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Background: Taxane-induced peripheral neuropathy (TIPN) is an important cause
of premature treatment cessation and dose-limitation in cancer therapy. It also
reduces quality of life and survivorship in affected patients. Genetic
polymorphisms in the CYP3A family have been investigated but the findings
have been inconsistent and contradictory.

Methods: A systematic review identified 12 pharmacogenetic studies investigating
genetic variation in CYP3A4*22 and CYP3A5*3 and TIPN. In our candidate gene
study, 288 eligible participants (211 taxane participants receiving docetaxel or
paclitaxel, and 77 control participants receiving oxaliplatin) were successfully
genotyped for CYP3A4*22 and CYP3A5*3. Genotyping data was transformed
into a combined CYP3A metaboliser phenotype: Poor metabolisers,
intermediate metabolisers and extensive metabolisers. Individual genotypes
and combined CYP3A metaboliser phenotypes were assessed in relation to
neurotoxicity, including by meta-analysis where possible.

Results: In the systematic review, no significant association was found between
CYP3A5*3 and TIPN in seven studies, with one study reporting a protective
association. For CYP3A4*22, one study has reported an association with TIPN,
while four other studies failed to show an association. Evaluation of our patient
cohort showed that paclitaxel was found to be more neurotoxic than docetaxel
(p < 0.001). Diabetes was also significantly associated with the development of
TIPN. The candidate gene analysis showed no significant association between
either SNP (CYP3A5*3 and CYP3A4*22) and the development of TIPN overall, or
severe TIPN. Meta-analysis showed no association between these two variants
and TIPN. Transformed into combined CYP3A metaboliser phenotypes, 30 taxane
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recipients were poor metabolisers, 159 were intermediate metabolisers, and
22 were extensive metabolisers. No significant association was observed
between metaboliser status and case-control status.

Summary: We have shown that the risk of peripheral neuropathy during taxane
chemotherapy is greater in patients who have diabetes. CYP3A genotype or
phenotype was not identified as a risk factor in either the candidate gene
analysis or the systematic review/meta-analysis, although we cannot exclude
the possibility of a minor contribution, which would require a larger sample size.

KEYWORDS

chemotherapy, cytochrome P450, peripheral neuropathy, personalised medicine,
pharmacogenetics

1 Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a
common yet complex adverse effect of some anticancer drugs, and
a leading cause of dose reduction and/or premature treatment
cessation. Approximately 30%–40% of patients treated with
neurotoxic chemotherapeutics will develop CIPN (Staff et al., 2017),
although the prevalence ranges from 12%–96% dependent on factors
such as regimen and concomitant use of other neurotoxic agents
(Pachman et al., 2011; Osmani et al., 2012; Seretny et al., 2014; Eckhoff
et al., 2015b; Molassiotis et al., 2019). In cancer survivors, CIPN may
persist long-term following treatment, significantly affecting quality of
life (Argyriou et al., 2014; Miltenburg and Boogerd, 2014; Cliff et al.,
2017). Agents associated with CIPN include taxanes (e.g., docetaxel
and paclitaxel) (Velasco and Bruna, 2015), platinum derivative drugs
(e.g., carboplatin, cisplatin and oxaliplatin) (Staff et al., 2019), and vinca
alkaloids (Grisold et al., 2012).

Taxanes, such as docetaxel and paclitaxel, are commonly used as
first-line treatment (monotherapy or in combination) for various
solid tumour types including breast, gynaecological, lung, prostate
and head-and-neck cancers (Misiukiewicz et al., 2014; Frederiks
et al., 2015; Cliff et al., 2017; Ibrahim and Ehrlich, 2020; Velasco-
González and Coffeen, 2022). Dose-limiting taxane toxicities include
hypersensitivity reactions (Boulanger et al., 2014; Picard and
Castells, 2015), gastrointestinal (GI) (Daniels et al., 2008; Jimenez
et al., 2011; Liu et al., 2021) and haematological adverse events
(Markman, 2003; Frederiks et al., 2015; Tamburin et al., 2019).
Around 60%–70% of patients experience taxane-induced peripheral
neuropathy (TIPN) (Seretny et al., 2014; Derman and Davis, 2021;
Mo et al., 2022), with up to 33% of patients developing severe PN
(The National Cancer Institute ‘Common Terminology Criteria
Adverse Reactions’ (NCI-CTCAE) grade 3–4) (Lee and Swain,
2006). TIPN is complex and multifactorial, dependent on several
risk factors including co-morbidities, chemotherapy regimen, dose-
per-cycle, cumulative dose, duration of therapy and concurrent
administration of other neurotoxic agents (Lee and Swain, 2006;
Osmani et al., 2012; Miltenburg and Boogerd, 2014; Eckhoff et al.,
2015b; Tamburin et al., 2019).

TIPN symptoms generally manifest within several weeks of taxane
commencement, though both docetaxel and paclitaxelmay incite acute
neuropathic pain in the first week following the initial dose (Loprinzi
et al., 2007; Loprinzi et al., 2011; Reeves et al., 2012; Tanabe et al., 2013;
Fernandes et al., 2016; Starobova and Vetter, 2017). Classically, TIPN
manifests in a ‘glove-and-stocking’ distribution, starting in the fingers

and toes and may progress to the hand/wrist and lower leg. Sensory
symptoms are most common and include numbness and tingling,
dysaesthesia and paraesthesia, and may progress to painful and
burning sensations. Motor symptoms are less common, manifesting
as muscle weakness, and impaired fine motor movement, and are
usually associated with higher doses (Chaudhry et al., 1994; Freilich
et al., 1996). Motor impairment can result in significant loss of
functional abilities including balance (Tofthagen et al., 2013;
Miltenburg and Boogerd, 2014; Ibrahim and Ehrlich, 2020), with
potential for mobility-related disability (Hile et al., 2010). Cranial
nerve involvement has been reported anecdotally (Velasco and
Bruna, 2015). Uncommon autonomic symptoms include digestive,
sexual, and urinary disruption (Mols et al., 2016; Zajaczkowska et al.,
2019). Development of TIPN is an indication for dose reduction or
discontinuation, both resulting in sub-optimal chemotherapy regimens
with potential to affect cancer treatment outcomes and overall survival.

Despite recent developments in identifying predictive and blood
biomarkers of PN using ultrasensitive protein assays (Rossor and
Reilly, 2022), there are currently no universally-accepted gold
standard diagnostic or assessment tools for CIPN (McCrary
et al., 2017; Ibrahim and Ehrlich, 2020). The NCI-CTCAE is the
most commonly used assessment tool in clinical practice (Tan et al.,
2019; Li et al., 2020; Selvy et al., 2021), yet a 2017 systematic review
identified 117 distinct CIPN assessment tools (McCrary et al., 2017).

Diagnosis, assessment, and management of CIPN is challenging.
Key patient characteristics increasing the risk of CIPN (including PN
severity and long-duration PN), have been identified (summarised in
Table 1), including obesity (Bao et al., 2016; Bandos et al., 2018)/high
body mass index (BMI) (Bao et al., 2016; Hiramoto et al., 2022), and
advanced age (Tanabe et al., 2013; Schneider et al., 2015; Bao et al.,
2016; Hershman et al., 2016; Tanabe et al., 2017; Bandos et al., 2018;
Miaskowski et al., 2018;Molassiotis et al., 2019; Sánchez-Barroso et al.,
2019; Hiramoto et al., 2022; Rattanakrong et al., 2022), although age
has been contested as an independent risk factor (Eckhoff et al., 2015b;
Johnson et al., 2015; Barginear et al., 2019; Sánchez-Barroso et al.,
2019; Valentine, 2020). Multimorbidity/co-morbidity (Loprinzi et al.,
2007; Lavoie Smith et al., 2011; Reeves et al., 2012; Tanabe et al., 2013;
de laMorena Barrio et al., 2015; Bao et al., 2016; Fernandes et al., 2016;
Hershman et al., 2016; Molassiotis et al., 2019) is a further risk factor.
A predisposition to CIPN has been reported in individuals suffering
from nerve damage due to alcohol, inherited neuropathy and most
notably, diabetes (Quasthoff and Hartung, 2002; de la Morena Barrio
et al., 2015; Hershman et al., 2016; Ottaiano et al., 2016; Molassiotis
et al., 2019). Peripheral neuropathy is a common manifestation of
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both type 1 and type 2 diabetes (diabetic peripheral neuropathy)
(Selvarajah et al., 2019), and patients with pre-existing diabetes
mellitus tend to experience more dose delays and dose reductions,
often with long-lasting, significant CIPN (de la Morena Barrio et al.,
2015). Evidence suggests severe PN is an independent risk factor
associated with persisting PN (Tanabe et al., 2013). Interestingly,
recent evidence suggests paclitaxel-induced PN may also be
influenced by the microbiome (Castelli et al., 2018; Was et al.,
2022). Other risk factors include polypharmacy (Sánchez-Barroso
et al., 2019), index drug (Argyriou et al., 2014), the number of
chemotherapy cycles (Molassiotis et al., 2019), and total
cumulative dose (Argyriou et al., 2008; Seretny et al., 2014;
Hiramoto et al., 2022).

Genetic factors predisposing to TIPN have been investigated,
yet findings have been inconsistent and contradictory. To date,
most investigations have been candidate gene studies (Leskelä
et al., 2011; Bergmann et al., 2012; de Graan et al., 2013; Bosó
et al., 2014; Eckhoff et al., 2015a; Apellaniz-Ruiz et al., 2015;
Lambrechts et al., 2015; Hu et al., 2016; Di Francia et al., 2017;
Ciruelos et al., 2019), as opposed to genome-wide association
studies (Schneider et al., 2015) or whole-exome sequencing
(WES) analysis (Shen et al., 2023). A high degree of
heterogeneity has been reported in taxane pharmacokinetics
(PK) (Michael et al., 2011; Jabir et al., 2012; Hertz, 2013; Bosó
et al., 2014; Sim et al., 2018). Docetaxel is largely metabolized by
the cytochrome P450 3A (CYP3A) enzymes CYP3A4 and
CYP3A5 (Shou et al., 1998; Engels et al., 2004; Powell et al.,
2021), while paclitaxel is metabolized by CYP3A4 and CYP2C8
(Hertz, 2013; Wang et al., 2014; Marcath et al., 2019). Single
nucleotide polymorphisms in genes encoding these CYP3A
enzymes are known to affect their function, with reduced or

loss of function variants often associated with increased
toxicities. The CYP3A4*22 variant (allele frequency of 5%–7%
in Caucasian populations) is associated with decreased
CYP3A4 activity (Elens et al., 2011a; Elens et al., 2011b; Elens
et al., 2011c; Elens et al., 2012; Elens et al., 2013a; Elens et al.,
2013b; van der Weide and van der Weide, 2014; de Jonge et al.,
2015; Sanchez Spitman et al., 2017; Mulder et al., 2021). In
CYP3A5, the functional CYP3A5*1 allele is present in
approximately 7% of Caucasians. The loss of function variant,
CYP3A5*3, results in the production of non-functional proteins
(Sanchez Spitman et al., 2017; Scheibner et al., 2018).

The primary aims of our study were to i) perform a systematic
review, evaluating the current literature for potential CYP3A4*22
and CYP3A5*3 involvement as genetic risk factors for TIPN and ii)
using a candidate genotype approach, interrogate potential
associations between these pharmacokinetic genetic variants,
CYP3A4*22 and CYP3A5*3, and susceptibility to TIPN,
evaluating the combined influence of these 2 SNPs as a
genotype-derived combined CYP3A metaboliser phenotype as a
genetic risk factor for TIPN.

2 Materials and methods

2.1 Systematic review

2.1.1 Search strategy
PubMed, Science Direct and the Cochrane Library were

searched on 23/11/2022, applying the search strategy shown in
Supplementary Table S1, based on the PRISMA guidelines
(PRISMA, Preferred Reporting Items for Systematic Reviews

TABLE 1 Reported risk factors for developing chemotherapy-induced peripheral neuropathy.

Patient characteristic Description References

Patient factors

Advanced Age >60 years; >65 years Molassiotis et al. (2019), Miaskowski et al. (2018), Rattanakrong et al.
(2022), Schneider et al. (2015), Sánchez-Barroso et al. (2019),
Hershman et al. (2016), Bandos et al. (2018), Bao et al. (2016),
Hiramoto et al. (2022), Tanabe et al. (2013), Tanabe et al. (2017),
Rattanakrong et al. (2022), Bao et al. (2016)

Race African Americans Simon et al. (2017), Schneider et al. (2012), Schneider et al. (2015),
Bhatnagar et al. (2014)

Co-morbidity/multimorbidity Diabetes mellitus; Taxane-induced pain syndrome (TAPS); Peripheral
nervous system disorders; Psychological: anxiety, depression,
insomnia

Molassiotis et al. (2019), Lavoie Smith et al. (2011), Molassiotis et al.
(2019), Hershman et al. (2016), de la Morena Barrio et al. (2015)
Loprinzi et al. (2007), Reeves et al. (2012), Tanabe et al. (2013),
Fernandes et al. (2016), Hausheer et al. (2006), Bao et al. (2016)

Clinical history Previous neuropathy; (Chronic) increased alcohol consumption;
Obesity; Higher body mass index

Molassiotis et al. (2019), Bandos et al. (2018), Molassiotis et al. (2019),
Bandos et al. (2018), Bao et al. (2016), Bao et al. (2016), Hiramoto et al.
(2022)

Drug factors

Chemotherapy regimen Drug; Number of chemotherapy cycles; Cumulative dose Argyriou et al. (2014), Molassiotis et al. (2019), Seretny et al. (2014),
Argyriou et al. (2008), Hiramoto et al. (2022)

Polypharmacy Sánchez-Barroso et al. (2019)

Concomitant drug use Cardiovascular drugs; Other neurotoxic drugs Sánchez-Barroso et al. (2019), Valentine (2020), Johnson et al. (2015)
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and Meta-Analyses) (Page et al., 2021). Searches were not limited
by date restrictions. During the review process of our manuscript,
a further study was identified (published May 2023) and
subsequently included in the systematic review prior to final
submission.

2.1.2 Study selection and review
English language articles investigating an association between

single nucleotide polymorphisms in CYP3A4*22 and CYP3A5*3 and
peripheral neuropathy outcomes in adult populations receiving anti-
cancer taxane chemotherapy regimens were included. Search results
were identified, compiled, and screened (LMc). Irrelevant articles
were excluded in the first instance by title, then by abstract. Full text
examination of remaining articles assessed eligibility and identified
manuscripts for inclusion (LMc). Reference lists from reviews and
eligible studies were also screened for suitable articles. The article
identification and selection process is outlined in the schematic
(Figure 1).

The following relevant clinical and methodological information
was extracted from the manuscripts: Allele, chemotherapy
(treatment), phenotype definition, ethnicity, participant
information (sample size and cancer type) and main findings.
The data is presented in Table 2.

2.2 Candidate gene study

2.2.1 Participants, recruitment and consent
Participants were recruited retrospectively using a multi-centre

ethics approved protocol, Molecular Genetics of Adverse Drug
Reaction (NIHR Portfolio Study ID 8630). All patients were
given a Patient Information Leaflet (PIL) and a signed consent
form was required for recruitment and to be included in the study. If
a patient lacked capacity to consent, a personal consultee or a
nominated consultee was approached. Recruitment took place
across five sites located throughout England: Clatterbridge
Cancer Centre NHS Foundation Trust (CCO), St Helens and
Knowsley NHS Trust (SHK), The Christie NHS Foundation
Trust (CHR), Wrightington, Wigan and Leigh NHS Foundation
Trust (WWL), and The Shrewsbury and Telford Hospital NHS
Trust (RSO).

Eligible patients, aged >18 years and meeting the case or control
definitions, were invited to participate in the study. Identification of
eligible patients was via the following methods: patient lists,
generated by coding departments, of individuals having received
the relevant chemotherapy regimens; patient consultants informing
the trials/study team; and identification on chemotherapy day units.
Participants receiving oxaliplatin represented a control cohort in

FIGURE 1
PRISMA diagram showing systematic literature review, and identification of eligible publications.
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TABLE 2 Study characteristics and principal findings from the systematic review.

References Chemotherapy PN
phenotype
definition

Ethnicity Participants Main findings Inclusion in
meta-analysis

CYP3A4*22

Apellaniz-Ruiz
et al. (2015)

Paclitaxel NCI-CTCAE v4.0 Spanish Country: Spain. Total:
236; Breast and ovarian
cancer patients

Trend toward higher
treatment modifications in
carriers of CYP3A4*22 (p =
0.066); yet no statistically
significant differences
observed for PN grade and
treatment modifications due
to PN

Insufficient data
available for inclusion
in meta-analysis

Ciruelos et al.
(2019)

Paclitaxel (nab-
paclitaxel)

NCI-CTCAE v4.0 Spanish Country: Spain. Total: 60;
Breast cancer patients

No correlation between
CYP3A4*22 and
neurotoxicity in either
univariate (p = 0.562, HR =
1.43, 95% CI = 0.43–4.79) or
multivariate analysis. (p =
0.241, HR = 2.12, 95% CI =
0.60–7.49)

Insufficient data
available for inclusion
in meta-analysis

de Graan et al.
(2013)

Paclitaxel NCI-CTCAE
v2.0–4.0

Exploratory
cohort: Caucasian,
96%; Other, 4%

Country: Netherlands.
Exploratory cohort: 261,
various cancer types

Female CYP3A4*22 carriers
have increased risk of PN,
p = 0.043

Included in meta-
analysis. Results
displayed in Forest
Plot, Figure 2

Validation cohort:
Caucasian, 95%;
Other, 3%;
Unknown, 2%

Validation cohort: 239,
various cancer types

CYP3A4*22 carriers have
increased risk of grade 3 PN
(p = 0.001, OR = 19.1, 95%
CI = 3.3–110), confirming
observations from the
exploratory cohort in
females

Di Francia et al.
(2017)

Taxane: Paclitaxel- or
Docetaxel-based

NCI-CTCAE v4.0 Italian, Caucasian Country: Italy. 76 cancer
patients; various cancer
types. 35 receiving
adjuvant taxane
chemotherapy. Control
cohort, n = 41; Case
(taxane) cohort = 35

Pharmacogenomic analysis
showed no correlation
between CYP3A4*22 and
neurotoxicity

Included in meta-
analysis. Results
displayed in Forest
Plot, Figure 2

Shen et al. (2023) Paclitaxel (adjuvant) NCI-CTCAE v3.0 European ancestry Country: United States of
America (patients
genetically determined to
be of European ancestry).
340 breast cancer patients
(168 cases, PN grade 3–4;
172 controls)

No association observed
between CYP3A4
metaboliser status and severe
TIPN

Insufficient data
available for inclusion
in meta-analysis.
Allele frequencies
reported for the total
study population,
rather than by cases
and tolerant controls

CYP3A5*3

Bergmann et al.
(2012)

Paclitaxel (followed by
carboplatin)

NCI-CTCAE v3.0 Scandinavian,
Caucasian

Country: Denmark/
Sweden. 92; Ovarian,
fallopian tube or
peritoneal cancer patients

No association between
CYP3A5*3 variant and PN
reported

Insufficient data
available for inclusion
in meta-analysis

Bosó et al. (2014) Docetaxel, n = 70.
Paclitaxel, n = 43

NCI-CTCAE v4.0 Caucasian Country: Spain.
113 breast cancer patients

No association between
CYP3A5*3 variant and PN
reported

Insufficient data
available for inclusion
in meta-analysis

Eckhoff et al.
(2015a)

Docetaxel NCI-CTCAE v2.0 Western European Country: Denmark. 150
(early-stage) breast
cancer patients

No association between
CYP3A5*3 variant and PN
reported

Included in meta-
analysis. Results
displayed in Forest
Plot, Figure 2

Hu et al. (2016) Paclitaxel/carboplatin
regimen

WHO grading
scale/NCI-
CTCAE v2.0

Chinese Country: China.
75 epithelial ovarian
cancer patients

No association observed
between CYP3A5*3 variant
and PN

Included in meta-
analysis. Results
displayed in Forest
Plot, Figure 2

(Continued on following page)
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this study. The following were the criteria for categorisation as either
case or control:

Case definition:

• No pre-existing peripheral neuropathy at the time of starting
chemotherapy.

• Grade 2 or greater peripheral neuropathy leading to dose
reduction, dose delay, or early cessation of chemotherapy.

OR.
Any grade 3 or 4 peripheral neuropathy developing during or

within 6 weeks of completion of chemotherapy (this was also defined
as a severe case).

• Chemotherapy regimens included were oxaliplatin, 3 weekly
paclitaxel, and any three weekly docetaxel regimen.

• No subsequent treatment with cisplatin or vinca alkaloid.

Control definition:

• Has received at least 6 cycles of oxaliplatin containing
chemotherapy OR 6 cycles of 3- weekly paclitaxel
chemotherapy, OR 6 or more cycles of docetaxel 75 mg/m2

OR 4 or more cycles of docetaxel 100 mg/m2.

• No pre-existing peripheral neuropathy at the time of starting
chemotherapy.

• No peripheral neuropathy during chemotherapy OR
maximum of grade 1 peripheral neuropathy.

• No subsequent treatment with cisplatin or a vinca alkaloid.

Peripheral neuropathy grading was confirmed using the
National Cancer Institute Common Terminology Criteria for
Adverse Events NCI-CTCAE v4.0 (https://ctep.cancer.gov/
protocolDevelopment/electronic_applications/ctc.htm) (National
Cancer Institute, 2010). Maximal symptoms and symptoms at
recruitment, including trips or falls due to PN, were recorded.
Information on family history of PN and pre-existing PN was
also captured.

Treatment information details were obtained from patient case
notes, including chemotherapy regimen, cumulative dose of index
drug, oncology treatment medications and alterations to planned
chemotherapy regimen (if any): dose delays, reductions, and
premature cessation of treatment. ADR data was recorded: date
of onset of reaction, resolution of ADR, and if resolved, date thereof.
Concurrent medications/chemicals (at time of reaction) were
recorded. All case report form (CRF) data was transcribed to
‘OpenClinica’ eCRFs (electronic CRFs) facilitating clinical data
management (OpenClinica LLC, Waltham, MA, USA).

TABLE 2 (Continued) Study characteristics and principal findings from the systematic review.

References Chemotherapy PN
phenotype
definition

Ethnicity Participants Main findings Inclusion in
meta-analysis

Lambrechts et al.
(2015)

Paclitaxel (Paclitaxel-
carboplatin
combination therapy)

NCI-CTCAE v4.0 Caucasian, 99% Country: Belgium/
Luxembourg. 265 ovarian
cancer patients receiving
paclitaxel-carboplatin
combination therapy
underwent neurotoxicity
analysis

No significant association
between CYP3A5*3 variant
and PN

Insufficient data
available for inclusion
in meta-analysis

Leskelä et al.
(2011)

Paclitaxel NCI-CTCAE v2.0 White, and of
European origin

Country: Spain.
118 cancer patients;
various cancer types

CYP3A5*3 variant associated
with decreased risk of PN
(p = 0.012, HR = 0.51, 95%
CI = 0.30–0.86; HR
estimated by multivariable
Cox regression, adjusting for
treatment schedule and age)

Insufficient data
available for inclusion
in meta-analysis

Schneider et al.
(2015)

ECOG-5103: Paclitaxel NCI-CTCAE v3.0 White, African
American;
European descent
subset

Country: United States.
ECOG-5103: 3,431 Breast
cancer patients

GWAS: No association
between CYP3A5*3 variant
and PN reported

Insufficient data
available for inclusion
in meta-analysis

ECOG-1199
(validation study):
Paclitaxel or docetaxel

NCI-CTCAE v2.0 White, African
American;
European descent
(Caucasian) subset

ECOG-1199: 2,407 Breast
cancer patients

No association between
CYP3A5*3 variant and PN
reported

Insufficient data
available for inclusion
in meta-analysis

Shen et al. (2023) Paclitaxel (adjuvant) NCI-CTCAE v3.0 European ancestry Country: United States of
America (patients
genetically determined to
be of European ancestry).
340 breast cancer patients
(168 cases, PN grade 3–4;
172 controls)

No association observed
between CYP3A5
metaboliser status and severe
TIPN

Insufficient data
available for inclusion
in meta-analysis.
Allele frequencies
reported for the total
study population,
rather than by cases
and tolerant controls

ABBREVIATIONS: CI, confidence interval; HR, hazard ratio; OR, odds ratio; PN, peripheral neuropathy; WHO, world health organization.
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2.2.2 Sample collection
Approximately 9 mL whole blood was collected in BD Vacutainer®

EDTA (BD™ Biosciences, USA) or S-Monovette® EDTA tubes (Sarstedt
AG & Co. KG, Germany). If venepuncture was unsuccessful or not
possible, 2–4mL saliva was collected using Norgen© Saliva DNA
Collection and Preservation Devices (Product #: RU49000; Norgen
Biomek Corp., Ontario, Canada) or DNA Genotek Oragene® DNA
OG-500 kits (DNAGenotek Inc., Ontario, Canada). Blood samples were
stored at−20°C prior toDNA isolation. Saliva samples were stored at 4°C
prior to DNA isolation.

2.2.3 DNA isolation and quantification
Genomic DNA was isolated from 5mL whole blood using the

Chemagic™ Magnetic Separation Module 1 (MSM 1 (PerkinElmer®,
USA)) as per manufacturer’s protocol (Chemagen Biopolymer-
Technologie AG, Baesweiler, Germany) using CMG-703–1
Chemagic DNA Blood Kits (CMG-703–1 Chemagic DNA Blood 5k
Kit H12, PerkinElmer LAS (UK) Ltd, Buckinghamshire, UK).
Genomic DNA was manually isolated from 2–4 mL saliva using the
Norgen© Saliva DNA Isolation Reagent Kit (Product #: RU35720;
Norgen Biomek Corp., Ontario, Canada) or Oragene prepIT® L2P
DNA extraction kit (DNA Genotek Inc., Ontario, Canada), as per
manufacturer’s protocols. Quantification of DNA samples was initially
completed using the NanoDrop™ 8,000 Spectrophotometer
(ThermoFisher Scientific™, USA). DNA concentration was
confirmed using the Quant-iT™ PicoGreen™ dsDNA quantitation
assay kit (ThermoFisher Scientific™, USA).

2.2.4 Genotyping by TaqMan
®
real-time

polymerase chain reaction (qPCR)
Genotyping of CYP3A4*22 and CYP3A5*3 was undertaken using

commercially available, validated Taqman™ drug metabolism SNP
genotyping assays (CYP3A4*22, NCBI SNP Reference: rs35599367,
Assay ID: C_59013445_10; CYP3A5*3, NCBI SNP Reference:
rs776746, Assay ID: C_26201809_30) with 1 x Genotyping Master
Mix (all acquired from Applied Biosystems (ThermoFisher
Scientific™, USA)), using the Applied Biosystems 7900HT Fast
Real-Time PCR System (Applied Biosystems, ThermoFisher
Carlsbad, CA), with Sequence Detection Systems (SDS) Version
2.4.1 software (2010 Life Technologies Corp.). 5 μL reaction
volumes were used. All samples were analysed in duplicate. SNPs
with a call rate of <95% were excluded. Minor allele frequencies
(MAF) for both SNPs were confirmed using dbSNP: CYP3A4*22
MAF European (Caucasian) populations, 5%. CYP3A5*3 MAF
European (Caucasian) populations, 7%.

2.2.5 Statistics and data analysis
Statistical analysis was undertaken using the SPSS® statistical

package (IBM Corp. Released 2021. IBM SPSS Statistics for
Windows, Version 28.0. Armonk, NY: IBM Corp). Continuous
variables were analysed by student’s (independent) t-test, and
categorical variables by the chi-square test.

Genotype-derived CYP3A (CYP3A4/CYP3A5) metaboliser
phenotypes were defined as previously described (Sim et al.,
2018), as follows (Supplementary Table S2):

• Poor metabolisers (PM); expected poor catabolic activity,
carrying 1 or 0 active CYP3A4 or CYP3A5 alleles.

• Intermediate metabolisers (IM); expected intermediate
catabolic activity, carrying 2 active CYP3A4 and CYP3A5
alleles.

• Extensive metabolisers (EM); expected extensive catabolic
activity, carrying at least 3 active CYP3A4 and CYP3A5 alleles.

Univariate analysis analysed SNP association between case,
severe case, and control groups. Clinical factors with significant
differences (p = <0.1) were carried forward for inclusion in the
binary logistic regression model.

2.2.6 Meta-analysis
Forest plots were produced using RevMan (Review Manager

(RevMan) [Computer program]. Version 5.4., 2020), as described in
Table 2. The Forest Plots were inspected and assessed for statistical
heterogeneity; categorization of heterogeneity was based on the
Cochrane Handbook for Systematic Reviews of Interventions: 0%–
40% might not be important; 30%–60% may represent moderate
heterogeneity; 50%–90% may represent substantial heterogeneity;
75%–100% considerable heterogeneity.

3 Results

3.1 Systematic review

Twelve studies met the predefined eligibility criteria and were
included in the systematic review (Figure 1). There was a single
genome-wide association study (GWAS), with a validation cohort
including multiple candidate SNPs across multiple genes (Schneider
et al., 2015). Three studies investigated SNPs in a single candidate
gene (de Graan et al., 2013; Apellaniz-Ruiz et al., 2015; Hu et al.,
2016). Seven studies investigated multiple SNPs across multiple
genes (Leskelä et al., 2011; Bergmann et al., 2012; Bosó et al., 2014;
Eckhoff et al., 2015a; Lambrechts et al., 2015; Di Francia et al., 2017;
Ciruelos et al., 2019). The remaining study employed genome-wide
genotyping, whole-exome sequencing (WES) analyses, and TaqMan
assays (Shen et al., 2023). Assessing the association between
CYP3A4*22 and TIPN were four studies (de Graan et al., 2013;
Apellaniz-Ruiz et al., 2015; Di Francia et al., 2017; Ciruelos et al.,
2019). Seven studies assessed the association between CYP3A5*3
and TIPN (Leskelä et al., 2011; Bergmann et al., 2012; Hertz et al.,
2012; Bosó et al., 2014; Lambrechts et al., 2015; Schneider et al., 2015;
Hu et al., 2016). A single study assessed the association between both
SNPs, CYP3A4*22 and CYP3A5*3, and TIPN (Shen et al., 2023).

All studies were published between 2011 and 2023. Across all
12 studies, assessment of PN was made using NCI-CTCAE,
although the version used differed between studies as shown in
Table 2. In addition to evaluation of toxic effects using NCI-CTCAE,
one study also used the World Health Organization grading scale to
assess neurotoxicity (Hu et al., 2016). Nine studies were conducted
in Europe. These studies reported ethnicity information as European
or Caucasian (>95%) as described in Table 2. One study was
conducted in China (Hu et al., 2016), with exclusively Chinese
participants, and two in the United States (Schneider et al., 2015;
Shen et al., 2023): one of these US studies analysed patients of
European ancestry (Shen et al., 2023). Seven studies focussed on
single cancer types: five studies on breast cancer (Bosó et al., 2014;
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Eckhoff et al., 2015a; Schneider et al., 2015; Ciruelos et al., 2019;
Shen et al., 2023), and two on ovarian cancer (Lambrechts et al.,
2015; Hu et al., 2016). One study recruited both breast and ovarian
cancer patients (Apellaniz-Ruiz et al., 2015), and another recruited
gynaecological cancers (ovarian, fallopian tube and peritoneal
cancers) (Bergmann et al., 2012). The remaining studies included
participants with various cancer types (Leskelä et al., 2011; de Graan
et al., 2013; Di Francia et al., 2017). Considering chemotherapy
regimens, eight studies were taxane-only therapies (Leskelä et al.,
2011; de Graan et al., 2013; Bosó et al., 2014; Eckhoff et al., 2015a;
Apellaniz-Ruiz et al., 2015; Schneider et al., 2015; Di Francia et al.,
2017; Ciruelos et al., 2019). Three studies recruited patients treated
with paclitaxel plus carboplatin combination therapy (Bergmann
et al., 2012; Lambrechts et al., 2015; Hu et al., 2016). The final study
recruited patients treated with adjuvant paclitaxel (Shen et al., 2023).

3.2 Findings of the systematic review

For CYP3A4*22, there were contradictory findings in the
literature. Di Francia et al showed no correlation between
CYP3A4*22 and neurotoxicity after treatment with docetaxel or
paclitaxel (Di Francia et al., 2017). Ciruelos et al also showed no
significant association between CYP3A4*22 and neurotoxicity after
treatment with nab-paclitaxel (Ciruelos et al., 2019). Conversely, a
Dutch trial reported a significant association between female
CYP3A4*22 carriers and paclitaxel-induced neurotoxicity in an
exploratory cohort (p = 0.043). An independent validation cohort
reported a higher risk of developing grade 3 neurotoxicity in
CYP3A4*22 carriers compared to non-carriers (p = 0.001; odds
ratio (OR) = 19.1, 95% confidence interval (CI) = 3.3–110)
(de Graan et al., 2013). Whole-exome sequencing of gene CYP3A4

in Spanish participants receiving paclitaxel chemotherapy reported a
trend towards higher treatment modifications in carriers of
CYP3A4*22 (p = 0.066), but no statistically significant differences
were observed for neuropathy grade and treatment modifications due
to neuropathy (Apellaniz-Ruiz et al., 2015).

For CYP3A5*3, out of the seven studies, no significant association
between theCYP3A5*3 variant and PNwas reported in six (Bergmann
et al., 2012; Bosó et al., 2014; Eckhoff et al., 2015a; Lambrechts et al.,
2015; Schneider et al., 2015; Hu et al., 2016). The remaining study
(Leskelä et al., 2011), in 118 Spanish paclitaxel-treated cancer patients
reported a protective association for CYP3A5*3 (p = 0.012, hazard
ratio per allele = 0.51, 95% CI = 0.30–0.86).

Shen et al analysed both CYP3A4*22 and CYP3A5*3 in breast
cancer patients of European ancestry receiving standard doses of
paclitaxel. Four diplotypes for CYP3A4 (*1/*1, *1/*2, *1/*22 and *22/
*22) and three for CYP3A5 (*1/*1, *1/*3, and *3/*3) were identified.
Metaboliser status of CYP3A4, CYP3A5 (and CYP2C8) was
predicted for each participant. No associations were reported
between CYP3A4 or CYP3A5 predicted metaboliser status and
severe (grade 3–4) TIPN (Shen et al., 2023).

3.3 Candidate gene study

Twenty-four participants were excluded due to genotyping
failures despite repeat genotyping. A total of 288 eligible
participants with full clinical data were successfully genotyped
and included in the final analysis. All participants were Caucasian.

Of the total study population (n = 288), 211 (73%) were receiving
taxane chemotherapy (docetaxel or paclitaxel): of these, 54 (26%) were
categorised as cases, with 27 (13%) having severe neuropathy.
Therefore, 157 (74%) participants served as controls (Table 3).

TABLE 3 Case and control comparison of non-genetic clinical variables in the taxane cohort.

Variable Population
(n = 211)

Controls
(n = 157)

Peripheral
neuropathy (n = 54)

p-value Severe peripheral
neuropathy (n = 27)

p-value

Index Drug Docetaxel 139 (66%) 114 (73%) 25 (46%) <0.001 12 (44%) 0.006

Paclitaxel 72 (34%) 43 (27%) 29 (54%) 15 (56%)

Mean Age, Years (SD) 60.6 (±11.3) 59.7 (±11.6) 63.0 (±10.2) 0.065 63.3 (±9.4) 0.133

Sex Male 55 (26%) 50 (32%) 5 (9%) 0.001 4 (15%) 0.107

Female 156 (74%) 107 (68%) 49 (91%) 23 (85%)

Mean BMI (SD) 28.2 (±5.6) 27.8 (±5.3) 29.4 (±6.3) 0.103 29.3 (±5.9) 0.196

Diabetes No 198 (94%) 151 (96%) 47 (87%) 0.024 22 (81%) 0.012

Yes 13 (6%) 6 (4%) 7 (13%) 5 (19%)

Alcohol Consumption,
units/day

< 1 140 (66%) 103 (66%) 37 (69%) 0.846 17 (63%) 0.923

1–5 54 (26%) 41 (26%) 13 (24%) 8 (30%)

6–14 15 (7%) 11 (7%) 4 (7%) 2 (7%)

15 + 2 (1%) 2 (1%) 0 (0%) 0 (0%)

Hepatic Impairment No 211 (100%) 157 (100%) 54 (100%) - 27 (100%) -

CYP3A-interacting
concurrent medications

Yes 211 (100%) 157 (100%) 54 (100%) - 27 (100%) -

These bold values are simply sub-categories for each variable.
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A cohort of 77 (27%) patients who had received oxaliplatin
chemotherapy was also studied. This included patients with (n = 38;
49%; 20 (26%) were severe) and without (n = 39; 51%) peripheral
neuropathy.

For the taxane cohort, demographics and non-genetic patient
characteristics are shown in Table 3. The most common primary
cancer types were breast (n = 81 (38%)), followed by ovarian (n =
57, 27%) and prostate (n = 53; 25%). The mean age of the taxane
cohort was 60.6 years (standard deviation (SD) ±11.3). Mean age
for control participants was 59.7 years (standard deviation
(SD) ±11.6).

Paclitaxel was significantly more neurotoxic than docetaxel (p ≤
0.001; chi-square). Diabetes was also found to be significantly
associated with neuropathy: 4% of control patients had diabetes,
whilst 13% of case patients had diabetes (p = 0.024). In severe PN
cases, 19% of patients had diabetes (p = 0.012). No significant
differences were observed between cases and controls in BMI,
alcohol consumption (units/day), hepatic impairment or CYP3A-
interacting concurrent medications. Cases tended to be older
although this was not significant (p = 0.065).

For the taxane cohort, both SNPs were confirmed to be in Hardy-
Weinberg equilibrium (CYP3A4*22, p = 0.25; CYP3A5*3, p = 0.40).

TABLE 4 CYP3A genotypes in the taxane and oxaliplatin cohorts with and without peripheral neuropathy.

Gene SNP Genotype Control PN Or (95% CI) p-value Severe PN Or (95% CI) p-value

Taxane cohort

CYP3A4*22 rs35599367 *1/*1 132 (84%) 48 (89%) 0.6 (0.2–1.6) 0.3 24 (89%) 0.6 (0.2–2.4) 0.5

*1/*22 25 (16%) 6 (11%) 3 (11%)

*22/*22 0 0 0

CYP3A5*3 rs776746 *1/*1 0 0 1.2 (0.4–3.8) 0.7 0 1.4 (0.4–5.7) 0.6

*1/*3 18 (11%) 5 (9%) 3 (11%)

*3/*3 139 (89%) 49 (91%) 24 (89%)

Oxaliplatin cohort

CYP3A4*22 rs35599367 *1/*1 37 (95%) 37 (97%) 1.0 20 (100%) 0.5

*1/*22 2 (5%) 1 (3%) 0

*22/*22 0 0 0

CYP3A5*3 rs776746 *1/*1 0 0 0.1 0 1.0

*1/*3 15 (38%) 8 (21%) 7 (35%)

*3/*3 24 (62%) 30 (79%) 13 (65%)

CI, confidence interval; OR, odds ratio; PN, peripheral neuropathy.

These rs numbers are the reference SNP values for identifying the particular SNPs.

TABLE 5 CYP3A metaboliser status for the taxane and oxaliplatin cohorts.

Metaboliser status Controls Cases with peripheral neuropathy Cases with severe peripheral neuropathy

Taxane cohort (numbers)

Poor Metabolizer 24 6 3

Intermediate Metabolizer 116 43 21

Extensive Metabolizer 17 5 3

OR (95% CI) 1.5 (0.7–3.0) 1.5 (0.6–3.7)

p-value 0.3 0.4

Oxaliplatin cohort (numbers)

Poor Metabolizer 2 1 0

Intermediate Metabolizer 22 29 13

Extensive Metabolizer 15 8 7

p-value 0.2 0.5

CI, confidence interval; OR, odds ratio.
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No significant associations were observed between either SNP and
development of peripheral neuropathy or severe peripheral
neuropathy (Table 4). Combined CYP3A4 and CYP3A5 genotypes
were transformed into combined CYP3A metaboliser phenotype
classifications (Sim et al., 2018), as shown in Supplementary Tables
S2 and S5. No significant associations were observed between
metaboliser phenotype and case-control status or severe case-
control status (Tables 4 and 5). No significant association was
observed between either SNP and the development of peripheral
neuropathy in the taxane-treated participants in univariate or
multivariate analysis after adjustment for relevant clinical factors.

For the oxaliplatin cohort, both SNPs were confirmed to be in
Hardy-Weinberg equilibrium (CYP3A4*22, p = 0.86; CYP3A5*3, p =
0.12). As expected, no significant association was observed between
either SNP and development of peripheral neuropathy or severe
peripheral neuropathy (Table 4). No significant associations were
observed between genotype-derived combined CYP3A metaboliser
phenotype (CYP3A4/CYP3A5) and development of peripheral
neuropathy or severe peripheral neuropathy (Table 5).

3.4 Meta-analysis

The results of both Forest Plots are shown in Figure 2. Ethnicity
information for all studies is described in Table 2. In our study, all
participants were European Caucasians.

For CYP3A4*22, sufficient data was available from 2 studies (de
Graan et al., 2013; Di Francia et al., 2017). Combining this with the
data we generated showed that there was no association between
CYP3A4*22 and PN (OR 1.22; 95% CI 0.69–2.16; I2 55%; p = 0.49).

For CYP3A5*3, sufficient data was available from 2 studies
(Eckhoff et al., 2015a; Hu et al., 2016). Combining these two
studies with the data from our candidate gene analysis again
showed no association between CYP3A5*3 and PN (OR 1.15;
95% CI 0.67–1.98; I2 = 0%; p = 0.61).

4 Discussion

Taxane chemotherapy is known to cause peripheral
neuropathy, and is a leading cause of dose-reduction and/or
premature treatment cessation, and has a detrimental impact
on patients’ quality of life. Given the P450 enzymes involved in
the biotransformation of taxanes, our study was designed to
evaluate putative genetic associations between two candidate
genes, CYP3A4*22 and CYP3A5*3, and development of TIPN.
Both CYP3A4*22 and CYP3A5*3 are associated with decreased
activity (Elens et al., 2011a; Elens et al., 2011b; Elens et al., 2011c;
Elens et al., 2012; Elens et al., 2013a; Elens et al., 2013b; van der
Weide and van der Weide, 2014; de Jonge et al., 2015; Sanchez
Spitman et al., 2017; Mulder et al., 2021) and loss of function
(Sanchez Spitman et al., 2017; Scheibner et al., 2018) respectively.

We undertook a systematic review, and also genotyped a cohort of
patients treated with taxanes and oxaliplatin. In relation to CYP3A4,
although de Graan et al. had identified an association between
CYP3A4*22 carriers and PN (de Graan et al., 2013), other studies
failed to demonstrate an association (Table 2). The results of our
candidate gene study also failed to demonstrate an association
between CYP3A4*22 and development of PN or PN severity
(Table 4). The absence of subjects displaying a homozygous

FIGURE 2
Association between CYP3A4*22 and CYP3A5*3 variants and taxane-induced peripheral neuropathy. (A). Association between CYP3A4*22 and
taxane-induced peripheral neuropathy. Analysis of *22 carriage (*1/*22 and *22/*22) vs. non-carriage (*1/*1). Note: The phenotype definition for cases in
Di Francia et al. (2017) differed from our phenotype definition of Grade 2 PN and above. Di Francia et al. (2017) considered Grade 1 and above as cases.
(B). Association between CYP3A5*3 and taxane-induced peripheral neuropathy. Analysis of *3 homozygous carriage (*3/*3) vs. non-carriage and
heterozygous carriage (*1/*1 and *1/*3).
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CYP3A4*22 genotype, however, is noteworthy. It is important to
acknowledge that a potential risk associated with homozygous
CYP3A4*22 genotypes cannot be completely ruled out due to our
limited sample size. Further investigations with a larger, more diverse
cohort, are warranted to comprehensively assess potential
implications of homozygous CYP3A4*22 genotypes in TIPN.
Similarly, an assessment of the current evidence failed to show a
significant association between the CYP3A5*3 variant and
development of PN or severity of PN (Bergmann et al., 2012; Bosó
et al., 2014; Eckhoff et al., 2015a; Lambrechts et al., 2015; Schneider
et al., 2015; Hu et al., 2016; Shen et al., 2023). Our candidate gene
analysis also failed to demonstrate an association between CYP3A5*3
and development of PN or PN severity. For both variants, the lack of
an association was confirmed by our meta-analyses.

Combined CYP3A4 and CYP3A5 genotypes were transformed
into a CYP3A metaboliser phenotype classification with expected
metabolic activities as previously defined (Sim et al., 2018). Carriers of
CYP3A4*22 and CYP3A5*3 variant alleles have reduced metabolic
activity and theoretically, would be at greater risk of toxicity. However,
our data suggest that CYP3A metaboliser phenotype (CYP3A4/
CYP3A5) is not a risk factor with a large effect size for taxane-
induced peripheral neuropathy. However, we cannot exclude the
possibility of a minor contribution, which would require a larger
sample size.

We also studied a cohort of patients who had received oxaliplatin
chemotherapy, which could be regarded as a separate “control”
cohort. Oxaliplatin is not metabolised by CYP3A and therefore we
did not expect to find any association with the CYP3A genetic
polymorphisms. Indeed, this was borne out in our analysis with
no association identified with either the individual alleles (Table 4) or
the metaboliser status (Table 5).

Conventionally, paclitaxel is considered to be more frequently
associated with peripheral neuropathy than docetaxel (Markman,
2003; Lee and Swain, 2006; Shimozuma et al., 2012; Kudlowitz and
Muggia, 2013; Bhatnagar et al., 2014; Miltenburg and Boogerd, 2014).
Our results support this. Our data suggest that development of
peripheral neuropathy during chemotherapy is a greater risk in
patients who have diabetes in keeping with previous literature
(Hershman et al., 2016; Molassiotis et al., 2019). Advanced age has
been a reported a risk factor in the literature (Tanabe et al., 2013;
Schneider et al., 2015; Bao et al., 2016; Hershman et al., 2016; Tanabe
et al., 2017; Bandos et al., 2018; Miaskowski et al., 2018; Molassiotis
et al., 2019; Sánchez-Barroso et al., 2019; Hiramoto et al., 2022;
Rattanakrong et al., 2022), and our data show a trend towards age
being a risk factor, but this was not significant presumably because of a
lack of power. Sex was also significantly associated with development
of PN: 91% of cases were female.

The size of our candidate gene study is a limitation. A larger
sample size may identify minor contributions from genetic variants
predisposing individuals to increased susceptibility to TIPN, and
allow for analysis of polygenic risk scores (PRS), rather than
investigating individual alleles. Our study also lacks ethnic
diversity: all participants were Caucasian. This is not rare.
Genomic studies are commonly Euro-centric, with 97% of existing
GWAS data from participants of European ancestry (Mills and Rahal,
2020; Pirmohamed, 2023). Our systematic review also showed an
under-representation of non-European ancestry populations: 9 out of
12 studies were conducted in Europe, with an additional US study

exclusively analysing patients genetically determined to be of
European ancestry (Shen et al., 2023). However, evaluation of
CYP3A4*22 and CYP3A5*3 allele frequencies in global populations
(Supplementary Table S3) shows that the loss-of-function alleles are
more common in European ancestry populations, and if an
association exists with these variants and TIPN, it is more likely to
be identified in this population. Concerning CYP3A5*3, there exists a
significant challenge in establishing associations with TIPN in
Caucasian populations due to the high frequency of the CYP3A5*3
variant. Further investigations in African ancestry populations, with a
greater proportion of CYP3A5*1 alleles, may have greater power to
detect differences in genetic predisposition to TIPN. Thus, future
work should aim to improve ethnic diversity, serving to help address
issues concerning heath disparities in genomic medicine and promote
health equity. It would also identify novel loci predisposing to TIPN
especially if genome-wide approaches are adopted.

In future studies, it will be important to consider not only the
genetic factors, but also individual clinical factors with a view to
generating multi-modal algorithms. For instance, multimorbidity, a
recognised risk factor in CIPN, increases the prevalence of
polypharmacy (Masnoon et al., 2017) and with that, the likelihood
of drug- and gene-based interactions (Turner et al., 2020). With
increasing cancer incidence and the increasing number of cancer
survivors, together with changing population demographics, it is likely
that the prevalence of CIPNwill increase. It is therefore important that
further research is conducted in this area, not only to identify
predisposing factors, but also to develop biomarkers (Rossor and
Reilly, 2022) which may allow earlier detection of toxicity, and offer
insight into underlying mechanisms, pathogenesis and treatment
(Rodwin et al., 2022).

It is also interesting to note that preventive strategies that
can protect nerves from being damaged by taxane-based
chemotherapy are being trialled (see Supplementary Table S4
which summarises trials registered on clinicaltrials.org). Some
of these trials are investigating the use of neuroprotective
agents, including vitamin E (Anoushirvani et al., 2018; Samuels
and Ben-Arye, 2020; Chen et al., 2021) and acetyl-L-carnitine (Di
Stefano et al., 2019), which have been shown to display some
efficacy in preclinical studies. Alpha-lipoic acid has also been
studied as an effective intervention for the treatment of diabetic
neuropathy (Abubaker et al., 2022). Other studies are evaluating
dose modifications (Sharma et al., 2020), and exercise programme
(Kleckner et al., 2018; Müller et al., 2021; Chung et al., 2022) to
prevent or manage PN. Despite some encouraging results, given
that we do not fully understand the mechanisms of CIPN/TIPN,
whether these intervention strategies will be successful is unclear,
and continuing further research is needed.

Another factor which is important for future studies is to ensure
that phenotypic assessment of patients is standardised.
Standardization of phenotype definitions and consensus
guidelines is an approach which has been employed with other
ADRs (Aithal et al., 2011; Pirmohamed et al., 2011; Behr et al., 2012;
Alfirevic et al., 2014; Carr et al., 2017; Nicoletti et al., 2021) as
championed by the Phenotype Standardization Project
(Pirmohamed et al., 2011). NCI-CTCAE is the most widely-used
assessment tool for CIPN in clinical practice (Tan et al., 2019; Li
et al., 2020; Selvy et al., 2021), yet despite this, a review identified
117 distinct CIPN assessment tools (McCrary et al., 2017).
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Heterogeneity in phenotype definitions, in terms of the particular
assessment tool used, and the subjective nature of these tools may
underestimate the prevalence and severity of CIPN (Cella et al.,
2003; Cavaletti et al., 2010; Frigeni et al., 2011; Chow et al., 2012;
Argyriou et al., 2014; Majithia et al., 2016; Beutler et al., 2017; Cliff
et al., 2017; Le-Rademacher et al., 2017; Colvin, 2019; Kanda et al.,
2019; Tan et al., 2019; Selvy et al., 2021). Thus, collaborative efforts
to standardize detailed phenotype definitions and clinical
assessment would help to mitigate diagnostic uncertainty, and
therefore aid identification of genetic associations.

Currently, oncology is considered the most evolved field in
personalised medicine. Despite this, use of PGx testing in taxane-
based therapies is limited, in part due to speculation over positive
impact on health outcomes, cost-effectiveness, and contradictory
findings. A validated PGx panel assay for the prevention of
neurotoxicity has been proposed (Di Francia et al., 2017), using
pharmacogenomic profiles to stratify predicted treatment outcomes
and optimize pharmacotherapy, but is not implemented, perhaps
because of the contradictory genetic findings and lack of prospective
evaluation. The importance of a robust study design in demonstrating
the clinical utility of panel pharmacogenetic testing has been
demonstrated recently in the PREPARE trial, where a 12-gene
panel was able to reduce adverse drug reactions to a variety of
compounds by 30% (Swen et al., 2023). Looking forward, as next-
generation sequencing (NGS) technologies become more
commonplace in research and clinical practice, the importance of
low frequency variants (minor allele frequencies between 5% and 1%)
and rare variants (minor allele frequency <1%) in drug response
should be explored and evaluated using large-scale population studies
supplemented by robust electronic health records or population
biobanks with linked genomics data (Pirmohamed, 2023).

In conclusion, we did not demonstrate an association between
TIPN and genetic polymorphisms in CYP3A4 and CYP3A5. Our
systematic review also shows some contradictory findings, but overall
is consistent with our candidate gene analysis in failing to show
an association, confirmed by the meta-analysis. Our study is limited
by a small sample size, and so we cannot exclude a smaller effect
size, and thus larger studies should be undertaken. However, in
pharmacogenomics, this is not an easy task because of the need to
identify patients treated with the same drug who have been accurately
phenotyped. Given the narrow therapeutic index of many anti-cancer
agents, and the wide range of toxicities which have been reported, this
is an area which needs further study to improve the benefit-risk ratio.
Although some successes in pharmacogenomics in relation to
chemotherapy have been reported (Pirmohamed, 2023), much
more work remains to be undertaken.
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