 6.41 (5.40–7.41) 5.09 (4.06–6.12) 1.21e-10

Methylglutarylcarnitine 0.09 (0.07–0.09) 0.11 (0.10–0.13) 0.08 (0.06–0.09) 6.35e-10

Creatine 40.20 (35.36–46.15) 34.29 (27.22–42.28) 47.40 (39.14–55.41) 6.43e-09

bValine 245.40 (211.10–250.80) 230.10 (220.00–247.60) 208.80 (192.40–223.40) 1.02e-08

Undecan 3-ol 0.16 (0.14–0.20) 0.15 (0.13–0.18) 0.12 (0.10–0.15) 1.54e-08

bLysoPC(20:3) 8.65 (6.26–12.12) 9.12 (7.34–10.72) 6.72 (5.56–7.89) 2.06e-08

LysoPE (18:3) 0.71 (0.65–0.78) 0.59 (0.50–0.70) 0.49 (0.38–0.56) 1.47e-07

bLysoPE (16:0) 5.75 (4.16–6.51) 5.16 (4.78–6.17) 4.23 (3.45–5.26) 2.26e-07

bPhytosphingosine 2.93 (2.83–3.08) 3.30 (2.17–3.79) 4.49 (3.28–5.32) 9.91e-07

bGlutarylcarnitine 0.30 (0.26–0.36) 0.44 (0.31–0.53) 0.29 (0.22–0.35) 1.15e-05

bSuccinic acid 14.92 (13.46–18.43) 15.18 (13.27–16.95) 13.60 (10.92–15.59) 1.04e-04

2-Nonynoic acid 0.81 (0.75–0.85) 0.59 (0.54–0.72) 0.56 (0.48–0.64) 1.41e-04

2α-Methyl-5α-androstane-3-17-dione 0.46 (0.34–0.50) 0.22 (0.17–0.27) 0.11 (0.10–0.13) 1.41e-04

PG (15:0/14:0) 6.67 (6.19–7.09) 6.35 (5.78–6.94) 5.76 (5.04–6.61) 3.01e-04

bγ-Aminobutyric acid 2.67 (2.52–2.99) 2.63 (2.22–2.92) 2.08 (1.66–2.75) 8.23e-04

Docosahexaenoic acid 1.66 (1.33–2.69) 2.16 (1.81–2.71) 1.69 (1.23–2.19) 9.39e-04

bLysoPE (18:1) 0.64 (0.61–0.93) 0.67 (0.56–0.85) 0.59 (0.47–0.69) 2.09e-03

LysoPE (22:5) 0.46 (0.44–0.49) 0.44 (0.37–0.58) 0.38 (0.29–0.48) 3.66e-03

bMeans that the metabolites were tentatively identified with reference compounds.
aOrdinal logistic regression adjusted by false discovery rate (FDR). IQR, inter-quartile range; ACS, acute coronary syndrome; nos-CVD, non-significant cardiovascular disease; NCA, normal

coronary artery.

Interval. ACS, acute coronary syndrome; nos-CVD, non-significant cardiovascular disease; NCA, normal coronary artery.
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The false discovery rate (FDR) using Benjamini and Hochberg
method was calculated to address the multiple test adjustment. All
tests were two-sided, and p < 0.05 were considered statistically
significant unless stated otherwise. All analyses were conducted
using R Software Version 3.3.1.

Model Development. Potential biomarkers were selected from
metabolites profile with the criterion of adjusted FDR p < 0.05 by
ordinal logistic regression presented both in the training and test
sets. The mean decrease gini (MDG) of these metabolites was then
calculated using random forest. Non-condition logistic regression
was employed to get the area under the curve (AUC) of each model.
The discriminative abilities of the multivariate models were assessed
by Harrell’s concordance index (c-index), as reported previously
(Harrell et al., 1982). Internal bootstrap validation, bias-corrected
95% confidence intervals for odds ratios in the final model, and
bootstrap optimism corrected c-index were calculated using
1,000 re-samples (Chen and George, 1985). Finally, decision

curve analysis (DCA) was applied to evaluating clinical benefit of
the models.

Results

From a total of 475 diabetic patients enrolled in the study, 291 were
randomly selected as the training set, including 20 NCA subjects,
69 nos-CVD patients, and 202 ACS patients. To further validate the
results of the training set, the other 184 patients were served as the test
set (9 NCA, 51 nos-CVDs, and 124 ACS patients). The clinical
characteristics of the patients are summarized in Table 1.

Compared with NCA and nos-CVDs groups, the ACS patients in
the two sets showed an increased trend in HbA1c and triglyceride (TG)
levels, and a decreased trend in high-density lipoprotein (HDL) level,
(Table 1). Additionally, we found that the HbA1c levels positively
correlated with CVDs progression (Supplementary Figure S1;

FIGURE 2
The variable importance measure (VIM) of 34 metabolites by random forest for normal coronary artery (NCA) versus non-significant cardiovascular
disease (nos-CVD) in training set (A) and in test set (B), and for nos-CVDs versus acute coronary syndrome (ACS) in training set (C) and in test set (D). The
metabolites were ranked based on a decreasing order in mean decrease gini (MDG).
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Figure 1A), and individuals with high HbA1c levels had much higher
CVD risk in the combined set (Supplementary Figure S2; Figure 1B).

The flowchart of the risk prediction model is presented in Figure 1.
Firstly, ordinal logistic regression and random forest were used to screen
the most important metabolic markers for the model development.
Then receiver operating characteristic (ROC) curve, nomogram, and
DCA were used to evaluate their risk prediction performances.

A total of 2,059 positive-mode ions were detected. The ordinal
logistic regression was employed to identify the significant ion
signatures among NCA, nos-CVDs, and ACS. Forty-two
metabolites with adjusted-FDR p < 0.05 were identified to be
associated with CVDs progression in the training set
(Supplementary Table S1). Importantly, 34 of the 42 metabolites
were further confirmed in the test set by adjusted-FDR p < 0.05, as
shown in Table 2. Identification of the metabolites was performed by
comparison of their MS data with Human Metabolome Database
(HMDB), and 15 of the 34 metabolites were further confirmed with
reference compounds. Calibration curves were used to determine
the concentrations of the 34 metabolites in 475 plasma samples. For
the metabolites without reference compounds, relative
quantification was performed using calibration curves of
metabolites close to the analyte.

To estimate the variable importance measure (VIM) of these
34 metabolites, the random forest model was utilized to calculate
their mean decrease gini (MDG). The metabolites with MDG
values > 1.0 present both in the training and test sets were
chosen as the metabolic biomarkers for further model
development. Methylglutarylcarnitine and lysoPC (18:0) were
identified for NCA versus nos-CVDs (Figures 2A, B), 1,3-
Octadiene and 3-Octanone for nos-CVDs versus ACS (Figures
2C, D), and lysoPC (18:0) for NCA versus ACS (Supplementary
Figure S2).

Clinical Roc Evaluation. Using the clinical variables (gender, age,
hypertension history, smoking history, HbA1c, TG, TC, HDL, and
LDL), we developed a base model by the logistic regression to

distinguish the CVD stages in diabetic patients. Metabolic
biomarker-assisted models, combining metabolic biomarkers
from the random forest with clinical variables, were established
for enhancing risk prediction of CVDs in diabetics. The detailed
variables of base and metabolic marker-assisted models are listed in
the Supplementary Table S2.

The difference of clinical diagnosis between the models was
evaluated by logistic regression models in the training set. Compared
with the base models, the metabolic marker-assisted models showed
remarkably increased areas under the curve (AUC). The AUC
increased from 0.662 (95% CI: 0.515–0.809) to 0.919 (95% CI:
0.849-0.989, p = 2.26e-4) for NCA versus nos-CVDs (Figure 3A),
from 0.662 (95% CI: 0.592–0.741) to 0.998 (95% CI: 0.996-1.00, p =
1.10e-18) for nos-CVDs versus ACS (Figure 3B), and from 0.779
(95% CI: 0.669–0.889) to 0.987 (95% CI, 0.969-1.00, p = 3.19e-4) for
NCA versus ACS (Supplementary Figure S3).

The test set confirmed the findings of the training set. The AUC
significantly improved from 0.595 (95% CI: 0.407–0.782) to 0.962
(95% CI: 0.849-0.998, p = 4.97e-4) for NCA versus nos-CVDs
(Figure 3A), from 0.576 (95% CI: 0.485–0.667) to 0.979 (95% CI:
0.951-1.00, p = 1.14e-17) for nos-CVDs versus ACS (Figure 3B), and
from 0.745 (95% CI: 0.553–0.937) to 0.962 (95% CI, 0.885-1.00, p =
3.26e-3) for NCA versus ACS (Supplementary Figure S3).

Development Of Nomograms. The nomograms for the prediction
of CVDs stages were performed. In the base models, the c-indices were
0.151 (95% CI: 0.285–0.502) for NCA versus nos-CVDs, 0.519 (95% CI:
0.467–0.597) for NCA versusACS, and 0.275 (95% CI: 0.238–0.319) for
nos-CVDs versus ACS (Supplementary Table S3). The c-indices of the
metabolic-assisted models were significantly improved, reaching up to
0.848 (95% CI: 0.793–0.880) for NCA versus nos-CVDs (Figure 4A),
0.954 (95%CI: 0.947–0.960) for nos-CVDs versusACS (Figure 4B), and
0.952 (95% CI: 0.942–0.966) for NCA versus ACS (Supplementary
Figure S4).

DCA Performances. The DCA was employed for the
comparison of clinical net benefits between the models.

FIGURE 3
Receiver operating characteristic (ROC) curve analyses of base models and metabolic merker-assisted models (A) Area under the curve (AUC) for
discriminating normal coronary artery (NCA) from non-significant cardiovascular diseases (nos-CVDs) (B) AUC estimation for discriminating nos-CVDs
from acute coronary syndrome (ACS).
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Compared with the base models, metabolic marker-assisted models
showed greater benefits throughout a wide range of risk
probabilities: 33%–99% for NCA versus nos-CVD (Figure 5A),
2%–98% for nos-CVDs versus ACS (Figure 5B), and 11%–96%
for NCA versus ACS in Supplementary Figure S5.

Discussion

Diabetes is a main risk factor for CVDs, and promotes the
progression of CVDs. Early screening of CVDs from diabetic
patients is important to improve the patients’ prognosis. In this

study, we constructed a promising predictive model consisting of
nine clinical parameters and four metabolic markers for early
identification of nos-CVDs and ACS in diabetics. Importantly,
we found that the metabolic biomarkers significantly enhanced
the model discrimination, leading to a greater improvement of
clinical net benefits after addition to the base model.

The development and progression of CVDs involve many
factors, including gender, age, exposure to adverse
environmental conditions, genomic variations and alterations
in the metabolome. Clinical risk models added with biomarkers
have been previously shown to be superior to the clinical risk
models alone (deFilippi et al., 2010; Schnabel et al., 2010;

FIGURE 4
Nomogram depicting cardiovascular disease (CVD) risk among diabetics (A) Risk prediction for normal coronary artery (NCA) versus non-significant
cardiovascular diseases (nos-CVDs) by metabolic marker-assisted model (B) Risk prediction for nos-CVDs versus acute coronary syndrome (ACS) by
metabolicmarker-assistedmodel. To obtain the predicted probability of CVD risk after diagnosis of diabetes, the patient values were located on each axis.
A vertical line was drawn upward to the ‘Points’ axis to determine the points of the variable. The points for all variables were summed and located on
the ‘Total points’ axis. A vertical line was drawn down to the ‘Nos-CVDs or ACS risk’ axis to find the patient’s probability of different CVDs type.
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Velagaleti et al., 2010). In this work, four metabolites
(methylglutarylcarnitine, lysoPC (18:0), 1,3-Octadiene, and 3-
Octanone) verified from two sets remarkably increased the
predictive abilities of the models for the stages of CVDs.
Methylglutarylcarnitine, a derivative of a leucine, increased in
nos-CVDs patients compared with the NCA group. Leucine is a
nutritionally essential branched-chain amino acid (BCAA) in
animal nutrition and is associated with energy metabolism
(glucose uptake, mitochondrial biogenesis, and fatty acid
oxidation) (Duan et al., 2016). Harald et al. reported leucine
to be a cardiometabolic risk marker in a cross-sectional study
(Mangge et al., 2016). The relationship between lysoPC (18:0)
and CVDs have been widely investigated. High lysoPC (18:0)
levels can decrease the risk of developing CVDs for diabetic
patients (Herrmann et al., 2009; Stegemann et al., 2014). 1, 3-
Octadiene and 3-Octanone can significantly increase the
predictive efficiency of the model for nos-CVD versus ACS
among the patients. To our knowledge, their roles in CVDs
have been less studied.

To capture significant metabolites for the prediction model, a series
of statistical approaches were performed. Ordinal logistic regression
model takes the rank-order of the outcomes into consideration, and can
effectively reduce the risk of type I error than pairwise comparison (de
Havenon et al., 2017). Metabolites associated with the CVD process
were screened out. Additionally, the random forest, taking advantage of
two powerful machine learning techniques (bagging and random
features selection) (Michaelson and forestSV, 2012; Van Peer et al.,
2017), eliminated redundant features and confirmed the most
important metabolites. DCA was employed to ultimately elucidate
the clinical significance of the metabolic marker-assisted models in
comparison to base models. It showed a wide range of clinical risk
probability. Our predicted models can provide help in the early
screening of CVDs (>96%), especially for ACS (>98%). The results
indicated that cooperation of clinical features and metabolites can
accurately detect the stages of CVDs in diabetics.

Study limitations

Firstly, we used diabetic patients with normal coronary after
angiography examination as the control NCA group, and the sample

size is small. Secondly, because of the small number of the NCA
subjects, the age and gender of different groups were not matched.
Thirdly, because of commercial unavailability of reference
compounds, identification of metabolites is still a challenge.
Fourthly, we used an untargeted metabolomics for screening of
significant metabolites, and a targeted metabolomics using isotope
internal standard for accurate quantification in complex plasma
matrices is recommended in the future. Fifthly, future prospective
confirmation in independent cohorts is warranted.

Conclusion

Metabolic profiling characterized CVD progression in patients
with diabetes. Metabolic markers-assisted model remarkably
improved risk prediction of cardiovascular disease (>90%).
Timely secondary prevention will be thus initiated for early
intervention and benefits.
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