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Objective: To compare the efficacy and safety of treatments for patients with
recurrent high-grade gliomas.

Methods: Electronic databases including Pubmed, Embase, Cochrane Library and
ClinicalTrials.gov were searched for randomized controlled trials (RCT) related to
high-grade gliomas. The inclusion of qualified literature and extraction of data
were conducted by two independent reviewers. The primary clinical outcome
measures of network meta-analysis were overall survival (OS) while progression-
free survival (PFS), objective response rate (ORR) and adverse event of grade 3 or
higher were secondary measures.

Results: 22 eligible trials were included in the systematic review, involving
3423 patients and 30 treatment regimens. Network meta-analysis included
11 treatments of 10 trials for OS and PFS, 10 treatments of 8 trials for ORR, and
8 treatments of 7 trials for adverse event grade 3 or higher. Regorafenib showed
significant benefits in terms of OS in paired comparison with several treatments
such as bevacizumab (hazard ratio (HR), 0.39; 95% confidence interval (CI),
0.21–0.73), bevacizumab plus carboplatin (HR, 0.33; 95%CI, 0.16–0.68),
bevacizumab plus dasatinib (HR, 0.44; 95%CI, 0.21–0.93), bevacizumab plus
irinotecan (HR, 0.4; 95%CI, 0.21–0.74), bevacizumab plus lomustine (90 mg/
m2) (HR, 0.53; 95%CI, 0.33–0.84), bevacizumab plus lomustine (110 mg/m2)
(HR, 0.21; 95%CI, 0.06–0.7), bevacizumab plus vorinostat (HR, 0.42; 95%CI,
0.18–0.99), lomustine (HR, 0.5; 95%CI, 0.33–0.76), and nivolumab (HR, 0.38;
95%CI, 0.19–0.73). For PFS, only the hazard ratio between bevacizumab plus
vorinostat and bevacizumab plus lomustine (90 mg/m2) was significant (HR,0.51;
95%CI, 0.27–0.95). Lomustine and nivolumab conferred worse ORR. Safety
analysis showed fotemustine as the best and bevacizumab plus temozolomide
as the worst.

Conclusion: The results suggested that regorafenib and bevacizumab plus
lomustine (90 mg/m2) provide improvements in terms of survival but may have
poor ORR in patients with recurrent high-grade glioma.
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Introduction

According to the latest criteria of World Health Organization
classification in 2021 (Louis et al., 2021), high-grade gliomas
encompass various types, including grade 3 and 4 astrocytoma,
grade 3 oligodendroglioma, and grade 4 glioblastomas (GBM), with
GBM being the most common. Despite the fact that high-grade
gliomas account for approximately 25% of all brain tumors, they are
characterized by high aggression and malignancy, with an inevitable
tendency for recurrence (Ostrom et al., 2018). The median
progression-free survival (PFS) after recurrence is only
1.8 months (McKinnon et al., 2021), and the median overall
survival (OS) ranges between 7.1 and 9.8 months, with a 5-year
survival rate of only about 5% (Ostrom et al., 2018).

Surgical resection remains a viable option for treating recurrent high-
grade gliomas, particularly in the case of symptomatic or large lesions.
Nonetheless, successful outcomes are largely dependent on complete
resection (Wen et al., 2020). Due to the extensive and invasive nature of
tumor tissue, often infiltrating into healthy surrounding tissue, the success
rate of re-operation is limited by factors such as tumor location and
structural complexities (Ma et al., 2021).

In cases where radiotherapy is repeated, careful consideration
must be given to variables such as the initial radiation dose, time
interval since treatment, and the location and volume of the
recurrent tumor (Cabrera et al., 2016). However, there are few
randomized trials to definitively prove whether radiotherapy
prolongs survival time (Wen et al., 2020).

Alternatively, drug therapies have relatively fewer limitations and are
often the primary choice for relapsed patients. The drugs currently
available for high-grade glioma include bevacizumab, lomustine,
temozolomide, regorafenib, PCV (procarbazine, lomustine, and
vincristine), and relative drug combinations. However, the clinical
benefit of these therapies is limited, as evidenced by the results of
numerous clinical trials (Nabors et al., 2020;Weller et al., 2021).With the
abundance of clinical trials with inconclusive results (Omuro and
DeAngelis, 2013), it becomes perplexing for clinicians to make

informed decisions. Therefore, performing a network meta-analysis
that compares treatments from varying clinical trials becomes pivotal.

An analysis focusing on recurrent GBM has been previously
conducted, (McBain et al., 2021), while it lacked a collection of
evidence on grade 3 glioma treatment. Furthermore, fresh clinical
study outcomes have emerged that necessitate evaluation. Hence, we
performed this systematic review and Bayesian network meta-
analysis to amass and summarize the treatment evidence for both
grade 3 and 4 gliomas. Additionally, we reconstruct data from
published Kaplan-Meier survival curves to include as much
clinical evidence as possible and enable comprehensive results.
The results of direct and indirect comparisons were integrated
to evaluate the efficacy and safety of various drug therapies. We
also ranked the clinical measures of each therapeutic regimen
to provide a comprehensive assessment for clinical decision-
making and to improve prognosis for patients experiencing
tumor recurrence.

Methods

This study was conducted in accordance with Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) statement (Supplementary Table S1) (Page et al.,
2021). The protocol was registered with the international
prospective register of systematic reviews (PROSPERO
CRD42022383881).

Data sources and search strategy

A thorough search of PubMed, Embase, Cochrane Central Register,
China National Knowledge Infrastructure, WanFang Data Knowledge
Service Platform and China Science and Technology Journal Database
was conducted for published randomized controlled trials (RCTs) with
the inclusion of an additional search of ClinicalTrials.gov for

FIGURE 1
Study selection.
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TABLE 1 Baseline characteristic of included studies of patients with high-grade glioma.

Study id Tumor types Number of
relapses

Number of
patients

Female
(%)

Median
age

KPS ≥
80 (%)

Regimens Reported
outcomes

Boiardi et al,
1992

GBM NM 19 NM 56 NM Vincristine 2 mg; lomustine
75 mg/m2;
procarbazine75 mg/m2;
hydroxyurea 1500 mg/m2;
cisplatin 90 mg/m2;
algocytidine 300 mg/m2;
dacarbazine 150 mg/m2 and
methylprednisolone 300 mg/
m2 were administered every
6 h for 3 does.

ORR

16 61 NM Lomustine 110 mg/m2 was
administered on day 1,
procarbazine 60 mg/m2 was
administered daily for
14 days beginning on day 8,
and vincristine 1.4 mg/m2

was administered on day
8 and 29 of each 6 weeks cycle
of therapy.

Brada et al,
2010

AA, GBM, gliosarcoma,
oligoastrocytoma,

gliosarcoma

1 112 35.7 53 NM TMZ 200 mg/m2 on day
1–5 every 28 days.

OS, PFS,
Grade ≥3 AEs

111 36.9 53 NM TMZ 100 mg/m2 on day
1–21 every 28 days.

224 34.8 53 NM lomustine 110 mg/m2 on day
1, procarbazine 60 mg/m2

once a day on day 8–21 and
vincristine 1.4 mg/m2 on day
8 and 29 every 6 weeks.

Brandes et al,
2016

GBM 1 32 28.1 56 NM Fotemustine 75 mg/m2 on
days 1, 8, and 15. After a 35-
day break, fotemustine
100 mg/m2 every 3 weeks.

OS, PFS,
Grade ≥3 AEs

59 33.9 59 NM Bevacizumab 10 mg/kg every
2 weeks.

Brandes et al,
2019

GBM 1 61 27.9 56 90 Lomustine 90 mg/m2 every
6 weeks. Bevacizumab
10 mg/kg every 2 weeks.

OS, PFS,
Grade ≥3 AEs

62 27.4 58.5 92 Lomustine 110 mg/m2 every
6 weeks.

Dresemann
et al, 2010

GBM 1, 2 120 41.7 52 NM Imatinib 600 mg once a day.
Hydroxyurea 500 mg twice
a day.

OS, PFS,
Grade ≥3 AEs

120 31.7 51 NM Hydroxyurea 500 mg 3 times
a day.

Duerinck
et al, 2018

GBM 1, 2 29 37.9 56 NM Axitinib 5 mg twice a day.
Lomustine 90 mg/m2 every
6 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

50 34.0 55 NM Axitinib 5 mg twice a day.

Field et al,
2015

GBM 1, 2 60 43.3 55 82 Carboplatin AUC 5 every
4 weeks. Bevacizumab
10 mg/kg every 2 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

62 46.8 55 84 Bevacizumab 10 mg/kg every
2 weeks.

Friedman
et al, 2009

GBM 1, 2 82 30.5 57 100 Irinotecan 125 mg/m2 every
2 weeks. Bevacizumab
10 mg/kg every 2 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

85 31.8 54 100 Bevacizumab 10 mg/kg every
2 weeks

(Continued on following page)
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TABLE 1 (Continued) Baseline characteristic of included studies of patients with high-grade glioma.

Study id Tumor types Number of
relapses

Number of
patients

Female
(%)

Median
age

KPS ≥
80 (%)

Regimens Reported
outcomes

Galanis et al,
2019

GBM NM 83 33.7 58 NM Dasatinib 100 mg twice a day.
Bevacizumab 10 mg/kg every
2 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

38 42.1 56.5 NM Bevacizumab 10 mg/kg every
2 weeks.

Gilbert et al,
2017

GBM or Gliosarcoma NM 60 43.3 58 100 TMZ 75 mg/m2 on day
1–21 every 28 days.
Bevacizumab 10 mg/kg every
2 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

57 40.4 55 100 Irinotecan 125 mg/m2 every
2 weeks. Bevacizumab
10 mg/kg every 2 weeks.

Lombardi
et al, 2019

GBM 1 59 30.5 54.8 NM Regorafenib 160 mg once a
day for the first 3 weeks of
each 4-week.

OS, PFS, ORR,
Grade ≥3 AEs

60 28.3 58.9 NM Lomustine 110 mg/m2 every
6 weeks.

Nayak et al,
2021

GBM 1, 2 50 30.0 52 100 Pembrolizumab 200 mg every
3 weeks. Bevacizumab
10 mg/kg every 2 weeks.

OS, PFS, ORR

30 36.7 55 100 Pembrolizumab 200 mg every
3 weeks.

Patil et al,
2022

GBM NM 44 25.0 40.5 NM Mebendazole 1600 mg
3 times a day. TMZ 200 mg/
m2 on day 1–5 every 28 days.

OS, PFS,
Grade ≥3 AEs

44 27.3 41 NM Mebendazole 800 mg 3 times
a day. Lomustine 110 mg/m2

on day 1 every 6 weeks.

Puduvalli
et al, 2020

Grade IV glioma 1, 2, 3 47 36.2 NM 94 Vorinostat 400 mg on day
1–7 and 15–21 every 4 weeks.
Bevacizumab 10 mg/kg every
2 weeks.

OS, PFS,
Grade ≥3 AEs

38 26.3 97 Bevacizumab 10 mg/kg every
2 weeks.

Reardon et al,
2015

Grade IV glioma 1 41 34.1 56.6 100 Afatinib 40 mg once a day. OS, PFS, ORR,
Grade ≥3 AEs

39 46.2 55.4 100 Afatinib 40 mg once a day.
TMZ 75 mg/m2 on day
1–21 every 28 days.

39 35.9 56.9 100 TMZ 75 mg/m2 on day
1–21 every 28 days.

Reardon et al,
2020

GBM or Gliosarcoma 1 184 37.0 55.5 99 Nivolumab 3 mg/kg every
2 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

185 35.7 55 100 Bevacizumab 10 mg/kg every
2 weeks.

Song et al,
2010

GBM NM 23 NM NM NM Hydroxycamptothecin 6 mg/
m2 on day 1–7 every 28 days.

OS, PFS, ORR

24 NM NM NM TMZ 150 mg/m2 on day
1–5 every 28 days.

Sun et al,
2013

GBM NM 65 40.0 45.1 NM Semustine 150 mg/m2 on day
1 every 28 days.

ORR

79 30.4 44.3 NM TMZ 150 or 200 mg/m2 on
day 1–5 every 28 days.

(Continued on following page)
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unpublished RCTs. The search terms included “high-grade gliomas,”
“anaplastic astrocytoma,” “glioblastoma,” “anaplastic oligoastrocytoma,”
“recurren*,“ “relapse,” and drug names. Details of the literature search
strategy can be found in Supplementary Table S2, with the search results
collected up until 3 August 2022. The listing status of drugs was
confirmed through the U.S. Food and Drug Administration (FDA)
and drug-approval agencies in other countries.

Selection criteria

RCTs were included based on the following criteria:

1) Adult patients (≥18 years) with histologically confirmed recurrent
high-grade gliomas, including GBM and anaplastic gliomas.

2) Trials that compared two or more arms of drug therapies, such as
chemotherapy, immunotherapy and targeted therapy.

3) Trials that reported at least one of the following outcomes:
(i) OS, defined as the time from randomization to death;
(ii) PFS, defined as the time from randomization to first

progression (local or distant) or death;
(iii) Objective response rate (ORR), defined as the proportion of

patients achieving an objective response;
(iv) The incidence of grade 3 or higher adverse events (AE),

determined according to the common terminology criteria
for adverse events.

Duplicate studies and trials that were terminated or closed, along
with trials in which drugs had not been approved for marketing by
any nation were excluded. Furthermore, study arms that included
operation or radiotherapy were disallowed.

Xu and Guan independently excluded irrelevant results by
screening titles and abstracts, and included eligible articles by
browsing through full texts. Any divergences during selection
were resolved through arbitration by all reviewers.

Data extraction and quality evaluation

The details of the included articles were extracted to a pre-
designed form, including publication information (title, first author,
year of publication, journal of publication, country, etc.), trial
information (trial start and cut-off time, disease, patient inclusion
criteria, number of enrolled patients, baseline characteristics of the
population, follow-up time), treatment regimens, and outcomes. If
the OS and PFS were incomplete, missing data were estimated based
on Kaplan-Meier curves following the methods provided by Tierney
et al. (2007).

The Cochrane Risk of Bias 2 tool (Cumpston et al., 2019)
assessed the individual study’s risk of bias in five areas:
randomization process, deviations from intended
interventions, missing outcome data, measurement of the
outcome and selection of the reported result. Trials were

TABLE 1 (Continued) Baseline characteristic of included studies of patients with high-grade glioma.

Study id Tumor types Number of
relapses

Number of
patients

Female
(%)

Median
age

KPS ≥
80 (%)

Regimens Reported
outcomes

Taal et al,
2014

GBM 1 50 38.0 58 NM Bevacizumab 10 mg/kg every
2 weeks.

OS, PFS, ORR

46 43.5 56 NM Lomustine 110 mg/m2 every
6 weeks.

8 62.5 53 NM Lomustine 110 mg/m2 every
6 weeks. Bevacizumab
10 mg/kg every 2 weeks.

44 31.8 58 NM Lomustine 90 mg/m2 every
6 weeks. Bevacizumab
10 mg/kg every 2 weeks.

Twelves et al,
2021

GBM 1 12 58.3 59 91 TMZ 85 mg/m2 on day
1–21 every 28 days.
Nabiximols 3–12 sprays daily.

Grade ≥3 AEs

9 11.1 57 100 TMZ 85 mg/m2 on day
1–21 every 28 days.

Wick et al,
2017

GBM 1 149 38.9 59.8 NM Lomustine 110 mg/m2 every
6 weeks.

OS, PFS, ORR,
Grade ≥3 AEs

288 39.6 57.1 NM Lomustine 90 mg/m2 every
6 weeks. Bevacizumab
10 mg/kg every 2 weeks.

Yung et al,
2000

GBM or Gliosarcoma 1 112 31.3 52 100 TMZ 150 or 200 mg/m2 on
day 1–5 every 28 days.

OS, PFS, ORR,
Grade ≥3 AEs

113 36.3 52 99 Procarbazine 125 or 150 mg/
m2 on day 1–28 every 56 days.

AA, anaplastic astrocytoma; GBM, glioblastoma; NM, not mentioned; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; TMZ, temozolomide.
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categorized as low risk, high risk, or unclear concern of bias based
on the above criteria.

Data extraction was conducted by Xu and Guan, and quality
evaluation was conducted independently by Xu and Yu. Any
discrepancies that emerged during the evaluation process were
resolved through consensus among all reviewers.

Data synthesis and statistical analysis

The primary study outcome in this study was OS, with
secondary outcomes being PFS, ORR, and grade 3 or higher AE.
Survival data were presented as the hazard ratio (HR) with
corresponding 95% confidence interval (CI), while categorical
variables were expressed as the odds ratio (OR) with
corresponding 95% CI.

Bayesian network meta-analysis was conducted due to its
adaptability with complicated situations and its ability to explain
the effects of study-specific covariates, leading to accurate
estimates with limited information. Additionally, it provides a
straightforward approach to carry out probabilistic statements
and treatment effect predictions (Salanti et al., 2011). Network
diagrams were generated for different treatment outcomes using
Stata (version 17) (Chaimani et al., 2013). Fixed-effects and
random-effects models were established separately through a
Markov Chain Monte Carlo simulation technique in R
(version 4.2.2) with 150000 iterations, 30000 burn-ins and a

thinning interval of 1, based on the Bayesian framework
(Salanti et al., 2011). The final appropriate analytical model
was chosen based on the model parameters. Convergence was
assessed through visual inspection of trace plots, density plots
and Brooks-Gelman Rubin diagnosis plots (Supplementary
Figure S1). Heterogeneity was evaluated using I2 statistics,
with values categorized as low, medium and high
heterogeneity for I2 values < 25%, 25%–50% and >50%,
respectively, (Higgins et al., 2003). Global consistency was
assessed by comparing the consistent and inconsistent models
(Dias et al., 2010). The inconsistency of the models was assessed
using the node splitting method (Higgins et al., 2003). Probability
plots and surface under the cumulative ranking curve (SUCRA)
were used to predict and evaluate the efficacy and safety of each
treatment.

A sensitivity analysis was conducted to evaluate the reliability
and stability of network meta-analysis results, with articles causing
greater heterogeneity excluded for sensitive analysis.

Results

Systematic review and characteristics

In this study, a total of 104 out of 4933 records for full-text reading
and 22RCTs (Boiardi et al., 1992; Yung et al., 2000; Friedman et al., 2009;
Brada et al., 2010; Dresemann et al., 2010; Song et al., 2010; Sun et al.,

FIGURE 2
Network diagrams of comparisons on different outcomes of treatments s in different groups for patients with recurrent high-grade glioma. The
yellow line indicates that there are studies in this comparison group that implemented a blinded approach. (A)Comparison of network diagrams for OS in
high-grade glioma. (B) Comparison of network diagrams for PFS in high-grade glioma. (C) Comparison of network diagrams for ORR in high-grade
glioma. (D) Comparison of network diagrams for grade 3 or higher AEs in high-grade glioma. BEV, bevacizumab; CAR, carboplatin; DAS, dasatinib;
IRI, irinotecan; LOM, lomustine (90 mg/m2); LOM110, lomustine (110 mg/m2); TMZ, temozolomide; VOR, vorinostat; NIV, nivolumab; REG, regorafenib;
FOT, fotemustine.
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2013; Taal et al., 2014; Field et al., 2015; Reardon et al., 2015; Brandes
et al., 2016; Gilbert et al., 2017; Wick et al., 2017; Duerinck et al., 2018;
Brandes et al., 2019; Galanis et al., 2019; Lombardi et al., 2019; Puduvalli
et al., 2020; Reardon et al., 2020; Nayak et al., 2021; Twelves et al., 2021;
Patil et al., 2022) were included for analysis (Figure 1). The study
population consisted of 3423 patients who received 30 different
treatments. Bevacizumab, lomustine and temozolomide were the
most commonly studied. The characteristics of the tumor types,
number of tumor recurrences, sex ratio, age, Karnofsky performance
status (KPS), and specific treatment regimens were summarized in
Table 1. The risk of bias assessment in the literature was evaluated
and presented in Supplementary Figure S2.

Network meta-analysis

Network evidence plots
A network meta-analysis was conducted to assess the

efficacy and safety of the different treatment regimens. A

total of 11 treatment regimens from 10 studies (Friedman
et al., 2009; Taal et al., 2014; Field et al., 2015; Gilbert et al.,
2017; Wick et al., 2017; Brandes et al., 2019; Galanis et al., 2019;
Lombardi et al., 2019; Puduvalli et al., 2020; Reardon et al.,
2020) constituted the analysis network for OS and PFS (Figures
2A, B), and 10 treatment regimens from 8 studies (Friedman
et al., 2009; Taal et al., 2014; Field et al., 2015; Gilbert et al.,
2017; Wick et al., 2017; Galanis et al., 2019; Lombardi et al.,
2019; Reardon et al., 2020) constituted the analysis network for
ORR (Figure 2C). Furthermore, 8 treatment regimens from
7 studies (Friedman et al., 2009; Field et al., 2015; Brandes
et al., 2016; Gilbert et al., 2017; Galanis et al., 2019; Puduvalli
et al., 2020; Reardon et al., 2020) constituted the analysis
network for AEs (Figure 2D).

Heterogeneity and inconsistency assessment
A fixed-effects model was used for the analysis of OS, ORR

and AEs (I2 < 25%) and a random-effects model for the analysis
of PFS (I2 > 50%). The results of heterogeneity test were presented

FIGURE 3
Pooled estimates of the network meta-analysis. (A) Pooled HRs (95% credible intervals) for OS in the upper triangle and PFS in the lower triangle. (B)
Pooled ORs (95% credible intervals) for ORR in the upper triangle and 3 or higher AEs in the lower triangle. BEV, bevacizumab; CAR, carboplatin; DAS,
dasatinib; IRI, irinotecan; LOM, lomustine (90 mg/m2); LOM110, lomustine (110 mg/m2); TMZ, temozolomide; VOR, vorinostat; NIV, nivolumab; REG,
regorafenib; FOT, fotemustine.

Frontiers in Pharmacology frontiersin.org07

Xu et al. 10.3389/fphar.2023.1191480

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1191480


in Supplementary Figure S3. The heterogeneity of the
comparison group of lomustine and bevacizumab plus
lomustine was high (I2 = 69.6%), which was mainly due to the
Brandes2019 study. After removing this trial, the I2 decreased to
32.4% (Supplementary Figure S3E). A closed-loop structure was
present in the network of OS, PFS, and ORR, but since the arms
that comprised the loop were from one literature, (Taal et al.,
2014), there was no need to check the consistency of the direct
evidence (van Valkenhoef et al., 2016).

Comparison of efficacy and safety
The direct and indirect evidence of different treatments in terms

of survival and binary outcomes were synthesized and reported as
HR and OR, respectively.

Regorafenib was found to have the best benefit for OS
(Figure 3A), compared to other treatment regimens. In terms of
PFS (Figure 3A), only bevacizumab plus lomustine (90 mg/m2) was
significantly effective than lomustine alone (HR = 0.51, 95% CI 0.27-
0.95). The HR of bevacizumab plus lomustine (90 mg/m2) was less
than 1, which had a therapeutic advantage compared to the other
nine regimens, though the confidence interval spanned 1.

Lomustine and nivolumab performed poorly on ORR (Figure 3B).
The range of ORs were from 0.05 to 0.28 for lomustine compared to
bevacizumab, bevacizumab plus carboplatin, bevacizumab plus
dasatinib, bevacizumab plus irinotecan, bevacizumab plus lomustine
(including 90 mg/m2 and 110mg/m2) and bevacizumab plus
temozolomide. The range of ORs were from 0.09 to 0.53 for
nivolumab compared to the above regimens.

For grade 3 or higher AE (Figure 3B), bevacizumab plus
temozolomide suffered the worst safety. The primary adverse event of
bevacizumab plus temozolomide was myelotoxicity (Gilbert et al., 2017).

A two-dimensional graph was drawn to visualize the effect of
different treatments on OS and PFS, taking bevacizumab as control
(Figure 4). The diagram showed that regorafenib, bevacizumab plus
lomustine (90 mg/m2), bevacizumab plus temozolomide, bevacizumab
plus dasatinib, and bevacizumab plus vorinostat had better efficacy than
bevacizumab in terms of OS and PFS, athough the confidence interval
for HR of most regimens crossed 1 with no significant difference.

Rank probabilities
The ranking and SUCRA of comparable treatments for patients

with high-grade glioma obtained by network meta-analysis (Figures
5, 6) were consistent with HR and OR.

Patients with recurrent high-grade glioma treated with
regorafenib are likely to experience the longest OS (94%
probability). The SUCRA of regorafenib was much higher
than other regimens. Patients treated with bevacizumab
plus vorinostat may attain the longest PFS (24% probability).
However, the SUCRA of bevacizumab plus lomustine (90 mg/m2)
and bevacizumab plus vorinostat were similar. Patients treated
with bevacizumab plus lomustine (110 mg/m2) may have better
ORRs (54% probability). Lomustine and nivolumab performed
poorly for ORR. Patients treated with lomustine were minimally
at risk for a grade ≥3 AEs (84% probability), whereas
bevacizumab-based regimens tended to have higher toxicity
than bevacizumab alone.

Sensitivity analysis
There was a large heterogeneity of PFS after combining

various trials. Therefore, a sensitivity analysis was conducted,
excluding each trial in turn. As a result, it was identified that
Brandes2019 was the primary source of heterogeneity in the PFS
network. With this information in mind, sensitivity analyses of
PFS outcomes were performed using the remaining studies,
excluding Brandes 2019. Supplementary Figure S4 display the
results of pairwise comparison, probability ranking, and the
SUCRA.

The sensitivity analysis outcomes aligned with those yielded
by the Bayesian network meta-analysis. In the pairwise
comparison, it remained that bevacizumab plus lomustine
(90 mg/m2) achieved a significantly enhanced PFS, as
compared to lomustine. The HRs of other comparisons were
not found to be significant.

Similarly, in the ranking of PFS, the curves followed the same
pattern as the networkmeta-analysis. Additionally, there was a slight
increase in the probability that bevacizumab plus lomustine (90 mg/
m2) would rank in the top four. Global results obtained from the
network meta-analysis were robust.

Discussion

In this systematic review and Bayesian network meta-analysis,
we present a comprehensive summary and comparison of the
efficacy and safety profiles of various interventions for high-grade
gliomas, including bevacizumab monotherapy, bevacizumab-based

FIGURE 4
Two-dimensional plot of OS and PFS for difference treatments.
The horizontal coordinate indicates the risk ratio for OS of the study
regimen with bevacizumab as the control, and the vertical coordinate
indicates the risk ratio for PFS of the study regimen with
bevacizumab as the control. The dots indicate the estimated risk ratios
for the study regimens, and the horizontal line indicates the 95%
confidence interval for HR. BEV, bevacizumab; CAR, carboplatin; DAS,
dasatinib; IRI, irinotecan; LOM, lomustine (90 mg/m2); LOM110,
lomustine (110 mg/m2); TMZ, temozolomide; VOR, vorinostat; NIV,
nivolumab; REG, regorafenib.
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therapies, nitrosoureas, PD-1 inhibitors, and multi-targeted kinase
inhibitors. To bolster the study’s clinical utility in real-world
practice, we excluded investigations on experimental drugs that
remain unavailable commercially.

The results of the study suggest that regorafenib is likely to be
the most effective treatment for improving survival outcomes in
patients with longer OS and PFS, although the options may not
provide the same benefit in terms of ORR. The efficacy of the
combination therapy of bevacizumab and lomustine (90 mg/m2)
was inferior to that of regorafenib. Nevertheless, it outperformed
other treatment options in terms of survival outcomes and is

recommended as the second option according to our findings.
However, the ORR was unsatisfactory as well. Notably,
bevacizumab plus lomustine (110 mg/m2) ranked high in ORR
outcomes, which may be attributed to the dose administered.
However, the limited sample size of patients in original studies
may have introduced some bias into our results.

In terms of safety, no drug had an absolutely good safety profile.
Regorafenib and bevacizumab plus lomustine (90 mg/m2) were not
included in the safety evaluation network due to incomplete safety
data. Grade 3 or higher AEs for regorafenib were dominated by elevated
lipase and hand-foot skin reactions (both incidences were over 10%)

FIGURE 5
Bayesian ranking profiles of comparable treatments on efficacy and safety for patients with high-grade gliomas. Profiles indicate the probability of
each treatment being ranked from first to last on OS (A), PFS (B), ORR (C), and grade 3 or higher AEs (D). Ranking curves are described according to the
Bayesian ranking results presented in Supplementary Table S3. BEV, bevacizumab; CAR, carboplatin; DAS, dasatinib; IRI, irinotecan; LOM, lomustine
(90 mg/m2); LOM110, lomustine (110 mg/m2); TMZ, temozolomide; VOR, vorinostat; NIV, nivolumab; REG, regorafenib; FOT, fotemustine.
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(Lombardi et al., 2019). Main AEs for bevacizumab plus lomustine
(90 mg/m2) were hypertension, hematologic effects, and fatigue (Taal
et al., 2014; Wick et al., 2017). Our investigation revealed that
fotemustine exhibited the most favorable safety profile. Given that it
belongs to the same class of nitrosourea as lomustine, it appears
reasonable to assert that nitrosourea drugs may generally confer a
measure of therapeutic advantage in terms of safety.

The study by Brandes in 2019 exhibited a greater degree of
heterogeneity in contrast to the research conducted by Taal in
2014 and Wick in 2017 in paired comparison of lomustine and
bevacizumab plus lomustine (90 mg/m2). This may be attributed to
the ratio of O-6-methylguanine-DNA methyltransferase (MGMT)
methylation and unmethylation, which was approximately 1/2 in the
Brandes2019 study, compared to a near 1:1 ratio seen in the other two
studies. A multitude of investigations have demonstrated an association
between MGMT unmethylation and resistance to chemotherapeutic
agents (Oldrini et al., 2020). This may plausibly account for the observed
larger HR for PFS in the Brandes2019 study, in contrast to the
Taal2014 and Wick2017 studies, where the HR values were quite
similar. However, we are reassured that our final results were not
impacted by heterogeneity through sensitivity analyses.

The study enrolled predominantly patients with recurrent GBM.
TheNational Comprehensive Cancer Network (NCCN) clinical practice
guidelines for central nervous system cancers (Nabors et al., 2020)
recommend preferential use of bevacizumab, temozolomide,

lomustine or carmustine, PCV and regorafenib for recurrent GBM.
The European Association of Neuro-Oncology (EANO) guidelines of
diffuse glioma in adults (Weller et al., 2021) endorse nitrosoureas,
temozolomide and bevacizumab for progression or relapse of GBM.
The findings of our analysis support the use of regorafenib for recurrent
GBMbased on its associationwith significant survival benefits. However,
experience with regorafenib in recurrent GBM is limited compared with
other recommended therapeutic options in the guidelines. Regorafenib is
a multi-kinase inhibitor. Its anti-tumor mechanism remains elusive
despite several clinical trials. A recent investigation delving into its
mode of action has unearthed regorafenib’s ability to stabilize the
critical enzyme PSAT1 (phosphoserine aminotransferase 1) involved
in serine synthesis. This unfavorable activity in GBM cells leads to fatal
autophagy arrest and tumor suppression (Jiang et al., 2020). The
promising results suggest that the levels of PSAT1 play a key
regulatory role in the success of regorafenib-induced GBM therapy.
Additional research has identified molecular features correlated with
prolonged survival rate in regorafenib-treated GBM patients. These
features include EGFR mutations (Chiesa et al., 2022), gene
transcripts such as HIF1A and CDKN1A, miRNAs like miR-
3607–3p, miR-301a-3p, miR-93–5p (Santangelo et al., 2021), and
MAPK pathway mutations that may associate with a poor prognosis
(Chiesa et al., 2022). However, limited evidence restricts the scope of
individualized dosing of regorafenib, hence, greater evidence is required
to increase its widespread acceptance.

FIGURE 6
SUCRA ranking of comparable treatments on efficacy and safety for patients with high-grade gliomas. Profiles indicate the cumulative probability of
each treatment being ranked in the top on OS (A), PFS (B), ORR (C), and grade 3 or higher AEs (D). SUCRA are described according to the Bayesian
cumulative ranking results presented in Supplementary Table S4. BEV, bevacizumab; CAR, carboplatin; DAS, dasatinib; IRI, irinotecan; LOM, lomustine
(90 mg/m2); LOM110, lomustine (110 mg/m2); TMZ, temozolomide; VOR, vorinostat; NIV, nivolumab; REG, regorafenib; FOT, fotemustine.
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The Chinese guidelines (Jiang et al., 2021) recommended
bevacizumab plus lomustine (90 mg/m2), while it is not a
preferred regimen in NCCN(7) and EANO(8) guidelines.
Clinicians need to carefully consider the AEs and patient status
when selecting this combination. Additionally, cost effectiveness is
also an important factor to consider (Cagney and Alexander, 2017),
but there is a paucity of evidence in this area at present.

There are commendable aspects to our review, particularly the
emphasis placed on high-grade glioma, as opposed to recurrent
GBM, although the latter still featured prominently in the final
analysis. We established a comprehensive network pertaining to all
drug treatments, and judiciously applied analytical methods to
estimate hazard ratios founded upon Kaplan-Meier curves,
yielding the added benefit of integrating studies that did not
report hazard ratios, thus allowing for a more comprehensive
evaluation of the many treatments evaluated. Our review presents
valuable information for clinical decision-making, which we
achieved by carefully scrutinizing and assessing the outcomes of
various treatments, and performing rigorous analyses, including
sensitivity analysis of network heterogeneity and consistency, thus
ensuring robust and dependable results.

Our research, though valuable, still presents some limitations.
Firstly, the scope of this study was limited to patients with recurrent
high-grade glioma. However, upon examining relevant literature, we
discovered a dearth of randomized controlled trials pertaining to
grade 3 glioma or anaplastic glioma. Furthermore, we were unable to
perform a comprehensive subgroup analysis of grade 3 glioma due to
insufficient data. It is thus imperative to acknowledge that the results
of our work may not fully represent the ideal treatment strategies for
grade 3 recurrent glioma. Another shortcoming of the study was
incomplete reporting of results, which prevented the integration of
certain guidelines-recommended treatments, such as temozolomide
and PCV, into the network. Despite these limitations, pertinent data
of clinical trials can be gleaned from Table 1. Language bias may also
have some impact on the results. The literature in this article is from
English and Chinese databases and may miss potential and qualified
studies from other language databases.

As per our research findings, conventional drugs appear to be
ineffective in producing significant impacts towards recurrent high-
grade glioma. The large molecular phenotype heterogeneity is likely a
contributing factor (Nicholson and Fine, 2021). Targeting specific
pathways may be a more effective approach (Le Rhun et al., 2019).
Among the targeted agents analyzed in this study, both bevacizumab and
regorafenib interact with vascular endothelial growth factor (VEGF),
which inhibits neoangiogenesis and thus exerts anti-tumor effects. In
addition, regorafenib targetsmultiple gene and kinase such as BRAF, KIT,
and RET, which may be potential therapeutic targets but need to be
confirmed by further studies. The latest study has found that patients
presenting a BRAF-V600E mutation showed improved ORR with
dabrafenib and trametinib, providing a clear indication of the
potential benefits of individualized treatment strategies (Wen et al.,
2022). Likewise, a phase 3 clinical trial of a vaccine has shown
promising results in the treatment of recurrent glioma. As
demonstrated by Liah et al.’s study, the addition of an autologous
tumor lysate-loaded dendritic cell vaccine has resulted in significant
clinical benefits resulting in a statistically significant increase in survival
time for patients with relapsed GBM (Liau et al., 2023). Whether by
targeting specific molecules, pathways, or through autologous tumor

lysates, individualized therapy holds significant promise for the treatment
of recurrent high-grade gliomas. However, current advancements in this
critical area have been insufficient to fully realize the potential of
personalized medicine in this setting. In the present context, emerging
data emphasizes that regorafenib and bevacizumab in combination with
lomustine, represents themost promising therapeutic alternative for high-
grade glioma.
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