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Breast cancer is a silent killer disorder among women and a serious economic
burden in healthcare management. Every 19 s, a woman is diagnosed with breast
cancer, and every 74 s, a womanworldwide passes away from the disease. Despite
the increase in progressive research, advanced treatment approaches, and
preventive measures, breast cancer rates continue to increase. This study
provides a combination of data mining, network pharmacology, and docking
analysis that surely could revolutionize cancer treatment by exploiting prestigious
phytochemicals. Crataegus monogyna is a small, rounded deciduous tree with
glossy, deeply lobed leaves and flat sprays of cream flowers, followed by dark red
berries in autumn. Various studies demonstrated that C. monogyna is
therapeutically effective against breast cancer. However, the particular
molecular mechanism is still unknown. This study is credited for locating
bioactive substances, metabolic pathways, and target genes for breast cancer
treatment. According to the current investigation, which examined
compound–target genes–pathway networks, it was found that the bioactive
compounds of C. monogyna may operate as a viable solution against breast
cancer by altering the target genes implicated in the disease pathogenesis. The
expression level of target genes was analyzed using GSE36295 microarray data.
Docking analysis and molecular dynamic simulation studies further strengthened
the current findings by validating the effective activity of the bioactive compounds
against putative target genes. In summary, we propose that six key compounds,
luteolin, apigenin, quercetin, kaempferol, ursolic acid, and oleanolic acid,
contributed to the development of breast cancer by affecting the MMP9 and
PPARG proteins. Integration of network pharmacology and bioinformatics
revealed C. monogyna’s multitarget pharmacological mechanisms against
breast cancer. This study provides convincing evidence that C. monogyna
might partially alleviate breast cancer and ultimately lays a foundation for
further experimental research on the anti-breast cancer activity of C. monogyna.
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1 Introduction

Breast cancer is a frequently diagnosed cancer and an ongoing
challenge that is liable for the death of 685,000 women globally
(Ganesan et al., 2022; Kaushik et al., 2022). Despite countless
initiatives, breast cancer remains a severe burden on society (Noor
et al., 2021). According to recent studies, increased body weight, lack of
exercise, and alcohol intake are major risk factors for breast cancer
(Hirose et al., 1995; Feigelson et al., 2004). Additionally, it has been
noted that the condition is now being diagnosed in younger women.
Breast cancer in males is a relatively rare disease with an incidence rate
of < 1% of all breast cancer occurs in males (Leon-Ferre et al., 2018;
Gucalp et al., 2019). The higher mortality risk in females is due to a
significantly greater proportion of stromal and epithelial tissues and less
fatty adipose tissue (Nazari and Mukherjee, 2018; Hieken et al., 2022).
Breast cancer comprises a heterogeneous group of neoplasms with
distinct probabilities of relapse, molecular phenotypes, morphologies,
responses to therapy, and overall survival (Kalinowski, 2019; Rakha and
Pareja, 2021). The development of targeted therapy has been the
primary focus of modern cancer research. Using plants and their
phytochemicals to promote well-being is as old as humanity. The
tremendous richness of natural chemicals observed in plants offers
exceptional possibilities for developing novel medications. Nowadays,
scientists utilize multiple approaches to find the biological role of these
prestigious candidates to serve as novel leads in cancer treatment. These
old weapons are a novel fighter in the new war against breast cancer.

Crataegus monogyna, commonly known as hawthorn, is a round
appearing medicinal tree with a cream flower that turns dark red in
autumn (Fichtner and Wissemann, 2021; Martinelli et al., 2021;
Belabdelli et al., 2022). C. monogyna is a fantastic source of active
ingredients, including a wide range of polyphenols, including
epicatechin, procyanidins, isoquercitrin, hyperoside, and
chlorogenic acid, as well as a wide range of triterpene acids,
including ursolic acid and oleanolic acid, and many others
(Bahorun et al., 1994; Nabavi et al., 2015). The anti-oxidative and
cytotoxic effects of hawthorn’s bioactive component on the human
laryngeal cancer cell line were examined in a human laryngeal
carcinoma cell line (Belščak-Cvitanović et al., 2014). The
outcomes showed a significant reduction in radical species and
cell viability associated with various dosages and times of
administration.

Network pharmacology is a new frontier in systematic drug
research that can elucidate the drug actions and their interaction
with multiple targets (Noor et al., 2022a; Rehman et al., 2022a;
Qasim et al., 2023). This approach is considered a new trend toward
combining computational, experimental, and clinical approaches to
increase the clinical efficacy of drugs (Hopkins, 2008). This
multitarget approach is a tool for solving complex molecular
puzzles that have long perplexed researchers. Due to its ability to
provide a comprehensive understanding of systems biology through
network theories, it has been referred to as the “next paradigm in
drug development.” Recently, Batool et al. (2022) employed
bioinformatics and network pharmacology to elucidate the
anticancer effect of Fumaria indica for treating liver cancer. A
wealth of studies have reported the application of network
pharmacology in different domains, including cardiovascular
diseases, neurodegenerative diseases, cancer, and many others.
Similarly, Noor et al. (2022b) combined network pharmacology

with docking studies to uncover the multicomponent effect of Abrus
precatorius L. as a novel therapeutic option for type II diabetes.

To our knowledge, this is the first study to integrate
bioinformatics with network pharmacology to analyze the
multitarget pharmacological mechanisms and reveal the potential
targets and active ingredients of C. monogyna for breast cancer. This
approach constructs multicomponent and multitarget models to
provide a better understanding of the intricate interactions between
active compounds and target proteins from a network perspective.
Additional methods, including microarray data, survival analysis,
and molecular docking studies, were used to validate the findings.
The results were further complemented by all-atom molecular
dynamic (MD) simulation for 100 ns to investigate the stability,
conformational changes, and interaction mechanism of target
proteins when complexed with the proposed compounds. These
findings highlight the predicted therapeutic targets may be potential
targets of C. monogyna for the treatment of breast cancer. Further in
vivo and in vitro studies are mandatory to unveil the
pharmacokinetics and biosafety profile to track the candidature
status of C. monogyna in breast cancer.

2 Materials and methods

2.1 Screening of active compounds

The identification of active compounds is a preliminary step in
network pharmacology to examine the anticancer effect of Crataegus
monogyna. A detailed literature search was carried out using Google
Scholar, Google, and PubMed. Later, different public repositories
were searched using keyword “Crataegus monogyna” for retrieval of
C. monogyna-related active compounds. The Traditional Chinese
Medicine System Pharmacology (TCMSP) (Ru et al., 2014),
KNApSAcK (Nakamura et al., 2013), and Indian Medicinal
Plants, Phytochemicals, and Therapeutics (IMPPAT) (Mohanraj,
2018) databases were used in the current study to obtain compound-
related data. The compounds obtained from literature searches and
databases were then submitted to the Swiss ADME to predict their
oral bioavailability (OB). The term OB refers to the fraction of an
orally administered drug that enters the systemic circulation. In
contrast, a drug that is given intravenously is readily available in the
bloodstream and can be quickly distributed via systemic circulation
to its intended pharmacological site. In the context of drug design
and development, drug-likeness (DL), including as transporter
effects, metabolic stability, permeability, and solubility, plays a
crucial role. These properties can influence various aspects of
drug behavior, such as its metabolism, oral bioavailability, and
potential toxicity. Following this, the DL of active compounds
was predicted using MolSoft. Later, a filter was applied to
pharmacokinetics data and only those active compounds that
which met the criteria of OB ≥ 30% and DL ≥ 0.18 (Noor et al.,
2022b) were selected for subsequent analysis.

2.2 ADMET profiling

Evaluating absorption, distribution, metabolism, excretion, and
toxicity (ADMET) characteristics is crucial when assessing the
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pharmacological effects of the active compounds. In the past, many
drug candidates could not meet the requirements for clinical trials;
therefore, in silico prediction is crucial in the preliminary prediction.
The ADME profile directly influences the blood–brain barrier,
gastrointestinal environment, hydrophobicity, and physiochemical
properties of a substance before it is eliminated from the body in
feces and urine. admetSAR 2.0 (Cheng et al., 2012) and Swiss ADME
(Daina et al., 2017) were employed for ADME analysis.
Computational tools have made it possible to access the safety
profile of the required ligand molecules and quantify their
toxicity. Carcinogenicity, immunotoxicity, mutagenicity, and
cytotoxicity were then quantified using a toxicity profile. The
Protox-II tool (Banerjee et al., 2018) was employed to analyze the
toxicity of ligand molecules.

2.3 Target identification of druggable
ingredients and breast cancer

After identifying active compounds, the selected compounds
were subjected to the STITCH database (Kuhn et al., 2007) and
SwissTargetPrediction (Gfeller et al., 2014). STITCH databases
yielded a list of target genes against each compound. Only those
target genes were used for further analysis, having a combined
score ≥ 0.4. SwissTargetPrediction is a simple but useful tool for
predicting the most probable protein targets of active compounds.
Similarly, the same search criteria were used in Swiss target
prediction, and those target genes were selected with a
probability ≥ 0.4 (Noor et al., 2022b). The target proteins
obtained from the SwissTargetPrediction and STITCH database
were merged into a single file for further analysis.

The disease-related proteins were retrieved from Online
Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2000)
and GeneCard (Safran, 2010). Both databases provide a
constantly updated list of human genes, allowing for correlating
these genes with diseases and developing new diagnostic and
treatment approaches. The duplicated genes were disregarded,
and UniProtKB was used to determine the common names of
the target proteins (Boutet et al., 2007). Lastly, a Venn diagram
was plotted to identify the genes that overlapped between the active
compounds and breast cancer. These overlapped genes were
considered as key targets.

2.4 GO enrichment and KEGG pathway
analysis

The overlapped targets were submitted to the DAVID database
(Dennis et al., 2003) for KEGG and gene ontology (GO) pathway
analysis. GO describes gene products in three different domains:
molecular function (MF), biological processes (BP), and cellular
components. Pathway analysis lies at the heart of systems biology.
Pathway enrichment analysis helps researchers gain mechanistic
insight into key targets generated from network pharmacology. A
p-value < 0.05 filter was applied to the GO terms and KEGG
pathways to obtain statistically significant results. Later, the
ggplot2 package of R was employed to visualize the top
20 significant GO terms and top 20 significant KEGG pathways.

2.5 Network construction

In the context of network pharmacology, the relationship between
target proteins and active compounds is established based on the ability
of a given compound to target multiple proteins. A compound–target
interaction network is constructed to investigate the molecular
mechanisms underlying the therapeutic effects of active ingredients
while minimizing potential side effects. This network enables a deeper
analysis of the action mechanisms of the active compounds at the
molecular scale. Comprehensive filtering is a crucial aspect of network
pharmacology to fully understand the multicomponent effects of such a
network. This approach can maximize the therapeutic effects while
minimizing potential adverse effects associated with multitarget drug
design. Unfortunately, owing to the overwhelming number of
interactions, it is challenging to experimentally analyze all potential
interactions between target proteins and their associated active
ingredients. In light of this, computational modeling—particularly
network approaches—offers a compelling alternative. Cytoscape
(version 3.9.0, Boston, MA, United States) (Shannon et al., 2003)
was used to predict the interaction between C. monogyna-related
compounds and target proteins. In a compound–target network, the
edges indicate relationships between compounds and targets, while the
nodes represent compounds and their corresponding targets. Later, a
compound–target–pathway was constructed using Cytoscape (version
3.9.0, Boston, MA, United States) (Shannon et al., 2003) to investigate
the multitarget effect of C. monogyna-related compounds on breast
cancer.

2.6 Identification of hub genes

The most fundamental molecular processes that underlie
cellular life depend on protein–protein interactions (PPIs), which
are frequently disturbed in disease states. The overlapped targets
were subjected to the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) (Von Mering et al., 2005) for PPI
network construction. STRING is a biological database and
online resource for PPIs that have been observed and predicted
in the past. Information from various sources, including
experimental data, computational prediction techniques, and
open text collections, is included in the STRING database. The
PPI was then imported to Cytoscape (version 3.9.0, Boston, MA,
United States) (Shannon et al., 2003) to identify hub genes. Hub
genes have a high degree of connectivity in a network. The
cytohubba plugin in Cytoscape was used to obtain proteins that
are highly correlated with each other. The top 10 genes based on the
degree method were selected and considered for further analysis.

2.7 Validation using gene expression data
and molecular docking

To validate the current study’s findings, the gene expression data
were obtained from the Gene Expression Omnibus (GEO) database
(Clough and Barrett, 2016). GEO is a public repository of high-
throughput gene expression data, microarrays, chips, and
hybridization arrays. In the current study, the GSE36295 data set
was downloaded from the GEO database. The GSE36295 data set
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contains microarray data obtained from breast cancer and healthy
individuals. The GSE36295 data set comprises 50 samples (5 healthy
individuals and 45 affected individuals). Later, the limma package of R
was used to screen differentially expressed genes (DEGs). Limma, which
includes effective tools for reading, normalizing, and interpreting gene
expression data, has evolved to be the best option for acquiring DEGs
through differential expression analysis of high-throughput data and
microarray. Screening conditions were set as adj. p-value < 0.05 and |
log(FC)| ≥ 1, |log(FC)| < −1.0. The ggplot2 package of R was used to
construct a volcano plot to visualize significant and non-significant
genes. Later, DEGs were compared with hub genes, and common genes
were selected for further analysis.

Molecular docking was then used to predict the binding affinity and
mode of action of a small molecule ligand with a target protein
(Muhammad et al., 2021; Hassan et al., 2022a; Khan et al., 2022).
The common genes were then docked with target proteins to predict
binding affinity among active compounds and target proteins. The
target protein structure was retrieved from the Protein Data Bank
(PDB). PDB is a single worldwide archive of the 3D structures of nucleic
acids and proteins. It contains protein data obtained by nuclear
magnetic resonance (NMR) spectrometry and X-ray crystallography
submitted by researchers from all over the world. After the refinement
of protein structures, the binding pockets were explored through the
CASTp tool (Tian et al., 2018). Later, PyRx (Dallakyan andOlson, 2015)
was used for protein–compound docking. A list of docked complexes
was generated using docking, but only those complexes with the highest
absolute value of root mean square deviation (RMSD) and binding
energy (kcal/mol) were considered. Lastly, Discovery Studio (Studio,
2008) and ChimeraX (Goddard et al., 2018) were used to explore
interactions between compounds and target proteins.

2.8 Molecular dynamics (MD) simulation

Molecular dynamics (MD) simulations are an important
methodology for examining the stability and compactness of docked
complexes (Aslam et al., 2021; Rehman et al., 2022b; Noor et al., 2022c).
The Desmond v3.6 program was used in the current study to validate
the finding of docking studies (Mohankumar et al., 2020). The MD
simulation was run at 100 ns under thermodynamical conditions,
including temperature, pressure, density, and applied volume. Using
ensembles, the entire system was annealed and reached equilibrium.
The structural changes in docked complexes were investigated in the
final production stages. To assess the degree of structural changes, the
trajectories of docked complexes were exposed to several generalized
parameters, including rootmean square fluctuation (RMSF), rootmean
square deviation (RMSD), polar surface area (PSA), and radius of
gyration (Rg).

3 Results

3.1 Screening of active compounds and key
targets

The data on C. monogyna -related compounds were not
available in the TCMSP database. Therefore, the KNApSAcK and
the IMPPAT databases were searched for retrieval of plant-related

compounds. Virtual screening of C. monogyna-related compounds
yielded six compounds: apigenin, luteolin, quercetin, kaempferol,
ursolic acid, and oleanolic acid (Table 1). These six compounds
fulfill the OB ≥ 30% and DL ≥ 0.18 criteria. The ADMET analysis of
bioactive compounds reveals no adverse effect of screened
compounds (Table 2). P-glycoprotein substrates, Caco-2
permeability, and BBB penetration yielded favorable results,
indicating the ability of bioactive compounds to be used as a
novel therapeutic agent. All of the predicted compounds were
found to be non-toxic, even when tested for multiple types of
toxicity, and no compound displayed toxic behavior.

3.2 Network analysis

Later, the compound–target network was constructed by
merging active compounds to the target genes. The main
purpose of constructing a compound–target network was to
comprehend the multitarget effect of C. monogyna-related
compounds on breast cancer (Figure 1). The compound–target
network consists of 600 nodes and 217 edges. The nodes in the
compound–target network represent compounds and target
proteins, and the degree of connectivity reflected the
significance of target proteins and their associated active
compounds in the network. The size and color of nodes
become large and darker with increased degree of connectivity.
The solid lines in the network signify the interconnection
between nodes. Furthermore, overlapped genes between
compound-related and disease-related targets were identified
using a Venn diagram. A total of 191 genes were found to be
common in both compound- and disease-related targets. These
compounds were then considered key targets and selected for
subsequent analysis.

The PPI network of key targets was constructed using the
STRING database. The PPI network was then imported to
Cytoscape for identification of hub genes. The top 10 genes
based on degree of connectivity were selected and considered as
the hub genes. The degree of connectivity is the number of
connections or edges the node has to other nodes. These hub
genes have the highest degree of connectivity in the PPI network:
AKT1(89), IL6(83), SRC(67), EGFR(64), MAPK3(63), ESR1(60),
PTGS2(57), PPARG(53), MMP9(42), and PPARA (39) (Figure 1C).
The MNC, MCC, betweenness, closeness, and clustering coefficient
of predicted hub genes are presented in Table 3.

3.3 GO enrichment and KEGG pathway
analysis

The 191 key targets were submitted to DAVID for function
enrichment analysis and pathway analysis. The GO terms were
mainly categorized into BP, CC, and MF. GO and KEGG pathway
analysis revealed that target proteins were mainly involved in
97 BP terms, 52 CC terms, 110 MF terms, and 74 KEGG
pathways. The GO enrichment analysis in terms of BP
revealed that key targets were mainly enriched in signal
transduction, protein phosphorylation, positive regulation of
cell proliferation, response to drug, inflammatory response,
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cell differentiation, cell division, proteolysis, positive regulation
of vasoconstriction, steroid metabolic process, cellular response
to cAMP, and apoptotic signaling pathway (Figure 2A). In case of
CC, the key targets were mainly concentrated in plasma
membrane, cytosol, macromolecular complex, integral part of

plasma membrane, receptor complex, extracellular exosome,
membrane raft, cytoplasm, nucleoplasm, and endoplasmic
reticulum membrane (Figure 2B). In terms of MF, the
overlapped genes were mainly involved in steroid binding,
enzyme binding, zinc ion binding, bile acid binding, carbonate

TABLE 1 Physiochemical properties, 2D structure, and PubChem IDs of final compounds.

Molecule name Molecular Oral
bioavailability (OB)

Drug
likeness (DL)

Structure PubChem
IDs

weight
(MW)

Apigenin 270.24 0.55 0.39 5280443

Luteolin 286.24 0.55 0.38 5280445

Quercetin 302.23 0.55 0.52 5280343

Kaempferol 286.24 0.55 0.50 5280863

Ursolic acid 456.7 0.85 0.66 64945

Oleanolic acid 456.7 0.85 0.37 10494
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dehydratase activity, identical protein binding, phosphotyrosine
binding, transcription factor binding, indanol dehydrogenase
activity, PTB domain binding, NF-kappaB binding, cyclin
binding, histone kinase activity, and estrogen receptor activity
(Figure 2C). KEGG pathway analysis revealed that key targets
were involved in cancer-related pathways, chemical
carcinogenesis, EGFR tyrosine kinase inhibitor resistance,
insulin resistance, the relaxin signaling pathway, the HIF-1
signaling pathway, the pI3K-Akt signaling pathway, the FoxO
signaling pathway, the ErbB signaling pathway, the estrogen
signaling pathway, acute myeloid leukemia, breast cancer, the
Rap1 signaling pathway, transcriptional misregulation in cancer,
the tumor necrosis factor (TNF) signaling pathway, and Th17 cell
differentiation (Figure 2D). The bubble plot of the top
20 significant terms and pathways is displayed in Figure 2.

The compound–target–pathway network was then constructed to
obtain insight into how signaling pathways could be related to the
beneficial effect of C. monogyna against breast cancer (Figure 3). The
compound–target–pathway mainly consists of bioactive compounds,
target genes, and their associated pathways. The ultimate goal of
presenting the compound–target–pathway network was to better
understand the interaction between compounds and disease.
Therefore, network analysis indicated that C. monogyna could
produce anti-breast cancer action by influencing multiple targets and
their associated pathways, thus indicating a multi-target
pharmacological mechanism of C. monogyna-related compounds.

3.4 Microarray data analysis

The gene expression level of hub genes was then analyzed
using the GSE36295 dataset. The GSE36295 dataset contains data

from five healthy and 45 breast cancer-affected individuals. The
DEGs were then identified using the Limma package of R. Only
those genes were considered as DEGs that met the criteria of adj.
p-value < 0.05 and |log(FC)| ≥ 1, |log(FC)| < −1.0 (Figure 4). The
Limma package yielded 1419 DEGs (789 upregulated and
620 downregulated genes). The core targets were then
compared with the DEGs, and only two targets, PPARG and
MMP9, were found to be overlapped. Furthermore, the
expression level of PPARG was upregulated, while the
expression level of MMP9 was downregulated.

Finally, docking analysis was performed to analyze
interactions between core targets and active compounds. The
3D structures of MMP9 and PPARG were downloaded from PDB
using pdb id: 1gkc and 1nyx, respectively. The CASTp tool was
used to predict the binding pockets of target proteins. The CASTp
score used for MMP9 and PPARG were area (SA): 472.041�A2;
volume (SA): 274.241�A3, and area (SA): 414.294�A2; volume (SA):
427.042�A3, respectively. Later, the target docking was performed
through PyRx. In PyRx, the docking grids of MMP9 and PPRAG
were X: −5.5563, Y: −12.8049, Z: −23.3022 and X: 20.9288, Y:
18.4992, Z: 30.0441, respectively, from the center with
exhaustiveness equal to 8. The findings of docking analysis
revealed that strong binding affinity exists between core targets
and active compounds (Table 4). MMP9 has a maximum binding
affinity with oleanolic acid (−17.69 kcal/mol) and apigenin
(−15.09 kcal/mol). In contrast, PPARG has the highest binding
affinity with kaempferol (−16.72 kcal/mol) and ursolic acid
(−16.11 kcal/mol). These results indicate that core targets bind
stably with active compounds and can be used as a promising
candidate for treatment of breast cancer. 3D visualization of the
active compounds and target genes is shown in Figure 4 and
Figure 5.

TABLE 2 ADMET profiling of selected compounds.

Compound Luteolin Apigenin Quercetin Kaempferol Ursolic acid Oleanolic acid

Blood–brain Barrier 7 7 7 7 7 7

Caco-2 permeability High Low Low Low High Low

Pgp-inhibitor 7 7 7 7 7 7

Pgp-substrate 7 7 7 7 7 7

CYP1A2 inhibitor 7 ✓ 7 ✓ 7 7

CYP1A2 substrate 7 7 7 7 7 ✓

CYP2C19 inhibitor ✓ 7 7 7 ✓ 7

CYP2C19 substrate 7 7 ✓ 7 7 7

CYP2C9 inhibitor 7 7 7 7 7 7

CYP2C9 substrate 7 7 ✓ 7 7 7

CYP3A4 inhibitor ✓ ✓ 7 ✓ 7 7

CYP3A4 substrate 7 7 7 7 ✓ 7

Acute toxicity Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic

AMES toxicity Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic
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FIGURE 1
Schematic diagram representing the overall methodology for deciphering the multitarget pharmacological mechanism of C. monogyna. (A) Venn
diagram representing the common genes between plant-related compounds and disease. (B) Compound–target network. The size and color of the
nodes represent their degree of connectivity. The higher the degree, the greater the size of the node. (C) Ranking of key genes based on degree of
connectivity. (D) Bar plot representing the degree of hub genes. (E) Observed expression hub genes in humans.

TABLE 3 Degree, MNC, MCC, betweenness, closeness, and clustering coefficient of top 10 hub genes.

Gene name Degree MNC MCC Betweenness Closeness Clustering coefficient

AKT1 89 89 2.17E+08 5025.418 137.0833 1

IL6 83 83 2.16E+08 4385.023 134 1

SRC 67 67 2.16E+08 2447.815 124.75 1

EGFR 64 64 2.10E+08 2409.659 124.0833 1

MAPK3 63 63 2.09E+08 2071.007 122.75 1

ESR1 60 60 2.05E+08 2747.78 121.3333 1

PTGS2 57 57 1.99E+08 1767.963 120.25 1

PPARG 53 52 1.61E+08 1602.4 117.5833 0.944444

MMP9 42 42 1.49E+08 993.0264 111.75 0.866667

PPARA 39 39 1.06E+08 1107.025 109.5833 0.866667
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FIGURE 2
Graphical representation of the top 20 significant GO terms and KEGG pathways.

FIGURE 3
Compound–target–pathway network. The core protein is shown as a circle, active compounds as arrows, and pathways in which the core targets
were involved as squares. Additionally, the nodes are colored with a gradient to indicate their degree of connectivity.
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3.5 Molecular dynamic simulation

MD simulations have been conducted in many previously
published studies to investigate the validity of docked complexes
(Mahmud et al., 2021; Hasan et al., 2022). MD simulation is a
strong biophysical technique that can uncover proper binding
conformations and other vital dynamic values of ligand–protein
interactions. Therefore, it is an important technique in computer-
aided drug design (Liu et al., 2019; Michael et al., 2021). MD
simulations have been very successful in recent years in optimizing
the docked hits (Vanmeert et al., 2019; Anwar et al., 2020; Guterres and
Im, 2020). The extensive data generated by MD simulation provides a
valuable resource for drug design, offering a comprehensive

understanding of the complex interactions between ligands and
proteins. In the current study, the selected compounds were
considered for 100 ns of MD simulations, and various trajectories
were obtained to analyze the results, as recommended. First, the
RMSD values of complexes were determined to estimate the
structural distance between different coordinates; that is, the RMSD
represents the mean distance between atoms at a particular site on the
protein. In other words, RMSD values code for assessing the structural
integrity of a protein–ligand docked complex. Overall, in the current
experiment, the RMSDs of all studied complexes were reported to be
stable. The RMSD value increased from 0 to 100 ns with small
fluctuations in all of the studied complexes. The average RMSD
value of oleanolic acid with MMP9 was found to be 1.5 Å from

FIGURE 4
3D visualization of MMP9 protein active compounds: (A) Oleanolic acid, (B) ursolic acid, (C) apigenin, (D) oleanolic acid, and (E) kaempferol.

TABLE 4 Binding affinity and RMSD values of core targets with active compounds.

Compound IDs Compound name Binding affinity (kcal/mol) RMSD Interacting residues

MMP9 (pdb id: 1gkc)

10494 Oleanolic acid −17.69 (kcal/mol) 1.01 His A:411, Pro A:421, Met A:422, and Leu A:187

64945 Ursolic acid −15.03 (kcal/mol) 2.81 Asp A:185, His A:411, and Leu A:187

5280443 Apigenin −15.09 (kcal/mol) 1.06 Ala A:189, Pro A:421, Leu A:188, Leu A:397, and Leu A:418

5280445 Luteolin −14.63 (kcal/mol) 1.55 Ala A:189, Glu A:402, His A:401, and Leu A:188

5280863 Kaempferol −12.39 (kcal/mol) 1.62 Tyr A:423, Val A:398, Leu A:418, and Ala A:189

PPARG (Pdb id: 1nyx)

5280863 Kaempferol −16.72 (kcal/mol) 0.97 Lys B:265, Glu B:343, Lys B:263, and Ser B:342

64945 Ursolic acid −16.11 (kcal/mol) 1.45 Lys B:263, Lys B:256, Phe B:287, His B:266, and Gly B:826

5280443 Apigenin −14.49 (kcal/mol) 2.03 Ile B:262, Phe B:264, Arg B:288, and Lys B: 256

10494 Oleanolic acid −12.17 (kcal/mol) 2.06 Pro B:227, Lys B:263, Lys B:265, and Gly B:344

5280445 Luteolin −11.95 (kcal/mol) 1.23 Ile B:262, Ser B:342, Arg B:288, Phe B:264, and Phe B:287
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30 to 50 ns, which reduced to 0.3 to 0.4 Å at 50–70 ns (Figure 6). In the
docked kaempferol and PPARG complex, a variance of 0.5 Åwas found
at 05–40 ns. At 100 ns, the kaempferol and PPARG complex showed a
variance of 0.3 Å. Briefly, the RMSD value of all studied complexes was
within the acceptable range.

The RMSF values of protein–ligand complexes were generated to
further assess residual protein-level flexibility. RMSF predicts the mean
fluctuation of a particular amino acid residue from its time-averaged

position over time. Docked-complex RMSF plots are demonstrated in
Figure 7. The docked complexes of oleanolic acid with MMP9 and
PPARG with kaempferol showed RMSF values ranging from 0.4 ±
0.8 Å and 0.9 ± 1.5 Å, which demonstrate the high level of stability
between the molecules of proteins in complex with ligands.

The compactness of the protein is described by the radius of
gyration (Rg), which was calculated for the protein backbone. Rg is
considered a novel method for understanding the shape and stability of
compounds and their protein during simulation. Rg values of both

FIGURE 5
3D visualization of PPRAG protein with active compounds: (A) Kaempferol, (B) ursolic acid, (C) apigenin, (D) oleanolic acid, and (E) luteolin.

FIGURE 6
Root mean square deviation (RMSD) of docked complexes: (A)
Oleanolic acid-MMP9 and (B) kaempferol-PPARG.

FIGURE 7
Root mean square fluctuation (RMSF) of docked complexes: (A)
Oleanolic acid-MMP9 and (B) kaempferol-PPARG.
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oleanolic acid/MMP9 and kaempferol/PPARG complexes are displayed
in Figures 8A, C. The average Rg values were as follows: for the oleanolic
acid and MMP9 complex, the Rg value was 2.96 ± 3.12 Å, while for the
PPARG and kaempferol complex, the Rg value was 3.6 ± 4.0 Å. Overall,
all of the protein–compound complexes demonstrated significant
compactness over the entire 500 ns of simulations. The area of
macromolecules that is accessible to water was determined using the
PSA. Calculating the PSA value is crucial in determining
conformational changes brought on by complicated interactions.
The PSA values of oleanolic acid with MMP9 and PPARG with
kaempferol complex were found to be 0.6 ± 1.5 nm2 and 0.2 ±
0.8 nm2 at 100 ns (Figures 8B, D).

4 Discussion

Breast cancer is frequently diagnosed in women, and its mortality
rates and incidence are expected to increase significantly in the coming
years (Momenimovahed and Salehiniya, 2019; Lei et al., 2021).
According to the latest statistics from the World Health
Organization (WHO), breast cancer is responsible for around 15%
of all cancer deaths among women worldwide, which is approximately
685,000 deaths per year (Rahman et al., 2019; Prusty et al., 2020). In the
United States, breast cancer is considered the second-leading health
concern among women, increasing drastically with 39,620 deaths and
232,240 newly diagnosed cases annually (Noor et al., 2021). Breast
cancer inmales is a relatively rare disease with an incidence rate of < 1%
of all breast cancer occurrences (Leon-Ferre et al., 2018; Gucalp et al.,
2019). The higher mortality risk in females is due to a significantly
greater proportion of stromal and epithelial tissues and less fatty adipose

tissue (Nazari and Mukherjee, 2018; Hieken et al., 2022). Breast cancer
comprises a heterogeneous group of neoplasms with distinct
probabilities of relapse, molecular phenotypes, morphologies,
responses to therapy, and overall survival (Kalinowski, 2019; Rakha
and Pareja, 2021). The aggressive behavior of breast cancer, limited
prognostic and diagnostic methods, multifactorial occurrence, and the
high rate of metastasis hinder the development of effective treatment
options for breast cancer (Francies et al., 2020).

The current therapeutic strategies for breast cancer depend
on several factors, including the subtype of breast cancer, stage of
the disease, and patient’s health status. The main treatment
modalities for breast cancer include surgery, radiation therapy,
chemotherapy, hormonal therapy, and targeted therapy.
Although these treatments can be effective in treating breast
cancer, they also have adverse side effects. Network-
pharmacology-based studies have shown great promise in
identifying new therapeutic targets and developing more
effective treatment strategies for breast cancer. By constructing
and analyzing molecular networks that underlie breast cancer,
researchers can identify critical signaling pathways and potential
drug targets that are involved in the development and
progression of the disease. Recently, Zhao et al. (2021) used
network-pharmacology-based approaches to identify a potential
drug target for triple-negative breast cancer (TNBC), a subtype of
breast cancer that is particularly aggressive and difficult to treat.
The researchers identified a protein called ITGA5 that plays a
critical role in the growth and spread of TNBC cells. They then
used a computational approach to screen a large database of
existing drugs and identified volasertib, which inhibits
ITGA5 and has shown promising results in preclinical studies.

FIGURE 8
Radius of gyration (Rg) of docked complexes: (A) Radius of gyration of oleanolic acid complex, (B) PSA for oleanolic acid complex, (C) radius of
gyration of kaempferol complex, and (D) PSA for kaempferol complex.
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In summary, network-pharmacology-based studies have the
potential to identify new therapeutic targets and treatment
strategies for breast cancer. By analyzing molecular networks
that underlie the disease, researchers can identify critical
signaling pathways and potential drug targets that can be
exploited to develop more effective treatments for breast
cancer patients.

Crataegus monogyna, also called hawthorn, is a spiny plant of
Rosaceae family (Ruiz-Rodríguez et al., 2014). C. monogyna is a
small tree or semi-evergreen shrub with thorns that grows up to five
to 15 m long (Martinelli et al., 2021; Hassan et al., 2022b; Shams ul
Hassan et al., 2022). C. monogyna are a rich source of natural
products that are considered to have anticancer qualities. Shirzadi-
Ahodashti et al. (2020) reported that leaf extracts of C. monogyna
have substantial anticancer properties toward cancer cell lines in
humans. Rodrigues et al. (2012) demonstrated that the flower of C.
monogyna has more bioactivity than the fruit. This flower bioactivity
inhibits the growth of cancer cell lines in humans. Flavonoids and
phenolic acids are the main active compounds of flower buds of C.
monogyna. This study identified the anti-breast cancer effect of C.
monogyna for the development of novel treatment options against
breast cancer.

Initially, the data related to C. monogyna-related compounds
were retrieved from databases and the literature. Later, the
compound and disease-related targets were predicted to identify
the common targets between C. monogyna and breast cancer. KEGG
pathway analysis revealed that the key targets were mainly involved
in EGFR tyrosine kinase inhibitor resistance, the PPAR signaling
pathway, proteoglycans in cancer, the relaxin signaling pathway, the
HIF-1 signaling pathway, the FoxO signaling pathway, the ErbB
signaling pathway, the estrogen signaling pathway, acute myeloid
leukemia, the IL-17 signaling pathway, breast cancer, the AMP-
activated protein kinase (AMPK) signaling pathway, the cell cycle,
the cAMP signaling pathway, the Ras signaling pathway, and the
TNF signaling pathway. Finally, the results were validated using
microarray data and docking analysis. Docking analysis
demonstrated that MMP9 and PPARG have strong binding
affinity with luteolin, apigenin, quercetin, kaempferol, ursolic
acid, and oleanolic acid. MD simulation, performed to determine
the efficacy of compounds, revealed that selected compounds
remained stable throughout 100 ns of simulations.

A pro-inflammatory cytokine known as TNF is more commonly
expressed in several types of malignancies. Disturbance in the TNF
signaling pathway leads to breast cancer. This cytokine is specifically
associated with elevated tumor cell proliferation, a higher degree of
malignancy, a greater likelihood of metastasis, and typically, a poor
prognosis for patients with breast cancer (Mercogliano et al., 2020).
Therefore, targeting the genes involved in the TNF signaling pathway
can help block the pathogenesis of breast cancer. Furthermore, AMPK
negatively regulates the mTOR signal pathway, suppressing tumor
growth and proliferation (Li et al., 2015; ul Hassan et al., 2022).
Thus, targeting AMPK signaling can help in breast cancer
prevention and treatment. Regarding core targets, it is important to
note that MMP9 contributes to the breakdown of the extracellular
matrix in various physiological and pathological contexts, including
cancer. Huang et al. (Huang, 2018) reported that overexpression of the
MMP9 protein is highly associated with breast cancer. Therefore,

MMP9 can be used as a biomarker in breast cancer and, ultimately,
development of novel treatment options.

To sum up, our study provides a scientific foundation to reveal
the C. monogyna-related compounds as a promising treatment
option for breast cancer. Integration of network pharmacology
with bioinformatics analysis revealed multitarget pharmacological
mechanism of C. monogyna in breast cancer. We validated the
results using gene expression data and molecular docking analysis.
Further in vivo and in vitro studies are required to validate the
efficacy of current findings. There are several limitations in our
study. First, additional tests are required to confirm our findings.
Second, a larger database of traditional medicines target genes is
required, which would improve the accuracy of the network
pharmacology analysis results. Third, even after combining the
outcomes of network pharmacology and molecular docking, we
could not fully comprehend the precise therapeutic mechanism of C.
monogyna. A way to navigate around this problem is to develop new
bioinformatics tools with novel strategies for ensuring the potential
targets and, ultimately, the effectiveness of multitarget drugs.
Recently, Yang et al. (Guterres and Im, 2020) proposed a novel
feature selection strategy to improve the stability and reproducibility
of the discovery of schizophrenia (SCZ) gene signatures. The new
strategy was able to identify differentially expressed genes and
demonstrated superior stability and differentiating ability
compared to previous methods. Fu et al. (2022) and Yang et al.
(2020) used NOREVA, which can evaluate processing performance,
optimize data processing, and process time-course and multiclass
metabolomics data. These tools and methods will be required to
further explore and validate the NP approaches. Despite the fact that
we have presented some interesting data, additional studies and
clinical trials are needed to explore the potential of C. monogyna to
validate their medicinal usages.

5 Conclusion

Breast cancer is a commonly diagnosed cancer and an ongoing
challenge as it is liable for the annual death of 685,000 women globally.
Due to the complexity of disease heterogeneity, resistance to anticancer
drugs, and the need for effective therapeutic targets, researchers and
clinicians are seeking promising treatment options to advance precision
medicine. Pharmacotherapy that utilizes natural scaffolds is considered
a promising and innovative approach. A network pharmacology
approach was employed in the current study in conjunction with
bioinformatics analysis to investigate the multitarget pharmacological
mechanism of Crataegus monogyna for breast cancer treatment. Our
findings uncovered that active compounds of C. monogyna, including
luteolin, apigenin, quercetin, kaempferol, ursolic acid, and oleanolic
acid, have strong binding affinity with MMP9 and PPARG. Microarray
data, docking, and simulation studies strengthened our findings. These
targets needs to be further validated using in vitro and in vivo
experiments. These proteins could serve as potential drug targets for
the development of new therapeutics that can better target and treat
breast cancer. The predicted compounds show multicomponent,
multitarget, and multipathway properties. These findings will serve
as a baseline for future research into the mechanism of C. monogyna
against breast cancer.
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