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Herbal medicines and preparations are widely used in healthcare systems globally,
but concerns remain about their quality and safety. New herbal products are
constantly being introduced to the market under varying regulatory frameworks,
with no global consensus on their definition or characterization. These biologically
active mixtures are sold through complex globalized value chains, which create
concerns around contamination and profit-driven adulteration. Industry,
academia, and regulatory bodies must collaborate to develop innovative
strategies for the identification and authentication of botanicals and their
preparations to ensure quality control. High-throughput sequencing (HTS) has
significantly improved our understanding of the total species diversity within DNA
mixtures. The standard concept of DNA barcoding has evolved over the last two
decades to encompass genomic data more broadly. Recent research in DNA
metabarcoding has focused on developing methods for quantifying herbal
product ingredients, yielding meaningful results in a regulatory framework.
Techniques, such as loop-mediated isothermal amplification (LAMP), DNA
barcode-based Recombinase Polymerase Amplification (BAR-RPA), DNA
barcoding coupled with High-Resolution Melting (Bar-HRM), and microfluidics-
based methods, offer more affordable tests for the detection of target species.
While target capture sequencing and genome skimming are considerably
increasing the species identification resolution in challenging plant clades,
ddPCR enables the quantification of DNA in samples and could be used to
detect intended and unwanted ingredients in herbal medicines. Here, we
explore the latest advances in emerging DNA-based technologies and the
opportunities they provide as taxa detection tools for evaluating the safety and
quality of dietary supplements and herbal medicines.
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Introduction

Herbal products play a crucial role in healthcare systems worldwide, but their quality and
safety raise concerns (Zhang et al., 2012; Ekor, 2014). Over the past few years, there has been
a steady rise in the use of commercial herbal products (Garcia-Alvarez et al., 2014; Smith
et al., 2021), and a diverse range of new dietary supplements and herbal medicines continue
to enter the market under very heterogenous regulatory frameworks (Thakkar et al., 2020).
Globally, there is no consensus regarding the definition and characterization of these
herbal products that often come from a great variety of local and traditional practices.
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Numerous commercial terms, including herbal or botanical drugs,
traditional or herbal medicines, natural health products, and dietary
or food supplements (Alostad et al., 2020), are being used to describe
these products.

Commercial herbal products are biologically active mixtures, with
complex and variable contents, making it difficult to assess their quality
and safety using conventional analytical methods (Zhang et al., 2012;
Shipkowski et al., 2018; Heinrich et al., 2022). These products have
globalized value chains, creating additional concerns such as
responsible sourcing of raw plant materials and sustainable supply
(Booker et al., 2012; Heinrich et al., 2019). While specific quality issues
are strictly monitored for certain categories of herbal products classified
as “medicines” in some jurisdictions (Thakkar et al., 2020),
“supplements” typically have less rigorous premarket and post-
marketing regulations, leaving room for safety issues (Posadzki
et al., 2013; Heinrich, 2015; Teschke and Eickhoff, 2015; Steinhoff,
2019). Nevertheless, the research community, along with some
regulatory authorities and Pharmacopoeias, is making significant
contributions and proposing innovative strategies to identify and
authenticate botanicals and their derived preparations, ensuring
quality control (Simmler et al., 2018; Fitzgerald et al., 2019; Durazzo
et al., 2021; Heinrich et al., 2022).

Due to the high demand and increasing prices for herbal
preparations, supply chains for raw plant materials are
sometimes unable to keep up, leading to accidental
contamination or intentional adulteration for economic gain
(Ichim, 2019; Ichim et al., 2020; Ichim and Booker, 2021; Gafner
et al., 2023). Traditional approaches for botanical identification and
quality control, including botanical taxonomy, macroscopic and
microscopic examination, and phytochemical analysis to detect
specific characteristics or compounds have been reviewed
previously (Upton et al., 2019; Klein-Junior et al., 2021).
However, as discussed by Gafner et al. (2023), fraudulent
operators are aware of these identification assays and have found
ways to deceive them. Unethical adulteration practices, combined

with natural complexity and potential human errors, have a
significant impact on the quality of botanical products (Heinrich,
2015). Furthermore, non-compliant physical labels and false online
claims of herbal products pose additional safety hazards (You et al.,
2022; Jordan et al., 2023).

Given the current circumstances, it is recommended to adopt
innovative and alternative testing approaches to ensure the quality
control of herbal products (Simmler et al., 2018; Thakkar et al., 2020;
Abraham and Kellogg, 2021). In recent years, high-throughput
sequencing (HTS) methods have revolutionized our ability to
provide insights into the total species diversity in DNA mixtures.
After two decades of remarkable progress, the concept of standard
DNA barcoding has significantly expanded. This article discusses
the latest advancements in emerging DNA barcoding-based
technologies and the potential opportunities they offer as taxa
detection tools for evaluating the safety and quality of dietary
supplements and herbal medicines (See Figure 1 and Table 1).

State-of-the-art—DNA barcoding

DNA barcoding is an identification system that uses short and
standardized regions of the genome, known as “barcodes”, as
advocated by Hebert et al. (2003). The concept is
straightforward—when a DNA barcode is obtained from a
taxonomically unknown specimen, a computational algorithm
compares it against a reference database containing reference
sequences with known taxonomy to identify the targeted barcode.
The technique operates on the assumption that the level of
intraspecific genetic divergence is lower than the interspecific
genetic divergence, forming a cut-off threshold, the “barcoding
gap” (Meyer and Paulay, 2005). A query sequence is considered
to be distinct from a reference sequence if the difference is above this
threshold (Hebert et al., 2003; Meyer and Paulay, 2005). Different
loci from chloroplast and nuclear genomes (e.g., trnH-psbA, rbcL,

FIGURE 1
DNA-based methods for quality control and monitoring of herbal preparations. Created with BioRender.com.
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matK, ycf5, ITS2) have been proposed for medicinal plant DNA
barcoding (Chen et al., 2010).

The application of DNA barcoding has been a significant
breakthrough for both the research community and industry,
enabling it to address a range of questions that were previously
impossible to answer. Standardized DNA barcoding protocols have
been proposed for the identification of plant material by
Pharmacopeias around the world, including the Chinese,
United States, Japanese, and British Pharmacopoeias (Howard
et al., 2009; Kreuzer et al., 2019; Ha et al., 2022; Wu and Shaw,
2022). The utility of DNA barcoding to detect adulteration has been
shown in studies on herbal products derived from Ginkgo biloba L.
(Little, 2014a), Actaea racemosa L. (Baker et al., 2012), and species
belonging to the genera Senna and Cassia (Seethapathy et al., 2014),
among others (Ghorbani et al., 2015; Hart et al., 2016). It has been
applied also to detect common adulterants of endangered species
used in herbal medicines (e.g., genus Panax) (Zuo et al., 2011;
Wallace et al., 2012), and to identify species with a high toxic or
allergenic potential present in marketed herbal products (Wallace
et al., 2012; Seethapathy et al., 2014; Wang et al., 2017). While DNA
barcoding is particularly useful for molecular identification and

traceability of raw materials (Galimberti et al., 2013), this method
is not always effective in detecting species substitution or
adulteration in mixed DNA samples and with high levels of
DNA degradation (Raclariu et al., 2018). DNA barcoding does
not have the capacity to screen for chemical compounds, thus
has no capacity to test the presence of toxic constituents or
synthetic substances that may be present within the herbal products.

DNA barcoding coupled with high-
resolution melting (Bar-HRM)

Bar-HRM is a cost-effective, sequence-independent technique
that rapidly and accurately authenticates crude herbal materials
post-PCR. Initially developed by Jaakola et al. (2010) for the
authentication of berries, it has since been extensively applied to
identify herbal medicines (Sun et al., 2016). Unlike DNA barcoding
which utilizes specific and standardized genomic regions as genetic
barcodes to differentiate species, HRM detects sequence variations
by analyzing DNAmelting curves. Combined, they enable rapid and
accurate species identification, particularly in complex

TABLE 1 Comparison of the DNA-based methods for quality control and monitoring of herbal preparations.

Analysis
cost per
sample

Universality Species
diversity
assessment

Degraded
DNA

PCR
free

Sequencing
free

Sample
multiplexing

Portable Detection of
untargeted
plant
species in
complex
samples

DNA
barcoding

✓ ✘ ✘ ✘ ✘ ✘

Bar-HRM ✘ ✓ ✘

DNA
metabarcoding

✓ ✓ ✘ ✘ ✓ ✘ ✓

DNA mini-
barcoding

✓ ✘ ✓* ✓* ✘

ddPCR/dPCR ✘ ✓* ✓ ✘

LAMP ✓ ✓ ✓

BAR-RPA ✓ ✓ ✓

Microfluidics
LAMP

✓ ✓ ✓ ✓

CRISPR-
microfluidic

array

✓* ✓* ✓ ✓

MEBarcoding ✘ ✘ ✓ ✘

Genome
skimming

✘ ✓ ✓ ✓ ✓ ✘ ✓ ✘ ✓

Target capture
sequencing

✘ ✓ ✓ ✓ ✓ ✘ ✓ ✘ ✓

MinION DNA
metabarcoding

✓ ✓ ✘ ✘ ✓ ✓ ✓

Note: DNA based methods were “roughly” compared to highlight their clear benefits and/or limitations. The (✓) symbol highlight a clear advantage or benefit of the method, and the (✘) symbol

highlight a clear downside or limitation.When lacking information, or when the method did not showcase a clear benefit or limitation for the given characteristic, no symbol was added.When *

is indicated, the method can be applied by using more than one analytical approach and the assessment may vary accordingly.
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environmental samples where morphological methods may be
challenging. For instance, Kalivas et al. (2014) used Bar-HRM
combined with ITS2 barcode to identify Sideritis species, while
Song et al. (2016) discriminated Artemisa species and
authenticated commercial products in China. Using rbcL Bar-
HRM primers, Osathanunkul and Madesis (2019) differentiated
edible and poisonous ginseng species, Osathanunkul et al. (2015)
authenticated medicinal Acanthaceae species commonly used in
Thailand and Tungphatthong et al. (2021) tested various Bar-HRM
barcodes to identify Mitragyna speciosa (Korth.) Havil., a species
prohibited in Thailand.

DNA metabarcoding

DNAmetabarcoding is a cutting-edge technique that combines the
traditional concept of DNA barcoding with high-throughput
sequencing (HTS), allowing for the identification of multiple taxa
from complex mixtures and matrices containing DNA from
different sources (Taberlet et al., 2012; Raclariu et al., 2018). In the
field of herbal product authentication, DNA metabarcoding has a
significant advantage over traditional DNA barcoding due to its
ability to identify many species from complex mixtures and matrices
at any stage of processing or production (de Boer et al., 2015; Raclariu
et al., 2018). It is highly effective in assessing total species diversity in
processed/finished products, in post-marketing control and
pharmacovigilance, and has been successfully applied in several
studies to reveal a disturbing prevalence of adulteration (Ichim,
2019). The use of undeclared plant fillers or accidental substitution
materials is among the suspected causes of the high number of
adulterated commercial products (Coghlan et al., 2012; Coghlan
et al., 2015; Ivanova et al., 2016; Raclariu et al., 2017; Seethapathy
et al., 2019). In some cases, DNA metabarcoding identified species
protected by the Convention on International Trade in Endangered
Species ofWild Fauna and Flora (CITES) (Coghlan et al., 2015; de Boer
et al., 2017), and a multi-locus DNA metabarcoding method has been
developed to detect these species (Arulandhu et al. (2017). Additionally,
DNA metabarcoding allows the detection of species with high toxicity
and allergenic potential in herbal products (Cheng et al., 2014;
Speranskaya et al., 2018; Anthoons et al., 2021; Frigerio et al., 2021).

Current research gaps

DNA metabarcoding is an extremely sensitive technique,
capable of identifying trace amounts of contamination, such as a
single grain of pollen (Polling et al., 2022). However, the
quantification of abundance is complicated by a range of factors
that can lead to false positive detections. These can include
contamination, adulteration, amplification bias, sequencing
errors, and errors in reference databases used for taxonomic
assignment (Hawkins et al., 2015). To minimize the risk of false
positive detections, biological and technical replicates should be
used, and strict bioinformatics filtering criteria should be applied
(Ficetola et al., 2015). On the other hand, degraded DNA caused by
harvesting, drying, storage, transportation, and processing (Novak
et al., 2007), difficulties in DNA extraction due to the presence of
pharmaceutical excipients (Costa et al., 2015), poor primer fit and

amplification biases (Piñol et al., 2015), stochasticity due to low
DNA concentrations (Giguet-Covex et al., 2014), or incomplete
reference databases may lead to false negative results. To overcome
these challenges and to ensure the quality of the DNA barcoding
procedure, the use of reference standards as positive controls for
DNA extraction and PCR is highly recommended (Sgamma et al.,
2017). Moreover, the use of a positive control library based on
synthetic DNA molecules (gBlocks) has been shown to be a good
strategy (Sgamma et al., 2018; Howard et al., 2020a; Howard et al.,
2020b).

Current developments and horizon
scan

DNA mini-barcoding

DNA mini-barcoding is an efficient identification method target
short (≤200–300 bp) DNA regions that have the capacity to overcome
some limitations of conventional DNA barcoding related to DNA
fragmentation in herbal ingredients and processed products (Meusnier
et al., 2008; Little, 2014b). The approach has a significant species
identification potential in samples that contain degraded DNA and/
ormore than one species (Gao et al., 2019). Various strategies have been
applied to develop specific mini-barcodes to be used for species
identification in herbal products. Howard et al. (2009) proposed
species-specific DNA mini-barcodes to discriminate Hypericum
perforatum L. from other closely related Hypericum spp., and these
are able to detect even low amounts of targeted DNA. The use of
multiplex DNA metabarcoding of multiple mini-barcode loci has
shown promising taxon identification potential in complex samples
with heavily degraded DNA, and such approaches are applicable to
monitor the illegal trade of endangered plant and animal species used in
traditional medicines (Arulandhu et al., 2017). Yu et al. (2020) used
specific mini-barcodes targeting chloroplast sequences combined with
metabarcoding for qualitative and quantitative estimation of Senna
obtusifolia (L.) H. S. Irwin and Barneby in processed herbal products.

Droplet digital PCR (ddPCR) and digital PCR
(dPCR)

Droplet digital PCR (ddPCR) and digital PCR (dPCR) are
powerful techniques that allow to detect and quantify DNA or
RNAmolecules in a sample. Following the partition of a sample into
thousands of nanoliter-sized droplets or partition (using either
emulsion or microfluidic-based approaches), a fluorescence
reading of each droplet/partition allows accurate detection and
quantification of low-level target DNA, even in the presence of
inhibitors in complex samples. Compared to quantitative PCR,
ddPCR offers numerous benefits, including higher sensitivity and
precision, as well as an absolute measure of nucleic acid
concentration without the need for standard curves (Hindson
et al., 2011; Pinheiro et al., 2012; Hindson et al., 2013). Fit-for-
purpose approaches are increasingly used to quantify DNA targets at
low levels in various applications (Pinheiro et al., 2012), with ddPCR
being used to identify and quantify animal species in meat and meat
products (Floren et al., 2015). ddPCR has been applied to herbal
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product authentication, and several studies highlighted its potential.
Yu et al. (2020), Yu et al. (2022) developed assays targeting
respectively Panax ginseng C.A.Mey. (ginseng), Oryza sativa L.
(rice), and Glycine max (L.) Merr. (soybean), to enable their
detection and quantification in complex mixtures, and Xu et al.
(2022) detected and quantified low levels of adulterants, i.e., Mu
Tong (Akebia quinata (Houtt.) Decne.) and Aristolochia
manshuriensis Kom., which contain several aristolochic acids,
which are known carcinogens able to cause kidney toxicity.
Unlike qPCR which is sensitive to inhibition and only provides
relative quantification, ddPCR enables absolute quantitative
evaluations from low amounts of the target DNA even in the
presence of chemical and protein contaminants or inhibitors
(Techen et al., 2014; Taylor et al., 2017).

Loop-mediated isothermal amplification
(LAMP)

Loop-mediated isothermal amplification (LAMP) was first
introduced as an alternative to PCR-based methods by Notomi
et al. (2000) and amplifies target-specific DNA sequences under
isothermal conditions without significant interference from a non-
target template. Compared to PCR-based methods, LAMP is more
sensitive and specific (Craw and Balachandran, 2012), does not require
expensive equipment or special molecular techniques (Li et al., 2016),
and can enable on-site analysis (Kogovšek et al., 2015; Sillo et al., 2018;
Köppel et al., 2019). These advantages have led to the rapid adoption of
LAMP in various fields, including food safety testing for foodborne
pathogens (Niessen et al., 2013; Law et al., 2014; Zhong and Zhao,
2018), genetically modified organisms (Singh et al., 2019), and food
allergens such as Pistacia vera L. (pistachio), Glycine max (L.) Merr.
(soybean), and Arachis hypogaea L. (peanut) (Sheu et al., 2018;
Allgöwer et al., 2020; Mao et al., 2020). Li et al. (2016) reviewed the
potential of LAMP for identifying raw medicinal plant materials and
proposed a practical Standard Operating Procedure (SOP) for utilizing
LAMP in herbal authentication. LAMP has been used for identifying
and authenticating medicinal plants such as Curcuma longa L.,
Catharanthus roseus (L.) G. Don., Hedyotis diffusa Willd., Zingiber
officinale Roscoe, and Taraxacum formosanum Kitam. (Sasaki and
Nagumo, 2007; Chaudhary et al., 2012; Li et al., 2013; Chaudhary and
Khan, 2014; Lai et al., 2015). While Zhao et al. (2016) developed ITS2-
specific LAMP primers targeting Crocus sativus L. (saffron) to enable
simple and sensitive differentiation from adulterants, Fochi et al. (2022)
developed a LAMP-based diagnostic protocol for the authentication of
food supplements made from the edible fungus Grifola frondosa
(Dicks.) Gray (“Maitake”). This was successfully tested on
commercial products, demonstrating its potential for routine
inspections at any level of the production chain.

DNA barcode-based recombinase
polymerase amplification (BAR-RPA)

DNAbarcode-based Recombinase Polymerase Amplification (BAR-
RPA) is a technique that uses recombinase, polymerase, and single-
stranded binding proteins (SBB) to rapidly amplify genetic markers in as
little as 15–20min under a constant temperature of 37°C–42°C.Without

the need for thermocyclers, this innovative approach can replace the
traditional PCR technique’s unwinding chain process (Piepenburg et al.,
2006; Lobato and O’Sullivan, 2018). Tian et al. (2017) developed a BAR-
RPA assay to authenticate Traditional Chinese Medicine (TCM)
products containing Wu Zhi Mao Tao, the roots of Ficus hirta Vahl.
a valuable medicine and food ingredient found in China and effectively
identifiedGelsemium elegans (Gardner andChapm.) Benth, a neurotoxic
species often used as an adulterant in Wu Zhi Mao Tao.

Microfluidics-based methods

Microfluidics, also known as a “laboratory on a chip,” is an
advanced system that manipulates small amounts of fluid flowing in
microscale channels with multidisciplinary applications
(Whitesides, 2006). This system can integrate complex nucleic
acid detection processes on a single chip with reduced
operational time, low-cost consumption of samples and reagents,
high capacity for multiplexing assays, and portability (Chen et al.,
2022; Gao et al., 2022; Li et al., 2023). A variety of microfluidic
devices have been developed for the rapid and efficient detection of
foodborne pathogens, allergens, toxins, heavy metals, pesticide
residues, additives, and other chemical and physical
contaminants (Weng and Neethirajan, 2017; Chandrasekaran
et al., 2022; Li et al., 2023). While recent research advances and
typical microfluidic chip technologies have been summarized in Li
et al. (2023), Jia et al. (2022) discussed the potential opportunities
that microfluidic technology offers for pharmaceutical analysis, such
as drug quality control, drug screening, and precision medicine.

Microfluidics and loop-mediated isothermal
amplification (microfluidics-based LAMP)

Fang et al. (2010) introduced the microLAMP (μLAMP) system,
integrating nucleic acid LAMP into an 8-channel microfluidic chip,
enabling the quantitative detection of pathogens in just an hour using a
low amount of extractedDNA. Similarly, Sun et al. (2015) developed an
8-chamber lab-on-chip system that can detect and quantify Salmonella
spp. in food samples. This platform performs on-chip sample
preparation using magnetic beads and loop-mediated isothermal
amplification (LAMP) for bacterial detection and can analyze eight
Salmonella-spiked buffered peptone water (BPW) enriched pork meat
samples within 40 min with a low Limit Of Detection (LOD) of 50 cells
per test. Yuan et al. (2018) developed a colorimetric LAMPmicrofluidic
chip-basedmethod for detecting the allergen genes ofArachis hypogaea
L. (peanut), Sesamum indicum L. (sesame), and Glycine max (L.) Merr.
(soybean). The method has been successfully tested for various
commercial foods (biscuits and candies), but could also be
transferred to testing herbal products and dietary supplements.

Clustered regularly interspaced short
palindromic repeats (CRISPR)-microfluidic
array

The development of Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) based biosensors has
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revolutionized the rapid detection of nucleic acids, allowing for
faster diagnosis of infectious pathogens (Kellner et al., 2019; Li et al.,
2021a) and identification of DNA or miRNAs from cancer cells (Li
et al., 2021b). These biosensors have been further advanced through
their integration with microfluidic platforms (Chen et al., 2022),
with recent progress in this area reviewed by Li et al. (2022). Notably,
Li et al. (2022) successfully developed a CRISPR-microfluidic array
that enabled the identification of single-copy DNA mini barcodes,
allowing for highly sensitive and specific discrimination of closely
related Datura (Solanaceae) species.

Microfluidic enrichment barcoding
(MEBarcoding)

Gostel et al. (2020) proposed the Microfluidic Enrichment
Barcoding (MEBarcoding) technique for plant high-throughput
DNA barcoding. This innovative approach allows for the
amplification of 48 DNA samples and hundreds of PCR primer
pairs in a single thermal cycling protocol, using the Fluidigm Access
Array. In their study, the authors successfully tested 96 samples
using rbcL, matK, trnH-psbA, and ITS1 and 2 as barcode loci. The
authors emphasized that MEBarcoding provides an efficient and
viable alternative to traditional PCR and Sanger sequencing,
particularly when a new barcode marker needs to be used to
rapidly construct a customized reference library.

Genome skimming (shallow pass shotgun
sequencing)

Genome skimming is a technique that utilizes high-throughput
sequencing (HTS) to sequence the genome at low coverage for the
assembly of organellar genomes and nuclear ribosomal DNA
sequences (Straub et al., 2012), allowing the capture of
commonly used DNA barcoding markers (Coissac et al., 2016;
Hollingsworth et al., 2016). High-throughput sequencing with the
purpose of genome assembly requires high quality DNA, but for
several genome skimming approaches, lower-quality DNA will
suffice (Dodsworth, 2015). Such skimming approaches are
sufficient to extract and assemble organelles genomes or identify
species through k-mer analysis. Genome skimming has been
successful in producing the entire nuclear genome of a 43-year-
old Arabidopsis thaliana (L.) Heynh. herbarium specimen and the
nuclear genome sequence of 80-year-old fungi (Staats et al., 2013),
and recovered rDNA and plastid genome sequences of 80-year-old
herbarium specimen using low concentrations of degraded material
(Zeng et al., 2018). It has also been used in herbal product
authentication to overcome the limitations of standard DNA
barcoding and metabarcoding (Wu and Shaw, 2022). For
instance, (Handy et al., 2021), compared the performance of
DNA metabarcoding, genome skimming, and HPLC-UV analysis
to authenticate 20 commercially available dietary supplements
containing Echinacea. They found that genome skimming was
more effective than DNA metabarcoding for species-level
authentication within the Echinacea genus. However, the high
operational cost of genome skimming currently limits its
application (Manzanilla et al., 2022). Despite this limitation, the

PCR-free approach of genome skimming bypasses some of the
constraints of conventional barcoding, particularly concerning the
limited number of barcodes used and the degraded DNA often
present in herbal products (Wu and Shaw, 2022). For instance, Xin
et al. (2018) performed shotgun sequencing of the Chinese herbal
medicine Longdan Xiegan Wan and authenticated the raw material
and products using ITS2, psbA-trnH, and matK sequences.

Target capture sequencing

Target capture sequencing is a cost-effective alternative for
genome subsampling, enabling high-throughput sequencing
(HTS) of preselected nuclear loci (Gnirke et al., 2009;
Andermann et al., 2019). This method has been successfully used
to retrieve hundreds of genes from highly degraded DNA in
herbarium specimens (Hart et al., 2016; Brewer et al., 2019) and
in plant clades where traditional DNA barcoding has limited
resolution (Widhelm et al., 2019; Woudstra et al., 2021).
Universal target capture tools have improved the phylogenomic
resolution at the species level of several plants (Johnson et al., 2019;
McDonnell et al., 2021). For example, Manzanilla et al. (2022) used
target capture genomic barcoding to identify and establish the
geographic origin of the medicinal plant species, Anacyclus
pyrethrum (L.) Lag., listed as Vulnerable on the IUCN Red List
of Threatened Species. Although both target capture and genome
skimming of plastomes resulted in similar numbers of reads per
sample, target capture outperformed the latter. Despite its efficacy in
handling low-quality DNA samples, the cost of target capture
sequencing impedes its routine application for identifying
commercialized plant species, as discussed for genome skimming.
However, Woudstra et al. (2021) designed an RNA-bait panel
targeting 189 low-copy nuclear genes that allows for accurate
molecular identification of species from the genus Aloe L. This is
particularly useful for the conservation and sustainable use of Aloe-
derived products, as many Aloe species are regulated by the
Convention on International Trade of Endangered Species
(CITES). Additionally, Le et al. (2022) captured 353 nuclear
markers using 319 individuals to evaluate the genetic diversity
within cultivated and wild populations of Panax vietnamensis Ha
and Grushv, an endemic and threatened ginseng species in Vietnam.

MinION-based DNA metabarcoding

The MinION DNA sequencer, a portable device from Oxford
Nanopore Technologies (ONT), has the ability to sequence
individual DNA molecules as they pass through biological
nanopores under an applied electrical field (Loman and Watson,
2015). Although the high error rate of MinION is currently a
limiting factor, it is a promising technology for fast detection
that can significantly reduce sequencing costs. To date, there are
no reports on the use of MinION for herbal product authentication.
However, Voorhuijzen-Harink et al. (2019) developed and evaluated
a MinION-based DNA metabarcoding protocol using full-length
DNA barcodes cytb and COI to identify fish species in two
experimental mixtures. The performance was compared to
Illumina MiSeq sequencing, and both technologies achieved the
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correct identification of all expected species with no false positive
detections.

Discussion

Over the last two decades, DNA-based methods have made a
significant contribution to the quality control of the
commercialization chain of herbal products. Early studies
demonstrated the potential of the method and highlighted issues
related to adulteration as well as the sensitivity of the technique (de
Boer et al., 2015; Parveen et al., 2016; Sgamma et al., 2017; Ichim,
2019). The advent of DNA metabarcoding has provided additional
tools for authenticating taxa in herbal products and assessing species
diversity in complex herbals (Coghlan et al., 2015; Ivanova et al.,
2016; Raclariu et al., 2017; Raclariu et al., 2018; Seethapathy et al.,
2019). However, both DNA barcoding and DNA metabarcoding
have limitations (Raclariu et al., 2018). One of these is the inability to
detect negatives, which makes it challenging to determine whether
an ingredient is absent or its DNA is undetectable (Novak et al.,
2007; Costa et al., 2015; Raclariu et al., 2018). Additionally, false
positives can occur, resulting in the detection of species that might
be present in trace amounts in the production process or
contaminations from environmental DNA (Ficetola et al., 2015).
Recent research in DNA metabarcoding has focused on developing
methods for quantifying herbal product ingredients, yielding
meaningful results in a regulatory framework. Techniques,
such as LAMP, BAR-RPA, and Bar-HRM, have made DNA-
based methods more affordable as they require less costly
equipment. Calibrated approaches of Bar-HRM also enable
relative quantification of ingredients (Kalivas et al., 2014; Song
et al., 2016; Osathanunkul and Madesis, 2019; Tungphatthong
et al., 2021). Similarly, microfluidics-based methods offer tailored
tests for the detection of target species at a potentially low cost (Li
et al., 2023). Genomic barcoding approaches, such as target
capture sequencing and genome skimming, are increasing the
species identification resolution of DNA-based methods,
enabling the distinction at an unprecedented scale of closely
related species and even populations (Handy et al., 2021;
Woudstra et al., 2021; Le et al., 2022; Manzanilla et al., 2022).
Although many of these technologies are still at a proof-of-

concept stage, it is challenging to predict which methods will
find a role in routine quality control applications. One of the most
promising of these is perhaps ddPCR, which enables the absolute
quantification of DNA in samples and could be used to calibrate
and quantify the amount of DNA from both intended and
unwanted ingredients (Taylor et al., 2017; Xu et al., 2022; Yu
et al., 2022). It is important to bear in mind that most of these
tools yield specific and complementary data. Finding the right
tool or tools to answer the specific research, monitoring or
regulatory question at hand is key to harnessing the power of
this expanding toolbox of DNA-based molecular methods.
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