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Background: The tumor-associated endothelial cell (TAE) component plays a vital
role in tumor immunity. However, systematic tumor-associated endothelial-
related gene assessment models for predicting cancer immunotherapy (CIT)
responses and survival across human cancers have not been explored. Herein,
we investigated a TAE gene risk model to predict CIT responses and patient
survival in a pan-cancer analysis.

Methods: We analyzed publicly available datasets of tumor samples with gene
expression and clinical information, including gastric cancer, metastatic urothelial
cancer, metastaticmelanoma, non-small cell lung cancer, primary bladder cancer,
and renal cell carcinoma. We further established a binary classification model to
predict CIT responses using the least absolute shrinkage and selection operator
(LASSO) computational algorithm.

Results: The model demonstrated a high predictive accuracy in both training and
validation cohorts. The response rate of the high score group to immunotherapy
in the training cohort was significantly higher than that of the low score group,
with CIT response rates of 51% and 27%, respectively. The survival analysis showed
that the prognosis of the high score group was significantly better than that of the
low score group (all p < 0·001). Tumor-associated endothelial gene signature
scores positively correlated with immune checkpoint genes, suggesting that
immune checkpoint inhibitors may benefit patients in the high score
group. The analysis of TAE scores across 33 human cancers revealed that the
TAE model could reflect immune cell infiltration and predict the survival of cancer
patients.

Conclusion: The TAE signature model could represent a CIT response prediction
model with a prognostic value in multiple cancer types.
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Introduction

Although cancer immunotherapy (CIT) has improved outcomes
for patients with various types of cancers, only a small fraction of
patients experience a durable complete response or derive long-term
benefits to CIT (Robert et al., 2014; Ribas and Wolchok, 2018;
Robert et al., 2019). Therefore, excavating a new predictive
biomarker that can assess the response to CIT for defining a
patient’s benefit early is an urgent need. Previous studies have
identified some indicators associated with the CIT response,
including the glycoprotein VI-mediated platelet activation
signaling pathway (Chen S. et al., 2023), NLRP3 inflammasome
(Ju et al., 2020), shelterin complex expression (Luo et al., 2021), PD-
L1 expression (Patel and Kurzrock, 2015), B cells (Chen et al., 2022),
tumormutational burden (Chan et al., 2018), and eosinophilic count
(Moreira et al., 2017). However, accurate biomarkers used for
predicting clinical outcomes and CIT responses for cancer
patients continue to be largely unexplored.

Immunotherapy has become an indispensable part of advanced
gastric cancer (GC), which remains to be malignant with poor
prognosis, with a median survival of approximately 12 months
(Chen Y. et al., 2023). Many studies have proposed predictive
and prognostic biomarkers to immunotherapy agents in gastric
cancer. PD-L1 has been proposed as a biomarker for gastric
cancer immunotherapy (Ahn and Kim, 2021). Glypican-3
expression in cancer-associated fibroblasts is a critical prognostic
biomarker for PD-1 blockage therapy in GC (Li et al., 2023). The
T-cell-related gene prognostic index is a potential prognostic
indicator used to distinguish the response to immune checkpoint
inhibitor (ICI) therapy (Chen J. et al., 2023). The neutrophil-to-
lymphocyte ratio is an effective biomarker used for evaluating the
prognosis of GC patients who received ICI therapy (Li and Pan,
2023). Unfortunately, only a minority of patients with GC develop
durable clinical responses to CIT (Baxter et al., 2021).

Tumor endothelial cells (TECs) are exposed to an extracellular
environment that is markedly different from that of the endothelial
cells resident in healthy normal tissues (Siemann, 2011). Compared
with the vascular system in normal tissues, tumor endothelial
markers are highly expressed in the human tumor vascular
system and show significant therapeutic potential (Mura et al.,
2012). High endothelial venules (HEVs) are specialized blood
vessels that are essential for the entry of CD4+ and CD8+ T-cell
lymphocytes into lymph nodes (Girard et al., 2012). Several subtypes
of endothelial cells own the characteristics of typical immune cells,
including the expression of co-stimulatory and co-inhibitory
receptors. Effector T lymphocytes rolled along the inner surface
of the vessels or surfaces within the outline of the vessels in the liver
sinusoidal and brain microvascular endothelium (Bartholomäus
et al., 2009). Through the expression of MHC-I, MHC-II, and a
wide array of costimulatory molecules, endothelial cells also act as
antigen-presenting cells (APCs) that present antigens to T cells.
Moreover, they can act as phagocytes and scavengers to circulate
waste macromolecules and participate in efferocytosis (Stamatiades
et al., 2016). The interaction between lymphocytes and endothelial
cells allows for information exchange that can modify immune
responses by the trafficking, activation, and differentiation of
lymphocytes. The trafficking of lymphocytes to tumors is critical
for CIT. As an active regulator of the immune function, tumor

endothelial cells play a potential therapeutic role in immunotherapy
in various cancer types. However, whether tumor endothelial gene
markers can serve as predictive biomarkers of CIT response needs to
be investigated. In this study, we developed a tumor-associated gene
signature that predicts immunotherapy across multiple cancer types.

Materials and methods

Studies and patient selection

A total of 12 CIT response datasets with gene expression and
complete clinical information were included in this study. The
datasets obtained by Lauss et al. (2017) (GSE100797), Cho et al.
(2020) (GSE126044), Ascierto et al. (2016) (GSE67501), Ulloa-
Montoya et al. (2013) (GSE35640), Hugo et al. (2017)
(GSE78220), MGH datasets (Auslander et al., 2018)
(GSE115821 and GSE168204), and Kim et al. (2010) (GSE19423)
were downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/). Those datasets
obtained by Lee et al. (2020) (EGAD00001005738) were
downloaded from the European genome–phenome Archive
(EGA) database (https://ega-archive.org/access/data-access/),
whereas datasets of Gide et al. (2019) (PRJEB23709), Kim et al.
(2018) (PRJEB25780), and Van Allen et al. (2015) (phs000452.v2.
p1) were obtained from the Tumor Immune Dysfunction and
Exclusion (TIDE) database (http://tide.dfci.harvard.edu/) (Weide,
2015). The IMvigor210 cohort was downloaded using the
IMvigor210CoreBiologies package in R software (Necchi et al.,
2017).

Normalized data obtained from different arrays were
normalized using the robust multi-array average (RMA) method
(Leek et al., 2012). The batch effect between different arrays was
removed using the ComBat function in the sva R package. Patients’
response to treatment was assessed according to the RECIST criteria.
The details of immunotherapy response datasets are provided in
Supplementary Table S1. The pancan normalized gene-level RNA-
seq data and clinical information for 33 TCGA cohorts were
downloaded from the UCSC Xena dataset (https://xenabrowser.
net/) using the UCSCXenaTools package in R software (Shixiang
and Liu, 2019). After applying the data filter criteria, over
10,000 clinically annotated cancer samples with survival
information were available for further analyses. The Homo
sapiens tumor-associated endothelial gene set was defined based
on the Gene Ontology (GO) dataset (https://www.informatics.jax.
org/vocab/gene_ontology/GO:0003158) and Bagaev et al. (2021)
study, including 131 tumor-associated endothelial genes.
Furthermore, expressed genes in the transcriptome sequencing
data were intersected with 131 tumor-associated endothelial
genes to acquire the candidate genes (Supplementary Table S2).

Construction and validation of the tumor-
associated endothelial gene signature

The least absolute shrinkage and selection operator (LASSO)
binomial regression model was used to select the best predictive
variables, by eliminating parameters with a coefficient of 0
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(Tibshirani, 1996). The penalty parameter was estimated by 10-fold
cross-validation in the training dataset at 1 standard error beyond
the minimum partial likelihood deviance. Using the sample function
in R software, a total of 784 patients who underwent CIT were also
randomly allocated: 70% were selected as the total training cohort
and 30% were selected as the validation cohort. The tumor-
associated endothelial signatures were built from the training
cohort and validated on the validation cohort. Patients with
metastatic melanoma were further divided into on-treatment and
pre-treatment cohorts to verify the predictive power of the tumor
endothelial signature. Data from patients with metastatic urothelial
cancer were subjected to multivariate regression analysis to
determine the tumor-associated endothelial signature with
independent prognostic significances for survival.

Immunity analysis

We used the ESTIMATE, EPIC, MCPcounter, Immune AI,
CIBERSORT, xCell, TIMER, and single-sample GSEA (ssGSEA)
algorithms to evaluate cellular components or cell immune
responses between the high- and low-risk groups based on
tumor-associated endothelial signatures (Yoshihara et al., 2013;
Newman et al., 2015; Becht et al., 2016; Li et al., 2017; Miao
et al., 2020; Racle and Gfeller, 2020; Yi et al., 2020). Thorsson
et al.’s (2019) data and the TIMER database are used to compare the
infiltration of effector cells in the CIT cohort. The signatures of the
immune function, immune type, and immune checkpoint were
retrieved from previous studies (Ju et al., 2020; Bagaev et al.,
2021) and are shown in Supplementary Table S3.

Gene set enrichment analysis

Using the fgsea package, gene set enrichment analysis (GSEA)
was conducted to explore the potential pathways between the low-
risk score group and high-risk score group of each cancer type (Yu
et al., 2012). The permutations p-value was 10,000. The Hallmark
gene set “h.all.v7.2.symbols.gmt” and Reactome gene set
“c2.cp.reactome.v7.2.symbols.gmt” were downloaded from the
Molecular Signatures Database (http://software.broadinstitute.org/
gsea/msigdb/index.jsp). p-values smaller than 0.05 were defined to
be statistically significant.

Statistical analysis

The area under receiver operator characteristic curve (AUC) was
used to assess the prediction accuracy, and the AUC was derived by
the R package ROCR (Sing et al., 2005). The Spearman correlation
test was used to evaluate the correlation between immune
checkpoint signatures and tumor-associated endothelial
signatures scores. The coxph function in R was used for
univariate and multivariate Cox regression analyses (Therneau
and Grambsch, 2013). The survival curves were estimated
according to the Kaplan–Meier method and compared using the
log-rank test. Meta-analysis of the tumor-associated endothelial
signatures was performed using the metafor R package, and

hazard ratios with 95% confidence intervals for 33 cancer types
were calculated with a random effects model (Viechtbauer, 2010).
p-values less than 0 05 were considered statistically significant in this
study. All statistical analyses were carried out using R software
version 4.1.0 (https://www.r-project.org/) and GraphPad Prism
software (https://www.graphpad.com/scientific-software/prism/).

Results

Patient’s characteristics

We performed this analysis using 12 published datasets with
RNA-seq data and clinical response information available for six
cancer types (gastric cancer, metastatic urothelial cancer, metastatic
melanoma, non-small cell lung cancer, primary bladder cancer, and
renal cell carcinoma). These samples were treated with ACT,
MAGE-A3, BCG immunotherapy, and ICB therapy, including
anti-PD-1, anti-PD-L1, anti-CTLA-4 monotherapy, and a
combination of any two. A total of 784 subjects with CIT
response information were eligible for downstream analysis. RNA
data obtained from the 784 subjects were batch-corrected. We
further randomly partitioned subjects into two subsets (70% as
the training cohort and 30% as the validation cohort).

Construction of the tumor-associated
endothelial signature

The LASSO-penalized binomial regression was used to select the
most useful predictive genes from the 131 candidate tumor-
associated endothelial genes (Supplementary Table S2). A
penalized maximum likelihood estimator was used with
1,000 bootstrap replicates. The optimal weighting coefficients
were identified by the regularization parameter lambda via the 1-
SE criteria (Figures 1A, B). Regression coefficients were obtained by
LASSO-weighted analysis, and a risk score formula was constructed
for patients with a responder. Finally, the risk score was calculated
by the following formula (Figure 1C): tumor-associated endothelial
signature score = 0.180855332*ADD1 + 0.059530341*ALOX12 +
0.145361104 *CXCL10 - 0.081730252*F2RL1 +
0.001225741*ITGAX − 0.004914148*MET.

Evaluation of the TAE score

To evaluate the performance of TAE classifiers, we used the
ROCR package to generated AUC values for determining their
potential for differentiating the corresponding responders (R)
from the non-responders (NR). The AUC was 0.68 in the
training cohort and 0.70 in the validation cohort, which
indicated a potential role for TAE signature scores as tools for
predicting the response to CIT (Figures 2A, B).

Then, subjects in training and validation cohorts were divided
into high- and low score groups, respectively, using the optimal cut-
off value of the TAE risk score. In the high score group, patients had
a significantly longer OS time than that in the low score group (p <
0.05) in the training cohort (Figure 2C). In the validation cohort, the
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high score group had a longer OS time (p < 0.05) as well (Figure 2D).
We found that the patients who responded to CIT had significantly
higher TAE scores than those with no response in training and
validation cohorts (Figures 2E, F). Furthermore, a higher CIT
response rate was observed in the high score group compared
with patients in the low-score group (Figures 2G, H), which
implied that patients in the high score group can benefit from CIT.

Previous studies indicated that on-treatment tumor samples can
reliably predict patients’ endocrine therapy responses compared to
pre-treatment samples in breast cancer (Turnbull et al., 2015;
Bownes et al., 2019), which indicates that we should not only
attempt to identify and evaluate the signatures from pre-
treatment patients but also attempt to identify and evaluate the
signatures in patients who have just started therapy. Considering
that only metastatic melanoma patients include pre-treatment and
on-treatment tumor specimens, we performed additional tests on
them. Interestingly, we found that AUC values derived from on-
treatment tumor specimens were significantly higher than those
derived from pre-treatment samples (on-treatment AUC: 0.78 vs.
pre-treatment AUC: 0.64; Supplementary Figures S1A, B). Patients
with high TAE signature scores had a significantly longer OS time
than low TAE signature scores in the pre-treatment and on-
treatment cohorts, respectively (All p < 0.05, Supplementary
Figures S1C, D).

Among the CIT cohort, the subgroup of 235 metastatic
urothelial cancer patients included complete clinical
characteristics, so we further performed analysis on them. The
AUC for predicting the response to CIT in metastatic urothelial
cancer patients by the risk scores was 0.70 (Supplementary Figure
S2A). Patients with high scores exhibited significantly good overall
survival (OS) than those with low scores (p < 0.001, Supplementary
Figure S1B). An independent prognostic analysis showed that the
risk score of the TAE prognostic signature was significantly
correlated with the survival of metastatic urothelial patients, with
HR 0·195 (p < 0.001, Supplementary Figure S2C). Furthermore, we
used TIDE database data to verify the prediction performance of the
prediction model (Fu et al., 2020). The AUCs of TAEs used to
predict the response in metastatic urothelial cancer, melanoma, and
gastric cancer patients were relatively high (AUCs ranging from
0.67 to 0.88, Supplementary Table S4).

Association between the TAE signature
score and immunity in the CIT cohort

To uncover the immune activity of the TAE signature, ESTIMATE,
EPIC, MCPcounter, Immune AI, CIBERSORT, xCell, and ssGSEA
algorithms were used to estimate immune infiltration among high- and
low score groups in all CIT subjects (Figure 3A). We observed that the
tumor-killing immune cells, such as effector T cells, activated NK cells,
M1macrophage, and cytotoxic lymphocytes, weremainly distributed in
high scores groups. In addition, the different expression levels of
immune checkpoint genes between high- and low score groups were
investigated. Patients with higher BTLA, CD274, CTLA4, HAVCR2,
LAG3, PDCD1, PDCD1LG2, and BTLA presented a higher TAE score
(Figure 3B).

Pan-cancer profiling of TAE risk scores

To explore the wider value of TAE scores in pan-cancers, data
from 33 different cancer types in TCGA were used for further
analysis. Univariate Cox regression analyses for the TCGA cohort
suggested that the TAE score was associated with a good OS and
disease-specific survival (DSS) in BLCA and LCG. In meta-analysis,
the TAE score tends to be associated with a good prognosis in terms
of OS and DSS (Figures 4A, B).

TAE risk score significantly correlates with
immunity in 33 cancer types

In order to further elucidate the relationship between TAEs and
cancer immunity across 33 cancer types, GSEA was performed, which
suggested that gene sets involved in immune processes are consistently
upregulated in the high score group, including interferon alpha/gamma
response pathways and complement (Figure 5A). This result was
further validated in Reactome gene sets (Supplementary Figure S3).
Furthermore, we utilized marker gene expression analysis based on
ssGSEA, the TIMER database, and Thorsson et al.’s data for
illumination of the relationship between the risk score and effector
cells. We observed that the consistent results from ssGSEA analysis

FIGURE 1
Construction of the TAE score model for a cancer immunotherapy cohort. (A) LASSO coefficient profiles of 133 candidate genes. (B) Partial
likelihood deviance of different numbers of variables revealed by the LASSO regression binary model. Each data point corresponds to the mean of the
independent experiments, and error bars denote the standard deviation. (C) Coefficient values for each of the eight selected genes. A positive weighting
coefficient indicates that the increased expression contributes to the high value for the TAE value.

Frontiers in Pharmacology frontiersin.org04

Chen et al. 10.3389/fphar.2023.1190660

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1190660


(Figure 5B), TIMER database (Figure 5C), and Thorsson et al.’s data
(Figure 5D) were that BLCA, CESC, BRCA, STAD, SKCM, KIRC,
HNSC, and DLBCL had higher effector cell levels in high score groups
than in low score groups (Mann–Whitney U test, p < 0.05).
Subsequently, the estimation of the immune checkpoint levels

revealed that 13 cancer types, namely, OV, BLCA, TGCT, CESC,
THYM, COAD, SKCM, HNSC, LAML, READ, LGG, DLBCL, and
PCPG, demonstrated a significant increase in checkpoint molecule
scores in the high score group when compared to the low score group
(Mann–Whitney U test, p < 0.05; Figure 5E).

FIGURE 2
Validation of the TAE risk score model. (A,B) Sensitivity and specificity of the TAE score model were assessed in each dataset by time-dependent
ROCR analysis. (C,D) Kaplan–Meier curves for overall survival. Overall survival by the risk score in the training (C) and validation cohorts (D) (E,F)
Distribution of the TAE score among samples grouped by their response to immunotherapy in the training (E) and validation cohorts (F) (G,H). Response
rate to immunotherapy in low- and high score groups stratified by TAE score in the training (G) and validation cohorts (H).
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Discussion

The TECs are among the first cells to contact with immune
cells while infiltrating from the circulation into the tumor tissue
(Lambrechts et al., 2018). Tumor endothelial cells in the tumor
microenvironment are important in cancer immunity, such as in
the therapeutic response and in survival. In this study, we create a
predictive model for determining the response to CIT therapy

based on only six tumor endothelial gene markers. We observed
that TAE scores can be a potential biomarker for the CIT
response in multiple cancers. TECs are known to impact TME
immunogenicity not only by actively guiding the circulating
immune cells into the tumor stroma but also by fulfilling
immune regulatory properties themselves, such as antigen
presentation and T-cell priming functions (Georganaki et al.,
2018; Nagl et al., 2020). The immunity analysis results in the CIT

FIGURE 3
Tumor immunity analysis of the TAE score model. (A) Heatmap for immune responses based on ESTIMATE, EPIC, MCPcounter, Immune AI,
CIBERSORT, xCell, and ssGSEA algorithms among high- and low-risk score groups. (B) Association between checkpointmolecules BTLA, CD274, CTLA4,
HAVCR2, LAG3, PDCD1, PDCD1LG2, and BTLA, and TAE scores and their distribution in the low- and high score groups.

FIGURE 4
Results of Cox proportional hazards regression for OS (A) and DSS (B) analysis using TAE risk scores for 33 cancer types. Random effects meta-
analysis was used to generate the pooled hazard ratios and p-values. The statistical test of heterogeneity is shown in the last column.
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cohort revealed that tumor-killing immune cells, including
effector T cells, activated NK cells, M1 macrophages, and
cytotoxic lymphocytes, were more active in the high score
group, which might explain why patients with high score were
prone to have a better response to CIT and trend toward longer
OS than low-risk score patients.

In order to further elucidate the role of TAE scores in clinical
risk stratification, the association of TAEs and survival was assessed
in 33 cancer types. Univariate Cox regression analysis showed the
TAE risk score was significantly associated with OS and DSS in
BLCA and LCG. Using a meta-analysis showed that high-risk scores
were associated with a good prognosis, which may be ascribed to

increased antitumor effectiveness related to the abundance of
tumor-killing immune cells, particularly effector cells, which
provide direct immune cytotoxicity.

TECs have shown to express known inhibitory immune
checkpoint molecules, such as PD1, PDL1, and TIM3. PD-L2 can
be upregulated through several pro-inflammatory cytokines
including IFNγ and TNFα on TEC (Georganaki et al., 2018). The
immune checkpoint molecule is currently the most frequently used
biomarker in ICB treatment, guiding treatment decisions and
patient stratification. In addition, the high score group had a
higher expression trend of immune checkpoint associated genes
in both the CIT cohort and in all 33 TCGA cancer types, indicating

FIGURE 5
Relationships between inflammatory response risk scores and signaling pathways and immunophenotypes (A) Relationships between TAE risk
scores and signaling pathways in cancer patients with high- and low-risk scores. Normalized enrichment scores and p-values were determined using the
GSEA algorithm. (B–D) Infiltration levels of effector cells in the low- and high score groups were stratified by TAE risk scores in 33 cancer types from TCGA
using ssGSEA analysis (D,E), TIMER database (C), and Thorsson et al.’s data (D) (E) Checkpoint molecule scores in low- and high-risk score groups
stratified by the TAE scores in 33 cancer types.
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that patients in the high score group may have a better
immunotherapy response.

In the TAE model, the risk score with the highest weight was
assigned to ADD1, which contributed the most toward the model.
ADD1 is known to promote the spectrin–actin assembly in
erythrocytes and highly expressed in T cells (Robledo et al.,
2008). The co-stimulation signal through CD28 was completely
eliminated without ADD1, suggesting the role of actin-capping in
T cells. ADD1 is also necessary for the complete activation of CD4+

T cells in response to antigens using a conditional knockout model
(Thauland et al., 2019). In this study, the high score group with an
immune activation environment enriched high levels of effector
cells, probably due to the high expression levels of ADD1, in which
CD28-mediated co-stimulation results in T-cell activation. The
mechanism by which ADD1 facilitates co-stimulation is an
important area for future studies to address. We hope that this
article will promote future research in this important field of inquiry.

The present study has limitations. First, the datasets we were
able to obtain were limited as we could only obtain over 700 patients
with RNA-seq data and clinical response information. The extensive
work of larger cohorts of immunotherapy is required to verify the
TAE model in the future. Second, we lack clinical variable
information in most cancer types in the CIT cohort, so we could
not adjust their prognostic impact. Furthermore, patients from six
different cancer types receiving different immunotherapy
treatments may generate higher heterogeneity although we
performed the sub-group analysis in some cancer types as well.
Finally, the detailed mechanism on how each gene affects the
response to immunotherapy is unclear, and it is nonetheless
worthy of further study.

In summary, we developed a model using data from TAE gene
expression which accurately predicts the response to CIT among
different caner type patients. TAE score signatures derived from on-
treatment samples have higher ability in predicting the efficacy of
the CIT response in patients with metastatic melanoma. Our data
also suggested that the TAE model is an independent prognostic
factor used for predicting the response to CIT in metastatic
urothelial cancer. Immunity analysis indicated that TAE is closely
related to immune infiltration and immune checkpoint molecules.
To the best of our knowledge, this is the first study to analyze TAEs
in the CIT cohort and pan-cancer, highlighting the impact of TAEs
on the immune response, potentially allowing more precise and
personalized CIT in the future.
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SUPPLEMENTARY FIGURE S1
Evaluation of the TAE risk score in tumor species of pre-treatment and on-
treatment patients with metastatic melanoma. (A,B) Receiver operating
characteristic curves of TAE scores in predicting immunotherapy
responses between pre-treatment and on-treatment cohorts in patients with
metastatic melanoma. (C,D) Kaplan–Meier curves of the TAE risk score.
Kaplan–Meier curves for the overall survival of different TAE risk levels in
the pre-treatment (C) and on-treatment cohorts (D).

SUPPLEMENTARY FIGURE S2
Evaluation of the TAE risk score in metastatic urothelial cancer. (A) Receiver
operating characteristic curves of TAE risk scores for predicting the
immunotherapy response in patients with metastatic urothelial cancer. (B)
Kaplan–Meier curves for the overall survival of different TAE risk levels inmetastatic
urothelial cancer cohorts. (C)Multi-variate regression analysis of overall survival in
the metastatic urothelial cancer cohorts by using Cox regression analysis.

SUPPLEMENTARY FIGURE S3
Relationships between TAE risk scores and signaling pathways in cancer
patients with high- and low-risk scores. Normalized enrichment scores and
p-values were determined using the GSEA algorithm.
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