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Introduction: Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), gliflozins,
play an emerging role for the treatment of heart failure with reduced left
ventricular ejection fraction (HFrEF). Nevertheless, the effects of SGLT2i on
ventricular remodeling and function have not been completely understood yet.
Explainable artificial intelligence represents an unprecedented explorative option
to clinical research in this field. Based on echocardiographic evaluations, we
identified some key clinical responses to gliflozins by employing a machine
learning approach.

Methods: Seventy-eight consecutive diabetic outpatients followed for HFrEF
were enrolled in the study. Using a random forests classification, a single
subject analysis was performed to define the profile of patients treated with
gliflozins. An explainability analysis using Shapley values was used to outline
clinical parameters that mostly improved after gliflozin therapy and machine
learning runs highlighted specific variables predictive of gliflozin response.

Results: The five-fold cross-validation analyses showed that gliflozins patients can
be identified with a 0.70 ± 0.03% accuracy. The most relevant parameters
distinguishing gliflozins patients were Right Ventricular S’-Velocity, Left
Ventricular End Systolic Diameter and E/e’ ratio. In addition, low Tricuspid
Annular Plane Systolic Excursion values along with high Left Ventricular End
Systolic Diameter and End Diastolic Volume values were associated to lower
gliflozin efficacy in terms of anti-remodeling effects.

Discussion: In conclusion, a machine learning analysis on a population of diabetic
patients with HFrEF showed that SGLT2i treatment improved left ventricular
remodeling, left ventricular diastolic and biventricular systolic function. This
cardiovascular response may be predicted by routine echocardiographic

OPEN ACCESS

EDITED BY

Antonio Lax,
University of Murcia, Spain

REVIEWED BY

Vladimir Tesar,
Charles University, Czechia
Nafrialdi Nafrialdi,
University of Indonesia, Indonesia

*CORRESPONDENCE

Antonella Liantonio,
antonella.liantonio@uniba.it

†These authors have contributed equally
to this work and share first authorship

RECEIVED 27 February 2023
ACCEPTED 26 May 2023
PUBLISHED 09 June 2023

CITATION

Mele M, Imbrici P, Mele A, Togo MV,
Dinoi G, Correale M, Brunetti ND,
Nicolotti O, De Luca A, Altomare CD,
Liantonio A and Amoroso N (2023),
Short-term anti-remodeling effects of
gliflozins in diabetic patients with heart
failure and reduced ejection fraction: an
explainable artificial
intelligence approach.
Front. Pharmacol. 14:1175606.
doi: 10.3389/fphar.2023.1175606

COPYRIGHT

© 2023 Mele, Imbrici, Mele, Togo, Dinoi,
Correale, Brunetti, Nicolotti, De Luca,
Altomare, Liantonio and Amoroso. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 09 June 2023
DOI 10.3389/fphar.2023.1175606

https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1175606/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1175606&domain=pdf&date_stamp=2023-06-09
mailto:antonella.liantonio@uniba.it
mailto:antonella.liantonio@uniba.it
https://doi.org/10.3389/fphar.2023.1175606
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1175606


parameters, with an explainable artificial intelligence approach, suggesting a lower
efficacy in case of advanced stages of cardiac remodeling.

KEYWORDS

heart failure, gliflozins, sodium-glucose cotransporter 2 inhibitor, explainable artificial
intelligence, machine learning

1 Introduction

Heart failure (HF), a clinical syndrome due to increased intra-
cardiac pressure and/or inadequate cardiac output, is one of the major
causes of death and hospitalization in diabetic patients (Shah et al., 2015;
Koudstaal et al., 2017; McDonagh et al., 2021). The cornerstone of
medical treatment for HF is represented by beta-blockers (BB),
angiotensin-converting enzyme inhibitors (ACEi), angiotensin
receptor-neprilysin inhibitors (ARNI), and mineralocorticoid receptor
antagonists (MRA) (McDonagh et al., 2021; Mascolo et al., 2022).

Gliflozins, which act as sodium-glucose cotransporter type
2 inhibitors (SGLT2i), are a new class of blood glucose-lowering
medications that block renal glucose reabsorption in the proximal
tubule, thereby increasing urinary glucose excretion and improving
glycemic control (Steen and Goldenberg, 2017). Initially approved for
the treatment of the type 2 diabetes mellitus (T2DM), SGLT2i provided
a reduction in cardiovascular (CV) outcomes (McDonagh et al., 2021).
The EMPA-REG OUTCOME trial with empagliflozin, the CANVAS
Programwith canagliflozin, the DECLARE-TIMI 58 with dapagliflozin,
and real-life data from the CVD-Real Study demonstrated that SGLT2i
may reduce CV events and improve both mortality and hospitalization
rates in diabetic patients (Zinman et al., 2015; Kosiborod et al., 2017;
Neal et al., 2017; Wiviott et al., 2018). More recently, results from the
EMPEROR-Reduced trial with empagliflozin and results from DAPA-
HF trial confirmed the reduction of CV death, HF hospitalization, and
worsening in patients with reduced left ventricular ejection fraction
(HFrEF, left ventricular ejection fraction (LVEF) ≤ 40%), regardless of
the presence or absence of diabetes (Packer et al., 2017;McMurray et al.,
2019). For these reasons, in the HF 2021 European Society of
Cardiology Guidelines, gliflozins have been introduced for the
treatment of patients affected by HFrEF independently of diabetes
(McDonagh et al., 2021).

Despite robust evidence for the CV benefit of SGLT2i, some
important questions remain unanswered. Among them, the effect on
cardiac remodeling and function, in particular with regards to the
right ventricle (RV), has not been completely established. Moreover,
the best timing to start gliflozin treatment and parameters possibly
predicting clinical response have not been sufficiently evaluated.

Explainable artificial intelligence (XAI) and machine learning
(ML) methods have achieved remarkable progress, and their use
has increased significantly over the last few years in CV medicine
(Mathur et al., 2020; Romiti et al., 2020; Cheng et al., 2021; Togo et al.,
2023). Several potential applications ofML inHF have been described,
including risk stratification, early diagnosis, optimal indications for
specific treatments, and understanding drugs molecular mechanisms
of action (Iborra-Egea et al., 2019; Lorenzoni et al., 2019; Bayes-Genis
et al., 2021; Sermesant et al., 2021; Yang et al., 2022).

We, therefore, aimed at applying an ML approach in order to
evaluate the short-termCV effect of gliflozins in diabetic patients with
HFrEF in terms of LV and RV remodeling and function detected with

echocardiography, ultimately disclosing the echocardiographic
variables as more effective in predicting the CV response to gliflozins.

2 Materials and methods

2.1 Data sources

From 28 January 2019 to 9 March 2021, we enrolled
78 consecutive diabetic outpatients followed up for HFrEF at
Policlinico Riuniti University Hospital (Foggia, Italy). Each
patient received evidence-based pharmacological treatment
according to the European Society of Cardiology guidelines for
treatment of chronic heart failure (McDonagh et al., 2021),
clinical decision, individual tolerance, and contraindications.
Thirty-eight patients were also treated with SGLT2i. Clinical
data, echocardiographic, biochemical, and pharmacological
parameters (for a total of 66 parameters) were recorded from
all patients at baseline and at 4–6 month follow-up (Figure 1).
Based on the European Society of Cardiology Guidelines for the
Management of HF (McDonagh et al., 2021), such a range of time
is considered appropriate to assess the short-term efficacy
associated with drug administration. Echocardiographic data
analysis was performed by the same fully accredited operator
using ultrasound device Philips EPIQ 7c (Philips, Amsterdam,
Netherlands). Patients without diabetes and with preserved or
mid-reduced left ventricle ejection fraction were excluded from
the analysis. The informative content provided by the available
features was then exploited by means of a random forest (RF)
classifier and a SHAP (SHapley Additive exPlanations)
explainability analysis. The framework is schematically
presented in Figure 1.

2.2 Random forest classification and feature
importance

To evaluate the informative content of the available clinical
features, a RF classifier was employed (Biau and Scornet, 2016).
This supervised learning algorithm exploited an ensemble of tree
classifiers, each one grown with different features and diverse
partitioning of the training set, to achieve a statistically robust
classification. In this respect, a subset of the available training
examples was first randomly selected to set the model parameters,
while those left out, namely, out-of-bag observations, were used instead
to evaluate the model performances and minimize overfitting; the
square root of available features was randomly selected to increase the
branching of the decisional tree at each split, and the operation was
repeated until all available examples were assigned to a given class. This
procedure was optimized by using Gini’s index, a metric assessing the
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node purity, i.e., the separation between the classes. The goal was to
determine determining the optimal cuts by discriminating the classes
on the basis of the available features. In this respect, several different
tree classifiers were trained to achieve statistical robustness, with this
task intrinsically related to the number observations and of the
randomly selected features. Final decisions were taken by majority
vote, across all generated trees.

The number of trees within the forest and the number of features
to pick represented the most important parameters to be tuned for
the RF model. The internal validation provided by out-of-bag
observations, along with the ease of tuning, made this modeling
approach a first choice for many different applications. Moreover, it
was worth saying that RF was capable of achieving state-of-the-art
performances that were often comparable even with more
sophisticated and computationally demanding algorithms, such as
neural networks. Finally, RF provided an embedded way to measure
feature importance, thus providing a basic but very effective way to
understand which features best contributed to the model’s accuracy.

Each time a feature was used to split a node, Gini importance
measured the purity of the node, i.e., how well that feature was able
to separate the available classes. This measure was averaged across
the forest and used to rank the importance of each feature based on
its impact on node purity. However, such an approach returned an
overall view of the feature contribution to the model accuracy, and
no information could be derived about a single decision.
Noteworthy, the XAI paradigm was employed to make the
classifier’s decision more transparent and desirable.

2.3 Explainability according to Shapley’s
values

In the present work, the Shapley paradigm was adopted (Shapley,
2016) to derive classification models that are explainable and easy to
interpret. Such approach was based on the idea that all available
features behaved like the players of a team (i.e., the classifier), whose
final score summarized the goals of each player. Likewise, the
contribution of each feature was modeled through a linear

relationship so that the final score assigned by the model to each
prediction could be explained as the sum of the contributions of all the
features. Thus, this framework not only provided a global feature
importance evaluation (as RF already did) but, more importantly, gave
the option to “locally” inspect the model decisions and explain how
they were reached. According to the SHAP (SHAP website: https://
shap.readthedocs.io/en/latest/index.html) package implemented in
Python, we evaluated for each feature j the SHAP value:

SHAPj o( ) � ∑
c: j∈c

c| | × F
c| |( )[ ]

−1
pc o( ) − pc−j o( )[ ],

with F being the total number of input features, c a subset of the
features, and |c| their number; an observation was a vector o whose
components were the input features, pc(o) the prediction yielded by
the features in c, and pc-j(o) the prediction obtained without the j
feature. Thus, the importance of each feature on the model
prediction was evaluated by averaging all possible differences.

2.4 Performance evaluation

The presented machine learning and explainability analyses were
carried out using cross-validation to ensure unbiased performance
and Shapley value estimates. In particular, we adopted a repeated five-
fold cross-validation for analyses concerning the whole set of patients
to assess the SGLT2i effectiveness. For this classification task, the
classes to predict were the one of patients treated with gliflozins
against the one including patients undergoing standard treatment.
Instead, a leave-one-out approach was used for the cohort of only
treated patients whose size was limited; here, the labels distinguished
the patients treated with gliflozins from those who responded to from
treatment in a different way from those who were standardly treated.
To this aim, we performed several cross-validation rounds of the
previous task and counted the number of times when patients treated
with gliflozins were correctly classified and when they were
misclassified; this measure yielded an operative definition of
“responders” and “not-responders.”

FIGURE 1
Overview of themethodological approach: (i) the enrolled patients are represented by a set of clinical parameters; (ii) a Random Forest (RF) classifier
is then used for classification purposes; and (iii) finally, an explainability analysis is carried out by means of a SHAP analysis.
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TABLE 1 List of patient features included in the database.

Clinical

Age (years) 67.9 ± 1

Male (%) 84.6

Body weight (kg) 85.4 ± 2

Time from diabetes mellitus diagnosis (years) 9.1 ± 0.6

SBP (mmHg) 118.7 ± 2.4

DBP (mmHg) 71.5 ± 1.2

Heart rate (bpm) 69.7 ± 1.4

NYHA class ≥2 (%) 96.1

Medical history

Arterial hypertension (%) 75.6

Anemia, Hb < 11 (%) 6.4

COPD (%) 21.8

Atrial fibrillation/flutter (%) 39.7

Medications

ACEi/ARB/ARNI (%) 89.7

Beta-blockers (%) 92.3

MRA (%) 47.4

Diuretics (%) 89.7

Statins/fibrate (%) 88.5

Allopurinol (%) 37.2

Ivabradine/ranolazine (%) 47.4

Digoxin (%) 15.4

Amiodarone (%) 10.2

Antiplatelet drugs (%) 28.2

Anticoagulant drugs (%) 51.3

Warfarin/acenocoumarol (%) 16.6

Apixaban (%) 12.8

Dabigatran etexilate (%) 7.7

Rivaroxaban (%) 12.8

Edoxaban (%) 1.2

Other antidiabetic drugs (%) 62.8

Insulin (%) 38.5

Laboratories

HbA1c (%) 8.0 ± 0.2

SCr (mg/dL) 1.1 ± 0.03

MDRD-based eGFR (mL/min) 72.5 ± 2.3

CRP (mg/L) 2.9 ± 0.3

Ca-125 (U/mL) 22.4 ± 5.4

(Continued in next column)

TABLE 1 (Continued) List of patient features included in the database.

NT-pro-BNP (pg/mL) 1340.6 ± 334.5

CKD stage ≥2 (%) eGFR (mL/min) 91.02 72.5 ± 2.3

ESR (mm/h) 21.37 ± 2.7

Echocardiographic

LVEDD (mm) 56.7 ± 0.8

LVESD (mm) 47.6 ± 0.9

IVS (mm) 12.0 ± 0.2

LVPW (mm) 10.8 ± 0.2

LV Mass (g) 271.8 ± 8.3

RWT (ratio) 0.4 ± 0.01

LVMI (g/m2) 139.1 ± 3.8

LVEF (%) 38.9 ± 0.9

EDV (mL) 151.9 ± 7.6

ESV (mL) 97.9 ± 6

MR ≥ 2 (%) 33.3

LAD (mm) 44.3 ± 0.8

LA Area (mm2) 22.7 ± 0.7

LAVI (mL/m2) 36.8 ± 1.6

LAV (mL) 72.8 ± 3.5

TR ≥ 2 (%) 19.2

TAPSE (mm) 18.7 ± 0.4

RV S’ (cm/s) 10.7 ± 0.3

sPAP (mmHg) 30.5 ± 1.0

E/A 1.7 ± 0.3

E/è 14.2 ± 1

E wave (cm/s) 80.2 ± 3.6

A wave (cm/s) 86.6 ± 3.6

EDT (ms) 206.1 ± 11.9

è (cm/s) 7.1 ± 0.2

s’ (cm/s) 7.6 + 0.6

LV GLS (%) −10.4 ± 0.3

Systolic blood pressure- SBP, Diastolic blood pressure- DBP, beats per minute- BPM, New

York Heart Association- NYHA, chronic obstructive pulmonary disease- COPD, angiotensin-

converting enzyme inhibitors- ACEi, angiotensin II, receptor blockers- ARB, angiotensin

receptor-neprilysin inhibitors- ARNI, mineralcorticoid receptor antagonist- MRA, glycated

hemoglobin- HbA1c, serum creatinine- SCr, Modification of Diet in Renal Disease- MDRD,

estimated glomerular filtration rate- eGFR, C-reactive protein- CRP, plasma N-terminal pro-

brain natriuretic peptide- NT-pro-BNP, chronic kidney disease- CKD, erythrocyte

sedimentation rate- ESR, left ventricular end diastolic diameter- LVEDD, left ventricular end-

systolic diameter- LVESD, inter-ventricular septum thickness- IVS, left ventricular posterior

wall thickness- LVPW, left ventricular mass- LV, mass, relative wall thickness- RWT, left

ventricular mass index- LVMI, left ventricular ejection fraction- LVEF, end diastolic volume-

EDV, end systolic volume- ESV, mitral regurgitation- MR, left atrial diameter- LAD, left

atrium area- LA area, left atrium volume index- LAVI, left atrium volume- LAV, tricuspid

regurgitation- TR, tricuspid annular plane systolic excursion- TAPSE, right ventricular systolic

excursion velocity- RV S′, systolic pulmonary artery pressure- sPAP, E wave deceleration rate-

EDT, left ventricular global longitudinal strain- LV GLS.

Frontiers in Pharmacology frontiersin.org04

Mele et al. 10.3389/fphar.2023.1175606

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1175606


Classification performance was evaluated in terms of accuracy,
sensitivity, and specificity:

Accuracy � TP + TN

TP + TN + FP + FN

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

While accuracy globally evaluated the model performance,
sensitivity and specificity characterized the model behavior with
respect to the positive class (patients treated with gliflozins) and the
negative class (patients not treated with gliflozins). Cross-validation
analyses allowed us to estimate an average value for each adopted
metric, while the related uncertainties were reported in terms of
standard deviations.

3 Results

3.1 Are patients treated with gliflozins
distinguishable from non-treated ones? A
random forest analysis

We enrolled 78 consecutive diabetic outpatients followed up
for HFrEF at Policlinico Riuniti University Hospital (Foggia,
Italy), of whom 38 were treated with SGLT2i. The main
demographics, clinical, and biochemical characteristics, as well
as treatments, of these patients are listed in Table 1. By using an
RF model, we initially evaluated, on the available cohort of
78 patients and based on clinical, echocardiographic,
biochemical, and pharmacological parameters, if patients
treated with gliflozins could be distinguished from non-treated
ones at baseline and at 4–6 month follow-up. We, therefore,
trained two different RF models to discriminate patients

treated with gliflozins (positive class “1”) from patients
undergoing standard treatment (negative class “0”): the first
reporting baseline features (i.e., before treatment); the second
concerned with follow-up (i.e., after treatment with gliflozins). A
synoptic view is shown in Figure 2.

At the baseline, classification accuracy was 0.52 ± 0.03, a value
comparable with chance for a binary classifier. The same
considerations held true for sensitivity 0.53 ± 0.03 and specificity
0.52 ± 0.03. As far as follow-up was concerned, classification
performance showed a significant improvement for all the
metrics: accuracy 0.70 ± 0.03, specificity 0.73 ± 0.05 and
sensitivity 0.65 ± 0.04. Therefore, according to the three metrics,
after gliflozins treatment, patients that were undistinguishable at the
baseline showed significant differences. As the only difference
between the two cohorts at the follow-up was the clinical
treatment, it is reasonable to conclude that gliflozins affected the
patients’ conditions differently from standard treatments.

The unbalancing between sensitivity and specificity suggests
that the classification model does not equally perform on the two
classes; in particular, higher specificity values should indicate that
the majority of misclassified examples belong to the class of
treated patients. A visual confirmation was obtained by
examining the histogram of the average cross-validation scores
shown in Figure 3.

A subject belonging to the ‘1’ class (treated) is correctly classified
if the model assigns a score greater than 0.5; analogously, a score
lower than 0.5 is assigned to a patient in the ‘0’ class (not treated).
Thus, for a perfect model, the score distributions should ideally be
separated and show the so-called bathtub distribution. In our case,
the distribution of scores among treated patients showed a huge tail
below the 0.5 threshold. Accordingly, within the SGLT2i treated
group, we labeled the 16 patients responding to treatment as
‘responders’ to distinguish them from the remaining 22 called
‘not-responders.’ Conversely, only few examples of the non-
treated patients presented scores exceeding the threshold on average.

FIGURE 2
From left to right: accuracy, sensitivity, and specificity boxplots comparing baseline and follow-up classification performance. For each metric, the
results obtained through 100 repeated five-fold cross-validations are reported. According to all threemetrics, after gliflozin treatment, patients whowere
undistinguishable at baseline show significant differences.
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3.2 What are the features that allow us to
distinguish treated from untreated patients
at FU? A SHAP explanation and analysis

Previous results demonstrated that the gliflozin treatment made
patients much easier to distinguish from baseline to follow-up. Thus, we
wondered which features were driving the classifier’s decisions. A first
answer to this question could be given from a global perspective by
inspecting the average SHAP values of the classificationmodel (Figure 4).
In our model, the most important features able to discriminate between
treated and untreated patients were the echography-related ones, listed in
order of relevance in Figure 4. Global explainability ranks the features
according to their average importance in the model’s decisions. As a
difference to classical feature importance rankings, the SHAP paradigm
allows one to directly interpret how features contribute. For example, the
most important feature for the RF model was the ‘RV systolic excursion
velocity’ (RV S’) variable. High values of this feature are strong predictors
of survival for HFrEF patients. Interestingly, by visual inspection of the
SHAP graph, it was evident that high RV S’ values characterized treated
patients. On the contrary, the second important variable, left ventricular
end systolic diameter (LVESD), had low values for treated patients and
high values for non-treated ones, as expected by an efficacious HF
treatment.

3.3 Which are the features that allow us to
distinguish responders from non-
responders at baseline?

Previous analyses demonstrated that, based on clinical features,
treated patients could be distinguished by RF. Nevertheless, there were
some misclassified cases (labeled as non-responders) especially among
the treated patients. Thus, we considered only the 38 treated patients
representing the ‘1’ class and distinguished those misclassified among

the patients on average correctly classified (responders) (average
classification score greater than 0.5). As the number of such cohorts
was limited, for the subsequent analyses, we adopted a leave-one-out
cross-validation framework. We observed that using only baseline
features, it was possible to accurately (74%) predict which subjects
would have successfully responded to gliflozins treatment. Even in this
case, we performed a global SHAP explanation of the model (Figure 5).

Within the global feature importance evaluation, the most
important feature to distinguish responders from non-responders
was tricuspid annular plane systolic excursion (TAPSE), a reliable
index of the right ventricle systolic function (McDonagh et al.,
2021). Concerning the other variables, among the top ten,
echocardiographic variables kept playing a relevant role. In
general, low values of ‘TAPSE’ and high values of the
remaining features, such as heart rate (HR), left ventricular end
systolic diameter, end diastolic volume (EDV), left ventricular
mass (LV Mass), and left atrial volume (LAV), characterize non-
responders.

4 Discussion

In this study, we aimed at assessing the short-term effect of
gliflozins on cardiac remodeling and function and revealing possible
predictors of clinical response using XAI algorithms in a population
of diabetic patients with HFrEF. Beyond a positive effect on LV
remodeling and performance, we detected a beneficial effect on RV
systolic function.

In addition to glycemic control, several mechanisms have been
hypothesized to explain the beneficial CV effects of gliflozins (Verma
andMcMurray, 2018). Plausible assumptions included improvement in
volume status, natriuresis, expansion of red blood cell mass, and
myocardial energetics (Heerspink et al., 2016; Lytvyn et al., 2017;
Verma and McMurray, 2018). Furthermore, a direct effect of
gliflozins on LV remodeling, in particular on LV mass, volumes, and
systolic and diastolic functions, has been reported (Verma et al., 2019;
Salah et al., 2022). However, there was less convincing evidence on the
impact of gliflozins on RV parameters. In a post hoc analysis,
empagliflozin showed no significant impact on RV volumes or mass
index in T2DMpatients with coronary artery disease (Sarak et al., 2021).
On the other hand, in the randomized, multicenter, double-blind,
placebo-controlled trial EMBRACE-HF, empagliflozin resulted in a
reduction of pulmonary artery pressures regardless of the use of
diuretics, although the proportion of diabetic patients was only 18%
(Nassif et al., 2021). Interestingly, our study provided evidence of the
contribution of gliflozins to improving RV systolic function, as
highlighted by the SHAP value obtained for RV S’ velocity. As RV
dysfunction was a strong predictor of survival for HFrEF (Sun et al.,
1997; Ghio et al., 2001), RV systolic function improvement may
contribute to the well-known reduction of mortality and
hospitalization in diabetic patients with HFrEF (Kosiborod et al.,
2017; Neal et al., 2017; Wiviott et al., 2018). Distinct mechanisms of
action and targets involving multiple biochemical and hemodynamic
pathways have been proposed to explain the effects of gliflozins at the
CV level and can also support an improvement of the RV systolic
function (Scheen, 2020). Direct myocardial effects such as a reduction in
myocardial stretch and inhibition of Na+-H+ exchanger 1 or a reduction
in oxidative stress and low-grade inflammation (Lorenzoni et al., 2019;

FIGURE 3
The histogram of average cross-validation scores shows how, on
average, treated patients (class ‘1’) have scores distributed towards the
right hand-side 1 limit, while non-treated (class ‘0’) patients have
scores distributed towards the left hand-side 0 limit.
Interestingly, treated patients are often misclassified (red circle) as
having scores lower than 0.5. These patients are treated with gliflozins
but are erroneously assigned to the ‘0’ class.
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FIGURE 4
Global explainability: the top ten features are ranked (from top to bottom) according to their importance. The horizontal axis evaluates the feature
impact on the model decisions: right positive SHAP values contribute to assigning observations to the class of treated patients ‘1’, left negative values to
non-treated ones. In addition, high/low feature values are color coded. For example, high ‘RV S’ values and low ‘LVESD’ characterize treated patients.
Legend: RV S′, right ventricular systolic excursion velocity; LVESD, left ventricular end-systolic diameter; E/e’, E velocity/e’ velocity ratio; LAV, left
atrium volume; LVEF, left ventricular ejection fraction; LAVI, left atrium volume index; LVEDD, left ventricular end-diastolic diameter; eGFR MDRD,
estimated glomerular filtration rate MDRD (Modification of Diet in Renal Disease); LAD, left atrial diameter; and TAPSE, tricuspid annular plane systolic
excursion.

FIGURE 5
Explainability analysis of responder versus non-responder classification. In this case, the ten most important features are shown. The top three
performers are “TAPSE,” “LVESD,”and “EDV”: low values of “TAPSE” and high values of the remaining features characterize not-responders. Legend:
TAPSE, tricuspid annular plane systolic excursion; LVESD, left ventricle end systolic diameter; EDV, end diastolic volume; LAV, left atrium volume; LVMass,
left ventricular mass; LVEDD, left ventricle end diastolic diameter; ESV, end systolic volume; E/e’, E velocity/e’ velocity ratio; HR, heart rate; and LA
area, left atrial area.
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Packer et al., 2020; Kondo et al., 2021; Zuurbier et al., 2021) could be
relevant in this regard.

Regarding the potential influence on the remodeling and ejection
fraction by other drugs concomitantly used, such asMRAanddigoxin, it is
worth noting that in our exploratory analysis all the available features were
employed to train a classificationmodel and never a classification accuracy
different from chance was achieved; this led us to conclude that the other
pharmacological treatments did not significantly affect the cohort.

The metabolic efficacy of SGLT2i in patients with T2DM has
been investigated; the glucose-lowering effect appeared greater in
patients with a shorter duration of T2DM, better renal function, and
higher levels of HbA1c (Cho et al., 2019). These clinical factors may
help to predict ‘metabolic responders’ to treatment with SGLT2i. On
the other hand, poor data exist about markers predicting the
response in terms of CV outcomes. Vaduganathan et al. (2022)
demonstrated that higher levels of stress cardiac biomarkers, in
particular troponin I, soluble suppression of tumorigenesis
2 protein, and insulin-like growth factor binding protein 7, were
associated with a greater relative risk reduction in terms of CV
events in the CANVAS study population, namely, in diabetic
patients. LVEF appeared to poorly predict CV response, to
gliflozins. According to a pooled analysis of the EMPEREOR-
Reduced and EMPEREOR-Preserved trials, the beneficial effect of
empagliflozin was similar in patients with LVEF <25% and <65%
and produced a reduced response in patients with LVEF ≥65%, in
terms of major adverse cardiovascular events and hospitalizations
(Butler et al., 2022). Moreover, the use of algorithms failed to predict
adequately CV and renal effects of gliflozins (Tye et al., 2022).

According to our observations, at a short-term follow-up, the
population of gliflozins-treated patients was clearly distinguishable
from non-treated patients, as evident in the histogram of average
cross-validation scores. In addition, within the gliflozin-treated
group, some patients were misclassified. The explainability analysis
disclosed a pool of clinical variables that allowed us to distinguish the
responder vs. non-responder patients at baseline with an accuracy of
74%. Actually, eight echocardiographic parameters and the presence of
a high heart rate may predict the response to gliflozins in terms of anti-
remodeling effects. In more detail, the presence of LV remodeling in
advanced stages, high degree of RV dysfunction, and a higher heart rate
may all together predict a lower probability of a beneficial response to
gliflozins. Furthermore, TAPSE is considered a reliable index of the
right ventricle’s systolic function (McDonagh et al., 2021). Importantly,
the right heart dysfunction may be a primitive disorder but is more
often associated with left HF in advanced stages (Gorter et al., 2018).
Thus, low TAPSE values characterise patients with an advanced-stage
HF and biventricular dysfunction. In other words, it appeared that
patients with an overall lower TAPSE, higher LV mass and volumes,
worse LV diastolic function, the presence of AF, and a higher HR could
likely respond less to therapy with gliflozins.

Even if highly recommended as BB, ACEi/ARNI, or MRA for
patients affected by HFrEF, including diabetic patients, there is no
sound evidence about the best timing to start the gliflozins therapy. In
general, gliflozins (e.g., dapagliflozin and empagliflozin) are highly
recommended drugs in all patients with reduced LVEF, with a level
of recommendation of IA (McDonagh et al., 2021). However, in the
main trials (DAPA-HF and EMPEREOR-Reduced) that led to the
introduction of both dapagliflozin and empagliflozin in the guidelines
for the treatment of HFrEF, gliflozins had been administered in patients

with NHYA class > II, diabetic and not diabetic, in addition to optimal
medical therapy with BB, ACEi/ARNI, and MRA. Gliflozins were,
therefore, considered a ‘second-line’ treatment (McMurray et al., 2019;
Packer et al., 2020). Moreover, a recent consensus from the American
College of Cardiology suggests ARNI and BB as frontline therapies and
MRA and SGLT2i as second-line treatments to be introduced in cases of
persisting symptoms (Maddox et al., 2021). Our results support the use
of gliflozins as frontline treatment as soon as a diagnosis of HFrEF is
made, as delayed treatment would act in more advanced stages of
cardiac remodeling, resulting in a lower clinical efficacy. As it occurs for
other pharmacological therapies, the need to compare drugs in terms of
efficacy and order of administration requires a continuous re-evaluation
of the algorithm to use.

This study confirms how XAI andML algorithms have the potential
to go beyond the simplistic phenotyping of HF, e.g., HF with reduced or
preserved ejection fraction. To date, this is the first observation of simple
clinical parameters to predict CV response to gliflozins. Whether these
predicting parameters are applicable to a larger population deserves
further investigation. Furthermore, as gliflozins are effective in diabetic
patients with HFpEF as well as in HF irrespective of the diabetic state
(Anker et al., 2021; Packer et al., 2021; Peikert et al., 2022), it would be of
interest to apply our analysis to additional populations.

4.1 Limitations of the study

Even if a significant number of features were described and
collected for each patient and statistical robustness was assessed by
cross-validation analyses, the number of patients enrolled is relatively
small. The findings of our study should be interpreted with caution as
being based on observational data, with potential unmeasured
confounding and selection bias. Moreover, all patients have been
enrolled in a single center. Nevertheless, despite the lack of an
independent test set that prevented us from assessing the
generalization power of the proposed models, our findings showed
statistically significant differences between patients treated with
gliflozins and those treated with standard treatment.

In conclusion, an ML analysis of a population of diabetic patients
withHFrEF shows that SGLT2i treatment results in a beneficial effect in
terms of LV remodeling, LV diastolic function, and biventricular
systolic function. This cardiovascular response may be predicted by
routine echocardiographic and clinical parameters with an explainable
ML approach. The results will be further validated in larger populations.
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