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Background: As artificial intelligence (AI) continues to advance with
breakthroughs in natural language processing (NLP) and machine learning (ML),
such as the development of models like OpenAI’s ChatGPT, new opportunities are
emerging for efficient curation of electronic health records (EHR) into real-world
data (RWD) for evidence generation in oncology. Our objective is to describe the
research and development of industry methods to promote transparency and
explainability.

Methods: We applied NLP with ML techniques to train, validate, and test the
extraction of information from unstructured documents (e.g., clinician notes,
radiology reports, lab reports, etc.) to output a set of structured variables
required for RWD analysis. This research used a nationwide electronic health
record (EHR)-derived database. Models were selected based on performance.
Variables curated with an approach using ML extraction are those where the value
is determined solely based on an ML model (i.e. not confirmed by abstraction),
which identifies key information from visit notes and documents. Thesemodels do
not predict future events or infer missing information.

Results: We developed an approach using NLP and ML for extraction of clinically
meaningful information from unstructured EHR documents and found high
performance of output variables compared with variables curated by manually
abstracted data. These extraction methods resulted in research-ready variables
including initial cancer diagnosis with date, advanced/metastatic diagnosis with
date, disease stage, histology, smoking status, surgery status with date, biomarker
test results with dates, and oral treatments with dates.
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Conclusion:NLP and ML enable the extraction of retrospective clinical data in EHR
with speed and scalability to help researchers learn from the experience of every
person with cancer.

KEYWORDS

electronic health records, cancer, oncology, real-world data, machine learning, natural
language processing, artificial intelligence

Introduction

A barrier to generating robust real-world evidence (RWE) is
access to research-ready datasets that demonstrate sufficient
recency, clinical depth, provenance, completeness,
representativeness and usability. Health outcomes must be
appropriately defined and consistently measured. For studies
using routinely collected electronic health record (EHR)-derived
data, a considerable amount of data preprocessing and labor-
intensive curation is required to create a dataset with clinically
meaningful variables and outcomes needed for analysis (Figure 1).

The challenge is that so much valuable information is trapped
within unstructured documents like clinician notes or scanned faxes
of lab reports, where extracting the relevant data is far from trivial.
The traditional approach to having clinical experts manually review
patient charts to abstract data is time consuming and resource
intensive (Birnbaum et al., 2020). This approach limits the
number of patients available for research purposes. Learnings can
quickly become outdated—for example as new biomarkers and
treatments emerge, the standards of care change, or new
indicators for social determinants of health are prioritized. In
other instances, answers to important research questions remain
infeasible due to limited sample sizes.

Artificial intelligence (AI) advances in the areas of natural
language processing (NLP) and machine learning (ML) have
created new opportunities to improve the scale, flexibility, and
efficiency of curating high-quality real-world data (RWD) in

oncology (Bhardwaj et al., 2017; Bera et al., 2019; Datta et al.,
2019; Koleck et al., 2019; Shah et al., 2019; Wang et al., 2019;
Bertsimas andWiberg, 2020; Karimi et al., 2021; Subbiah, 2023). The
definitions of foundational AI/ML terminology are provided in
Table 1. When using ML and NLP for RWE, current guidance
emphasizes transparency (NICE, 2022; Norgeot et al., 2020; Center
for Drug Evaluation and Research Center for Biologics Evaluation
and Research Oncology Center of Excellence; Padula et al., 2022;
Blueprint for trustworthy AI implementation guidance and
assurance for healthcare, 2022). The United Kingdom National
Institute for Health and Care Excellence instructs that “where
human abstraction or artificial intelligence tools are used to
construct variables from unstructured data, the methods and
processes used should be clearly described.” (NICE, 2022).

In response to guidance, the objective of this paper is to describe
the general approach for applied NLP andMLmethods that are used
by Flatiron Health to extract data from unstructured documents
stored in oncology care EHR. A key distinction in our terminology is
the use of “abstraction” meaning performed by humans and
“extraction” meaning performed by models. Out of scope for this
paper are other AI, ML, and NLP innovations and contributions
from Flatiron Health, such as: model-assisted cohort selection
(Birnbaum et al., 2019; Birnbaum et al., 2020); continuous bias
monitoring software (Birnbaum et al., 2023); automated mapping of
laboratory data (Kelly et al., 2022); prediction of future health events
(Chen et al., 2019); and point-of-care products to improve patient
care and clinical trials (Lakhanpal et al., 2021; Coombs et al., 2022).

FIGURE 1
Overview of data variables defined by structured and unstructured information in EHR.
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Materials and methods

Overview

We developed a set of research analysis variables using
information from the documents available in patient charts.
Variables were selected for exploration of ML extraction if
commonly required for retrospective observational studies in
oncology, but not consistently available in claims data or
structured EHR data, and high-quality training data were
available that had been manually curated by experts to produce a
large amount of abstracted data available for training models
(Haimson et al.).

The variables curated through our ML extraction approach are
those where the values are solely derived from the identification of
clinical details in the EHR documents by an ML model in
combination of NLP techniques and rules-based logic. It is
important to note that these values are not predictions or
inferences, but rather a direct extraction of information that is
clearly documented in the EHR.

EHR-derived data source

This study used the nationwide Flatiron Health EHR-derived
de-identified database. The Flatiron Health database is a

longitudinal database, comprising de-identified patient-level
structured and unstructured data (Birnbaum et al., 2020; Ma
et al., 2023). At the time of this research, the database included
de-identified data from approximately 280 US cancer practices
(~800 distinct sites of care).

Structured and unstructured data modalities are available in
the database. EHR structured data elements include, but are not
limited to, documented demographics (e.g., year of birth, sex,
race/ethnicity, etc.), vitals (e.g., height, weight, temperature,
etc.), visits, labs, practice information, diagnosis codes,
medication orders, medication administrations, ECOG
performance status, health insurance coverage, and
telemedicine (Figure 1). EHR unstructured data and
documents include, but are not limited to, paragraphs of
clinic visit notes, PDF scans of lab results, radiology images
with reports, pathology reports, and communications between
the patient and care team (Figure 2). For the purpose of this
paper, all the figures contain fictional representations of
documents, sentences, dates and patient IDs.

Patient population

The large general cross-tumor cohort includes all patients with
at least one International Classification of Diseases (ICD)-9 or ICD-
10 cancer code and at least one unique-date clinic encounter

TABLE 1 Key terms in machine learning.

Foundational machine learning (ML) definitions

• Class: One of the possible values that a binary or categorical variable can take

• Labels: The known classes associated with data used to train or evaluate an ML model

• ML-Extracted: Algorithmic extraction of data from documented evidence in the patient chart (either structured or unstructured) at the time of running the model. Techniques
include ML and natural language processing (NLP), in contrast to other data processing methods such as abstraction or derivation

• Model: An ML algorithm with a specific architecture and learned parameters that takes inputs (e.g., text) and produces outputs (e.g., extracted diagnosis)

• NLP: A field of computational systems (including but not limited to ML algorithms) that enable computers to analyze, understand, derive meaning from, and make use of
human language

• Score: A continuous output from a model that can be interpreted as the model-assigned probability that a data point belongs to a specific class

• Threshold: A cutoff value that defines classes when applied to continuous scores. Binary variables (e.g., whether a patient has had surgery) have a natural default threshold of
0.5, but different thresholds might be leveraged depending on the relative tolerance for false positives vs false negatives required

Performance metric definitions

• Sensitivity (Recall): The proportion of patients abstracted as having a value of a variable (e.g., group stage = IV) that are also ML-extracted as having the same value

• Positive predictive value (PPV) (Precision): The proportion of patients ML-extracted as having a value of a variable (e.g., group stage = IV) that are also human abstracted as
having the same value

• Specificity: The proportion of patients abstracted as not having a value of a variable (e.g., group stage does not = IV) that are also ML-extracted as not having the same value

• Negative predictive value (NPV): The proportion of patients ML-extracted as not having a value of a variable (e.g., group stage does not = IV) that are also abstracted as not
having the same value

• Accuracy: The proportion of patients where the ML-extracted and abstracted values are identical. For variables with more than 2 unique values (e.g., group stage), accuracy
within each class is calculated by binarizing the predictions (e.g., for Accuracy of group_stage = IV, all abstracted and ML-extracted values would be defined as either “IV” or
“not IV”

• F1 Score: Computed as the harmonic mean of sensitivity and PPV. For a binary classifier, the threshold that maximizes F1 can be considered the optimal balance of sensitivity
and PPV.
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documented in the EHR (reflected by records of vital signs,
treatment administration, and/or laboratory tests) on or after
1 January 2011. The distribution of patients across community

and academic practices largely reflects patterns of care in the US,
where most patients are treated in community clinics, but can vary
between cancer types.

FIGURE 2
Examples of unstructured documents from EHR that are used as inputs for ML-extraction of information (all dates and patient IDs are fictitious).

FIGURE 3
Technology enabled expert abstraction. Abbreviations: P&Ps, Policies and Procedures. All dates and patient IDs are fictitious.
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Clinical expert abstraction of variables for
model development

Critical information in patient charts has been manually
abstracted by trained clinical experts (i.e., clinical oncology
nurses or tumor registrars), following a set of standardized
policies and procedures. To abstract data from patient charts, we
use a foundational technology (Shklarski et al., 2020) that enables
clinical experts to more easily review hundreds of pages of
documents to determine patient characteristics, treatments, and
outcomes documented in the EHR (Figure 3).

Years of manual abstraction by a workforce of thousands of
abstractors at Flatiron Health have created a large and high-quality
corpus of labeled oncology EHR data. Clinically-relevant details
specific to each cancer type are abstracted from every form of clinical
documentation available in the EHR, including clinic visit notes,
radiology reports, pathology reports, etc. Abstractors are trained to
locate and document relevant information by following policies and
procedures tested and optimized for reliability and reproducibility
through iterative processes, and oversight is provided by medical
oncologists.

The abstraction process undergoes continuous auditing to
monitor abstractor performance, while proprietary technology
links each curated data point to its source documentation within
the EHR, enabling subsequent review. At the individual patient level,
this approach provides a recent and robust longitudinal view into
the clinical course, capturing new clinical information as it is
documented within the EHR.

Flatiron Health has abstracted sets of clinically meaningful
variables from more than 300,000 people with cancer to develop
disease-specific de-identified research-ready databases (Ma et al.,
2023). Limited by the capacity of human abstractors, there had
remained millions of patients with cancer in the Flatiron Health
database for whom no unstructured data had yet been curated to
create variables with the clinical depth needed to generate
meaningful insights. If a hypothetical variable required 30 min of
chart review by a clinical expert to abstract the information of
interest for 1 patient, then it would take a team of 100 full-time
abstractors more than 7 years to finish defining 1 variable for a
population of 3 million patients.

Overview of machine learning extraction
approach

The objective of this application of NLP andMLmethods was to
replicate the expert abstraction process described in the previous
section. When developing MLmodels for extracting information, all
of the clinical abstractor expertise that was incorporated into the
manual abstraction of variables is available to learn from through
training. Once iterated upon and placed in production, ML models
can automate information extraction from unstructured clinical
data sources in a way that mimics expert clinical abstractors. The
models expand on previously established technology infrastructure
that includes deep learning architectures (Rich et al., 2023), text
snippet-based modeling approaches (Birnbaum and Ambwani), and
extraction of patient events and dates (Gippetti et al.; Ballre et al.,
2022; Rich et al., 2022).

Alongside the manually-abstracted labels, we use NLP to pull
relevant textual information from charts to use as inputs to train
built-for-purpose ML models and model architectures for a given
extraction task. Through this process we can make our end variables
appropriate for disease-specific or pan-tumor (i.e., histology-
independent) applications. For example, by deciding whether or
not to use model training data sourced from curated disease-specific
cohorts or any-cancer cohorts, we can make our model’s output
variables built-for-purpose to be used in an analysis that generates
meaningful RWE for a specific research question.

A range of model architectures were evaluated and considered
for the purpose of information extraction for variables of interest.
The model output of variable classes ranged, including:

• binary (e.g., metastatic diagnosis Yes/No)
• categorical unordered (e.g., never smoker, history of smoking,
current smoker)

• categorical ordered (e.g., cancer stage I-IV)
• date (e.g., 02/05/2019 start of oral treatment X)

Date and classification can come from the same model, separate
models, or connected models.

Natural language processing to generate
model inputs

For each variable of interest, we begin with clinical experts
constructing a list of clinical terms and phrases related to the
variable. Since models are trying to extract explicit information
from charts, rather than infer it, only terms that are directly relevant
to a specific variable are included (e.g., when extracting a patient’s
histology, terms could include “histology,” “squamous,” and/or
“adenocarcinoma,” but do not include treatment or testing terms
from which the histology might be indirectly inferred).

Next, we use NLP techniques to identify sentences in relevant
unstructured EHR documents (e.g., oncology visit notes, lab reports,
etc.) that contain a match to one of the clinical terms or phrases. The
approach uses optical character recognition (OCR) systems to extract text
from PDFs, faxes, or scans containing images; the text is then searched
for relevant clinical terms. The contextual information surrounding the
clinical term is critical because the words at the beginning of a sentence
may change the interpretation of a key word at the end of a sentence.ML
models can understand if the clinical concept appears and under what
context—such as, if negativity, speculation, or affirmation exists in the
surrounding clinical terms (i.e., snippets). Where applicable, any
associated dates within these sentences are also identified. These
sentences are then transformed into a mathematical representation
that the model can interpret. The output of this document processing
is a broad set of features aimed at fully capturing document structure,
chronology, and clinical terms or phrases.

Machine learning model development

Features and labels
The features defined by NLP become the inputs provided to the

model to score the likelihood that a given patient document is
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associated with each class of a particular categorical variable (e.g.,
histology categories of non–squamous cell carcinoma, squamous cell
carcinoma, non–small cell lung cancer [NSCLC] histology not
otherwise specified). The final model output is the variable value
for each patient. The labeled dataset is commonly split into three
subsets: a training set, a validation set, and a test set. The training
and validation sets are used to build the model, which often involves
an iterative development process, while the test set is used to
evaluate the performance of the final ML model.

Model development
The training set comprises labeled data points that are used to

optimize the model’s parameter values. In an iterative process,
training examples are provided to the model, its outputs are
compared to the labels, and the parameter values are adjusted in
response to errors. By using manually-abstracted values as labels, the
objective of this process is for the model to learn what answer a
human abstractor would give when reading a specific clinical text.

The validation set is used to assess how well the model has
learned these associations. Because the model does not see any data
from patients in the validation examples during training, they can be
used to estimate how it will perform on new, unlabeled examples
once it is put into production. Validation performance is commonly
assessed using metrics such as precision, recall, and F1 score (See
Table 1 Key Terms in Machine Learning). These aggregate metrics,
combined with review of individual errors, inform decisions about
search terms, text preprocessing steps, and model architectures.
Experimentation continues until a final “best” model is identified.

When a ML model is trained to perform a classification task, it
outputs scores for each possible class for each data point. These
scores are between 0 and 1 and show the probability that a patient
belongs to each class, based on information in their electronic health
record. However, the scores may vary if the wording in the records is
unusual or if there is conflicting information. For example, if a
patient’s cancer stage is being restaged, there may be multiple
mentions of different stages in the record, and the model may
assign moderate scores to each stage if the restaging event is unclear.

To produce a discrete class value, the class with the highest score
is often chosen, but other approaches may optimize performance. In
particular, a probability threshold may be chosen such that a patient
will be classified into one class if and only if their score exceeds the
threshold. The optimal threshold depends on factors such as class
balance and is typically chosen empirically (Lipton et al., 2014).
When no class receives a sufficiently high score, another option is to
defer to abstraction to resolve uncertainty (Waskom et al., 2023).

We explored and experimented with a range of ML models and
architectures for the purpose of extracting specific variable
information from the EHR. Deep learning architectures included
long short-termmemory (LSTM), Gated recurrent units (GRU), and
bidirectional encoder representations from transformers (BERT)
(Hochreiter and Schmidhuber, 1997; Shickel et al., 2018; Devlin
et al., 2018). These models can learn thousands or millions of
parameters, which enable them to capture subtleties in the text.
They read sentences as a whole and use the words around a clinical
term to incorporate surrounding context when determining the
extracted class. When they receive very large texts as inputs, they can
figure out where the relevant information is and focus on this section
and its context.

For example, in LSTMs, words are passed into the model
sequentially; during each step through a sentence, the model has
access to memory (i.e., an internal state) that is impacted by the
previous word, in effect allowing the model to “remember” the
previous word (Figure 4). The LSTM block combines the new word
with the information that came before to derive a more contextually
rich representation of the word. For instance, when the LSTM reads
the word “Advanced,” it remembers (via the model’s internal state)
that it was preceded by the word “not” and is more likely to classify
the patient as “not advanced.”

Model evaluation and performance
assessment

Once iteration on the ML model is complete, final model
performance is measured on a test set that uses manually-
abstracted labels as the source of truth. Test sets are designed to
be large enough to power both top-level metrics and sub-group
stratifications on a “held out” set, that is, on data not used to train the
ML model or validate performance during prototyping. This allows
the test set to assess the model’s ability to correctly classify data
points that it has never seen before, which is typically referred to as
the “generalization” of the model.

Measuring performance is a complex challenge because even a
model with good overall performance might systematically
underperform on a particular subcohort of interest, and because
while conventional metrics apply to individual models, dozens of
ML extracted variables may be combined to answer a specific
research question. We use a research-centric evaluation
framework (Estévez et al., 2022) to assess the quality of variables
curated with ML. Evaluations include one or more of the following
strategies: 1) overall performance assessment, 2) stratified
performance assessment, and 3) quantitative error analysis, and
4) replication analysis. As variables curated with NLP and ML are
expected to be incorporated into the evidence generated that will
guide downstream decision-making, variable evaluation can also
include replication of analyses originally performed using abstracted
data. Replication analyses allow us to determine whether ML-
extracted data—either individual variables or entire datasets—are
fit-for-purpose in specific use cases by assessing whether they would
lead to similar conclusions.

Specific variable-level performance metrics are only
interpretable for cohorts with characteristics that are similar to
the test set, depending on inclusion criteria such as the type and
stage of cancer. As a result, we do not report them here.

Python was the primary coding language used in the
development of ML models described here. Institutional Review
Board approval of the study protocol was obtained before study
conduct, and included a waiver of informed consent.

Results

We successfully extracted key information from unstructured
documents in the EHR using the developed proprietary ML models
trained on large quantities of data labeled by expert abstractors. For
this paper, we are focusing the results on examples within NSCLC as
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they were the first applications we developed. A set of 10 MLmodels
output 20 distinct RWD variables for analysis, including initial
cancer diagnosis with date, advanced/metastatic diagnosis with
date, disease stage, histology, smoking status, surgery details,
biomarker test results, and oral treatments with dates. Language
snippets were the inputs for these models to produce a data point for
each patient for each variable as outputs, illustrated in Figure 5.

Datatables containing variables curated by an approach using
ML had the same appearance and functionality as variables curated
with an approach using technology-enabled expert human
abstraction (Figure 6).

Models had high performance when trained for disease-specific
applications as well as histology-independent (i.e., tumor agnostic)
patient cohorts. For example, the NSCLC specific Histology Type
model had a sensitivity of 96% and a PPV of 94% for extracting
non–squamous histology for patients with NSCLC. Detailed
performance metrics are out of scope for this paper. Beyond
satisfactory ML metrics, we found that in some cases ML-
extraction can achieve similar error rates as manual abstraction
by clinical experts (Waskom et al., 2023), and replication studies
suggest that research analysis relying on multiple variables can reach
similar results and conclusions when using variables curated by ML-
extraction compared with human experts (Benedum et al., 2022;
Sondhi et al., 2022; Benedum et al., 2023).

Approaches and learnings related to specific variables are
described below.

Application examples

We have developed ML models for a number of different
variables and use cases. A few of the more prominent models
and their associated use cases are described below.

Cancer diagnosis and dates
We successfully developed deep learning models focused on the

task of extracting initial, advanced, and metastatic cancer diagnosis

and the corresponding diagnosis dates. Historically, ICD codes have
been used as a proxy for diagnosis, as they are well captured in
structured EHR data due to their use in billing. However, we have
seen that the precision of ICD codes varies by disease, is not strongly
correlated with disease prevalence in the larger population, and can
be lower than 50%. With that in mind, extracting accurate diagnosis
information is imperative to understanding patient populations, as
errors at the diagnosis level propagate to all other variables. These
models build on prior foundational research on extracting
information from longitudinal clinic notes (Zhao et al., 2021;
Agrawal et al., 2018). The initial, advanced, and metastatic
variables are generated using multiple, distinct ML models. A
conceptual diagram of this approach used by the metastatic
variable is presented in Figure 7. We have found success
chaining the models together—providing the output of one
model as the input to the next—to prevent conflicting
predictions and improve overall accuracy. An early investigation
into model performance has been presented previously (Rich et al.,
2021).

Additional complexity exists when trying to identify patients
with rare cancers, primarily due to the low number of labels. We
have demonstrated that techniques such as generic token
replacement and leave-one-out validation can be effective in
combating these complexities—allowing our models to
successfully generalize to rare diseases, with few or no labels
provided during training from the target disease(s).

Disease stage and histology
We successfully developed a deep learning model to extract

cancer stage information and a second ML model to extract the
histology of the tumor. One example of how we used this approach
for a disease-specific application was training on patients with
NSCLC. This model was designed to extract main stage (I-IV)
and substage (letters A-C) granularity. Histology was extracted as
a non-ordered categorical variable with the possible variable values
of non–squamous cell carcinoma, squamous cell carcinoma, or
NSCLC histology not otherwise specified.

FIGURE 4
Illustration of deep learning bidirectional LSTM blocks applied sequentially to produce representations (aka, embeddings or encodings) that
encapsulate the information added to the sentence by each new word. Abbreviations: LSTM, long short-term memory.
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As cancer stage is documented similarly across solid tumor
diseases, we were able to scale our approach to extract disease stage
in a tumor-agnostic cohort with a similar deep learning architecture
but training data composed of patients with multiple cancer types.
While hematologic cancers have some important differences from
solid organ cancers when it comes to assigning stage (risk
stratification scores, no concept of metastatic disease, etc.), we
found success using a deep learning model to extract this
information for a number of hematologic cancers. Tumor
histology is not as straightforward to scale across cancer types, as
different cancers originate from different possible cell types (and
therefore have different histologies). This means that to date, we use
distinct histology models for each type of cancer. Performance
evaluations for disease stage and histology are conducted at each
category level and by cancer type as appropriate for use cases.

Smoking status
We successfully developed a deep learning model to extract

information in the patient chart that indicates whether or not the
patient has any lifetime history of smoking. The categorical variable

output has the possible values as history of smoking, no history of
smoking, or unknown. The most relevant sentences for this model
were most often found in social history paragraphs of text that is a
standard section in clinical encounter notes. Critical document
categories that enabled high accuracy of this model included
access to oncology clinic visit notes, radiology reports, surgery
reports, lab reports, and pulmonary test result reports. The
smoking status model was trained on a broad dataset of patients
that included many cancer types for whom we have abstracted
smoking status.

Surgery and surgery date
We successfully developed a deep learning model to extract

information about whether the patient had a primary surgical
procedure where the intent was to resect the primary tumor. As
these types of surgeries often happen in outpatient facilities or
hospitals, this valuable documentation lives in unstructured text
formats in the oncology EHR. We have abstracted surgery data in
certain disease cohorts but, because of the similarity in
documentation approaches across cancer types, we were able to

FIGURE 5
Sentences (fictional examples here) from EHR are inputs to deep learning models that produce a data variable value for each patient as an output.
Language snippets are only extracted around key terms fromwhich a variable might be extracted, and not around terms fromwhich it could be indirectly
inferred. Abbreviations: EHR, electronic health record; PD-L1, programmed death ligand 1. All dates and patient IDs are fictitious.
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train a model that is tumor agnostic. This allowed us to scale surgery
status and date in larger patient populations and in new disease
types.

Biomarker testing results and result date
We successfully developed and deployed models to generate

variables for biomarker testing, including extraction of the dates that
the patient had results returned (Figure 6). One part of the model is
able to identify whether or not a given document for a patient
contains a biomarker test result. A separate part of the model is able
to extract from the document the date a result was returned and the
biomarker result. Early efforts with a regularized logistic regression

model were presented previously (Ambwani et al., 2019) and more
sophisticated models have been developed since.

A model first cycles through every EHR document for a given
patient to understand whether or not the document contains
biomarker testing results. These models rely on access to lab
reports, including those saved in the EHR as a PDF or image of
a scanned fax. The models are able to process report documents
produced by different labs (e.g., Foundation Medicine, Caris,
Tempus, etc.,) in addition to the clinician interpretations in visit
notes.

A separate model then extracts the biomarker (e.g., included but
not limited to ALK, BRAF, EGFR, KRAS, MET, NTRK, RET, ROS1,

FIGURE 6
Illustration of a data table with variables curated by an approach using expert human abstractors (right) alongside a data table with variables curated
by an approach using deep learning models (left) shows opportunity for exchangeable utility in real-world data analysis. All dates and patient IDs are
fictitious.

FIGURE 7
Conceptual diagram of machine learning model for extraction of metastatic diagnosis and date.
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or PD-L1) and test result (e.g., positive, negative, or unknown). This
approach gives our ML models flexibility to extract biomarkers that
the model may not have seen before in training. For PD-L1, where
results are quantitatively reported, a separate ML model was
developed to extract percent staining, with classes of <1%, 1%–
49%, ≥49%, and unknown.

Since patients can receive biomarker testing multiple times
throughout the treatment journey and at multiple facilities, it is
possible that a given patient has more than one biomarker test result
and date. For each patient, this allows us to determine biomarker
status at different clinical milestones (e.g., advanced diagnosis date,
start of second-line treatment, etc).

Oral treatments and treatment dates
We successfully developed a deep learning model to extract

oral treatment information, including the treatment name, and
the span for which the treatment was administered. In contrast to
intravenous therapies such as chemotherapy or immunotherapy
in which each dose is ordered and administered to be given in the
clinic or infusion room, oral therapies are prescribed to patients
to be filled by an outpatient pharmacy, which is frequently
outside the clinic site. To have a complete understanding of
all cancer treatments received or delayed (e.g., postponed during
a hospitalization), it is necessary to enumerate the use of oral
treatments through review of unstructured clinician visit notes,
prescriptions, and communications with the patient or patient
representative. Important information to select within the
paragraphs of text include the treatment name, start date, and
end date. We previously published an initial framework (Agrawal
et al., 2018) for extracting drug intervals from longitudinal clinic
notes, prescriptions, and patient communication documents and
have developed more sophisticated and accurate methods since
then. We found the visit notes contained key pieces of
information about treatments being held or started when
patients were hospitalized.

The model is trained to select mentions of a specific list of
drug names used for oral treatment in the specific cancer type,
along with the start date and end date. These oral treatment
variables are generated using three distinct ML models. The list of
oral treatments of interest were specific to each disease and
defined by oncology clinicians. Expert abstraction from charts
includes policies and procedures for collection of treatment start
dates and discontinuation dates as both are needed to execute
many common RWE study designs. To be fit for purpose, ML
models were trained to extract both start and end dates of
treatments.

Discussion

This paper described one approach to curating real-world
oncology data variables from unstructured information in EHR
using NLP and ML methods. Model development was possible
with access to a large and high-quality corpus of labeled oncology
EHR data produced via manual abstraction by a workforce of
thousands of clinical expert abstractors over the course of several
years. We now have models that are able to meet or even exceed
human abstraction performance on certain tasks (Waskom et al.,

2023). Using a performance evaluation framework (Devlin et al.,
2018) for variables curated using the approach of ML extraction
we affirmed high quality and fitness-for-use in RWE generation.
We have shown that validations using the combination of
multiple ML-extracted variables in one RWD analysis
demonstrated no meaningful difference in RWE findings based
on replications with the Flatiron Health variables curated by ML
extraction compared with expert human abstraction (Forsyth
et al., 2018; Zeng et al., 2018; Jorge et al., 2019; Karimi et al., 2021;
Maarseveen et al., 2021; Benedum et al., 2022; Sondhi et al., 2022;
Yang et al., 2022; Benedum et al., 2023).

Crucial information about clinical details may be recorded only
within free-text notes or summaries in unstructured EHR
documents. Our models primarily rely on deep learning
architectures, because curating data from such sources usually
requires techniques that capture the nuances of natural language.
We select model architectures on a case-by-case basis depending on
what works best for each variable, but we have found that the quality
of the training data and labels can be just as, if not more, important
to success than the architecture used. Despite this, we do expect that
advances in generative AI and advancing LLM architectures will
make deeper and more nuanced clinical concepts accessible to ML
extraction, as LLMs are able to take into account a fuller context of
the patient data and rely less on having high quality labels for
training. The impressive generative abilities of models like gpt3 and
its ChatGPT application have demonstrated this, although the
generative framework itself may remain more suited for tasks
such as summarization (Adams et al., 2021) than for scalable
curation of structured real-world datasets.

The mission to improve and extend lives by learning from the
experience of every person with cancer is more important than ever.
With increasingly specific combinations of patient characteristics,
disease, and therapy, we need to learn from as many relevant
examples as possible to have statistically meaningful results. ML
expands the opportunity to learn from patients who have been
oppressed or historically marginalized in oncology clinical trials
(Adamson et al., 2019; Hooley et al., 2019). As oncology care rapidly
evolves, and the treatment landscape becomes more
personalized—targeting new biomarkers, finely tuned to
increasingly particular patient profiles—transparent fit-for-
purpose applications of ML will have increasing importance. This
will be valuable to gain trust with decision-makers in applications
such as postmarket safety surveillance. With high performance
models, we can truly learn from every patient, not just a sample.
It also creates an opportunity to improve the completeness of RWD
variables that were previously defined by only structured data
elements, reducing potential bias in evidence.

There are strengths and limitations to the EHR curation
approaches described here. Strengths include the large size,
representativeness, and quality of training data used; success
across a multitude of cancer types; and the explainability of
approach to finding clinical details in documents. Massive
volumes of high-quality expert abstracted data were a unique
advantage for training high-quality ML models. Researchers at
Stanford have confirmed similar capabilities with a different
EHR dataset—detecting the timeline of metastatic recurrence of
breast cancer (Banerjee et al., 2019). An example of a variable
that would be challenging for ML extraction could be
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microsatellite instability (MSI), where results are reported in a
wide range of formats. One of the formats is a graphic where the
result is reported visually on a sliding scale rather than in text
format. This would be difficult for a model that relies on
interpretation of text. The ML models described here were
trained for and applied only in a US population (Ma et al.,
2023). While the most suitable model architectures for each
variable may be transferable across country borders, a limitation
of this approach is that models must be re-trained with local
data for highest performance.

The capability to build ML models that can extract RWD
variables accurately for a large number of patients further enables
the possible breadth and depth of timely evidence generation to
answer key policy questions and understand the effects of new
treatment on health outcomes.
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