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The phenomenon of T Cell exhaustion (TEX) entails a progressive deterioration in
the functionality of T cells within the immune system during prolonged conflicts
with chronic infections or tumors. In the context of ovarian cancer
immunotherapy, the development, and outcome of treatment are closely
linked to T-cell exhaustion. Hence, gaining an in-depth understanding of the
features of TEX within the immune microenvironment of ovarian cancer is of
paramount importance for the management of OC patients. To this end, we
leveraged single-cell RNA data from OC to perform clustering and identify T-cell
marker genes utilizing the Unified Modal Approximation and Projection (UMAP)
approach. Through GSVA and WGCNA in bulk RNA-seq data, we identified
185 TEX-related genes (TEXRGs). Subsequently, we transformed ten machine
learning algorithms into 80 combinations and selected the most optimal one to
construct TEX-related prognostic features (TEXRPS) based on the mean C-index
of the three OC cohorts. In addition, we explored the disparities in
clinicopathological features, mutational status, immune cell infiltration, and
immunotherapy efficacy between the high-risk (HR) and low-risk (LR) groups.
Upon the integration of clinicopathological features, TEXRPS displayed robust
predictive power. Notably, patients in the LR group exhibited a superior prognosis,
higher tumor mutational load (TMB), greater immune cell infiltration abundance,
and enhanced sensitivity to immunotherapy. Lastly, we verified the differential
expression of the model gene CD44 using gRT-PCR. In conclusion, our study
offers a valuable tool to guide clinical management and targeted therapy of OC.
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Introduction

Ovarian cancer is a prevalent gynecological malignancy and ranks sixth as the leading cause
of cancer-related death in women (Bronger et al., 2016), with approximately 150,000 women
losing their lives each year (Sung et al., 2021). Unfortunately, due to ineffective screening methods
and unnoticeable early symptoms, more than 75% of patients are diagnosed with an advanced
stage, and over 70% experience recurrence after treatment (Dinh et al., 2008). Despite progress in
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treatment strategies and technologies, ovarian cancer mortality rates still
remain high (Hubbell et al, 2021). Therefore, developing novel
multigene-based models for diagnosing and predicting ovarian
cancer prognosis is crucial, considering the complex molecular
mechanisms that affect it and the lower precision of individual gene
prediction models.

Upon encountering a pathogen, initial T cells respond by
proliferating towards effector and memory T cells in response to
antigen, costimulatory signals, and inflammation (Wherry, 2011).
However, exhausted T cells lose their ability to respond to additional
proliferative signals and become unresponsive to future stimulation with
the same antigen, resulting in a loss of memory homeostasis (Doering
et al,, 2012; Chow et al., 2022). Furthermore, these cells also lose their
ability to respond to additional proliferative signals (Moskophidis et al.,
1993; Doering et al,, 2012). Recent research has demonstrated that
blocking co-inhibitory receptors on the surface of exhausted CD8"
T cells, such as PD-1, reactivates the cytolytic effect of T cells (Day
et al, 2006; Wherry and Kurachi, 2015). Nevertheless, the mechanism
behind immune checkpoint blockade (ICB) and T-cell exhaustion
requires further investigation since T-cell exhaustion plays a crucial
role in immune dysfunction and immune escape in cancer patients.

Identifying tumor immune profiles and immune characteristics of
patients with different tumors is crucial, and the tumor immune
microenvironment has been highlighted as a crucial factor in cancer
progression and treatment response (Zhao et al., 2022a). Although tumor-
infiltrating T cells are critical in recognizing and killing tumor cells, most
infiltrating T cells become ‘exhausted’ due to the level and number of
expressed inhibitory receptors (IRS) (McLane et al., 2019). High-grade
ovarian cancer has a tumor immunosuppressive environment with a high
proportion of Tex and regulatory T cells (Treg), resulting in the
exhaustion of specific tumor-infiltrating lymphocytes (TILs) and
interaction with tumor antigens (Yang et al,, 2022).

In addition, there is evidence to suggest that T-cell exhaustion is
a continuous and evolving process (Philip et al., 2017). As such, the
objective of this research is to detect and describe patients with
distinct T-cell exhaustion patterns. This study will employ bulk
sequencing and single-cell RNA sequencing (scRNA-seq) data from
ovarian cancer to pinpoint TEX-associated genes (TEXRGs) with
significant prognostic value. To examine the prognostic impact of
TEXRGs on the progression and prognosis of ovarian cancer, a
TEX-related prognostic signature (TEXRPS) was developed using a
comprehensive machine-learning combination.

Materials and methods

Source of raw data To conduct this study, 10 x scRNA-seq data
from GSE154600, which included 5 samples of ovarian cancer (OC) and
a total of 52,384 cells, were employed. Additionally, gene expression
profiles, measured in fragments per kilobase million (FPKM), and
clinicopathological data for OC were sourced from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)
databases. Further analysis was carried out on two GEO cohorts
(GSE9891, GSE63885) and the TCGA-OV cohort. To ensure
consistency in transcript quantification, FPKM was converted to
transcripts per million (TPM), which were deemed equivalent to the
GEO microarray transcripts (Conesa et al., 2016). Subsequently, the
“affy” R package was utilized for background calibration, normalization,
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and log2 transformation on all GEO raw datasets (Irizarry et al., 2003).
The “sva” R package was then used to remove batch effects, and patients
lacking survival information were excluded (Leek et al., 2012). In total,
711 patients were included in the analysis, consisting of 360 patients
from the TCGA cohort, 276 patients from the GSE989 cohort, and
75 patients from the GSE63885 cohort.

Processing of single-cell sequencing data

Our approach to analyzing ovarian cancer single-cell sequencing
data involved several key steps. First, we conducted quality control (QC)
by assessing the proportion of mitochondrial or ribosomal genes. Next,
we used the “Seurat” R package (Macosko et al.,, 2015)to convert the
10 x scRNA-seq data into Seurat objects, identifying the first
2,000 highly variable genes with the
function. To reduce feature dimensionality while preserving data

“FindVariableFeatures”

integrity, we applied principal component analysis (PCA) and
unified flow approximation and projection (UMAP) to an additional
2,000 genes to identify distinct cell subpopulations. We then used the
“FindAllMarkers” tool to detect marker genes in different clusters,
setting cut-off values for both [log 2 FC| and min pct to 0.25. To
annotate different cell types, we employed the “Singler” R package
(Aran et al, 2019). Additionally, we performed enrichment analysis
using the “analyze_sc_clusters” function of the “ReactomeGSA” R
package (Griss et al,, 2020). For pseudotime analysis of scRNA-seq,
a powerful tool to understand the sequence of gene expression changes
during a cell state transition, we relied on the classic “Monocle” R
package (Qiu et al, 2017; Chi et al, 2023). Finally, we conducted
intercellular communication analysis and network visualization using
both the “CellChat” (Jin et al., 2021) and “patchwork” R packages.

WGCNA and scoring of TEX pathway

WGCNA, or Weighted Gene Co-expression Network Analysis,
is a technique that identifies co-expressed gene modules and
explores the correlation between the gene network and the
phenotype of interest, as well as the hub gene in the network
(Langfelder and Horvath, 2008). In this study, we utilized a TEX
signaling pathway study (Zhang et al.,, 2022) and its corresponding
marker genome from the Molecular Signaling Database (MSigDB,
V7.2) to estimate the activity score of the TEX pathway for each
patient. We used the “GSVA” R package (Hanzelmann et al., 2013)
to perform this analysis, and the resulting TEX pathway activity
scores for each patient are listed in Supplementary Table S1.

Establishment of TEX-related prognostic
signature in ovarian cancer

We integrated and analyzed the expression profiles of TCGA,
GSE9891, and GSE63885 cohorts to identify TEX-related prognostic
signatures (TEXRPS) using a novel computational framework that
employed a combination of machine learning algorithms (MLAs).
The candidate TEX-related genes (TEXRGs) were obtained using the
Weighted Gene Co-expression Network Analysis (WGCNA).
Subsequently, the TEXRGs from the TCGA-OV dataset with
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prognostic potential were evaluated using univariate Cox regression
analysis with a p-value threshold of 0.2. To enhance the reliability of our
results, we performed 10-fold cross-validation and utilized a total of
80 combinations of 10 machine learning algorithms (MLAs), which
included Lasso, Ridge, supervised principal components (SuperPC),
stepwise Cox, generalized boosted regression modeling (GBM),
CoxBoost, stochastic survival forest (RSF), elastic network (Enet),
partial least squares regression for Cox (plsRcox), and survival
support vector machine (survival-SVM).

To create the TEXRPS, a combination of RSF and CoxBoost
algorithms was utilized. The CoxBoost algorithm was employed to
filter the most valuable TEXRGs, while the RSF algorithm was used to
derive the most trustworthy models. Subsequently, the RSF algorithm
was employed to filter the most reliable model. A log-rank score test was
conducted for splitting survival trees as previously described (Hothorn
and Lausen, 2003). Initially, the x-variable x was assumed to be ordered
asx1 <x2 <...<xn,and the ranks for each survival time Tj (j € 1, .. .,
n]) were computed using the following equation:

T; 6k

S Il I ey v}
o k

k

where I; represents the index of the order for Tj and I, = #[t: Tt <
TyJ. The log-rank score test was performed as follows:

I )

Risk score = S(x,¢) =
nl(l - %)sﬁ

Where s% and a represent the sample variance of [a;:j=1,.. ., n]
and sample mean, respectively. The log-rank score splitting by |S (x,
¢) | was used to determine the measure of node separation. The best
split is reached by maximizing this value over x and c.

To assess the potential of TEXRPS as an independent prognostic
indicator for patients with OC, both univariate and multivariate Cox
regression analyses were carried out. Furthermore, a nomogram was
constructed using the “rms” R package to predict the OS of clinical
patients at 1, 3, and 5 years based on age, grade, stage, and risk
grouping. The accuracy of the nomogram predictions was verified by
calibration analysis (Zhao et al., 2023a).

Somatic mutation analysis

The somatic variant data in mutation annotation format (MAF)
was analyzed using maftools to examine the mutation data from OC
samples (Mayakonda et al, 2018). The tumor mutation burden
(TMB) score was calculated for each patient with OC, and its
correlation with the risk score was examined. To calculate the
TMB score, the total mutations were divided by the total covered
bases and then multiplied by 10° (Robinson et al., 2017; Zhao et al.,
2022a). Additionally, the prognostic significance of TMB in OC was
evaluated using Kaplan-Meier analysis.

Immune microenvironment

The “ssGSEA” R script was used to determine the relative
proportions of infiltrating immune cells. Additionally, TME
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scores were calculated using the “ESTIMATE” R package, which
provided stromal, immune, and estimated scores for both groups.
The gene sets related to cancer and immunity was obtained from Xu
et al.’s website (Xu et al., 2018) (http://biocc.hrbmu.edu.cn/TIP/)
and a set of genes positively associated with antiPD-L1 drug
response from Mariathasan’s study features (Mariathasan et al.,
2018).

Immunotherapy prediction and
chemotherapy sensitivity analysis

The Cancer Immunome Atlas (TCIA) web tool facilitates

comprehensive immunogenomic analysis and generates a

quantitative tumor immunogenicity score, termed the
Immunophenotype Score (IPS), ranging from 0 to 10, which
can serve as a predictive marker for the response to immune
checkpoint inhibitors (ICIs) (Charoentong et al, 2017). To
evaluate the efficacy of chemotherapy and molecular drugs, we
calculated the half-maximal inhibitory concentrations (IC50) for
HR and LR subgroup samples using the “pRRophetic” R package.
HPA database,

and

Moreover, the encompassing proteomic,

transcriptomic, systems biology data, is capable of
annotating various tissues, cells, and organs, among others. To
confirm the expression profiles of TEXRGs, we performed
immunohistochemistry on patient samples sourced from the

HPA database.

Immunohistochemical analysis and
gRT-PCR

Cell lines including the ovarian epithelial cell IOSE, ovarian
cancer SKOV-3, and A2780 were procured from the esteemed
Shanghai Institutes for Life Sciences, affiliated with the Chinese
Academy of Sciences in Shanghai, China. These cell lines were
propagated in Roswell Park Memorial Institute 1640 medium
fortified with 10% heat-inactivated fetal bovine serum, penicillin
(10 U/mL), and streptomycin (50 ug/mL) wunder a 5%
CO2 atmosphere at 37°C. RNA was extracted from both cells
and tissues utilizing Trizol reagent (Invitrogen), followed by
reverse transcription using SuperScript II reverse transcriptase
accordance  with  the manufacturer’s
recommended protocol. Thereafter, the relative mRNA
expression levels of CD44 and GAPDH (as a normalized
control) were quantified by SYBR Premix Ex Taq II (Takara,
Dalian. China). The primer sequences utilized for this purpose

(Invitrogen)  in

are as follows:

CD44:forward5”"-CTGCCGCTTTGCAGGTGTA-3"; reverse5” -
CATTGTGGGCAAGGTGCTATT-3". GAPDHforward:5"-GGAG
CGAGATCCCTCCAAAAT-3"; reverse5”-GGCTGTTGTCATAC
TTCTCATGG-3".

Statistical analysis
The R4.1.1 and its complementary package were utilized for

all statistical analyses. To determine prognostic values and
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compare patient survival among different subgroups within each
dataset, Kaplan-Meier survival analysis, and log-rank tests were
employed (Zhao et al., 2022b). The difference between two
normally distributed groups was assessed using the Student’s
t-test, while the Wilcoxon test was utilized to compare two non-
normally distributed variables. Multiple group comparisons
were performed using the Kruskal-Wallis test as a non-
parametric approach. Correlation coefficients were examined
by Spearman’s correlation analysis. A p-value less than 0.05 was
considered statistically significant for all statistical tests
conducted.
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Results
ScRNA-seq analysis of OC samples

We retrieved 10 x scRNA-seq data with 5 OC samples from the
GSE154600 dataset. The initial cell counts before QC were 16,258,
16,662, 8,125, 5,644, and 4,795, respectively, and the QC process
yielded 11,730, 13,469, 6,199, 4,534, and 3,747 cells, respectively
(Supplementary Figure SIA). We depicted the top 2000 highly
variable genes in Supplementary Figure S1B. PCA and UMAP
analysis were performed to preprocess the high-dimensional
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Pseudotime time series analysis, enrichment analysis, and cell communication analysis of 10 x scRNA-seq data from ovarian cancer. (A—C) Cell
trajectory analysis and pseudotime of identified immune cell types. (D) Functional enrichment analysis of all cell types using the "ReactomeGSA” software
package. (E,F) Cellular communication networks were inferred by calculating the likelihood of communication. Studies of intercellular communication
networks suggest that the CXCL signaling pathway plays an important role in intercellular communication networks.

feature data, revealing 21 distinct cell subpopulations (Figure 1A).
We applied the “SingleR” R package to classify and visualize the
cell types and discovered 9 significant cell types, including
monocytes, macrophages, tissue stem cells, epithelial cells
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(tumor cells), endothelial cells, smooth muscle cells, primitive
cells, B cells, and T cells (Figure 1B). The top 5 marker gene
expressions for the different cell subpopulations are shown in
Figure 1C.
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To determine the cell trajectory and pseudotime of the four immune
cells, we used the “monocle” R package and discovered that T cells were
predominantly associated with states 2, 3, and 5 and resided in the middle
of cell developmental time (Figures 2A-C). “ReactomeGSA” functional
enrichment analysis revealed that T cells and smooth muscle cells were
significantly involved in the sterol hydroxylation pathway (Figure 2D). By
examining the communication likelihood, we analyzed the cell-cell
communication network (Figure 2E, Supplementary Figure S2A).
CXCL receptor signaling pathway plays a crucial role in regulating the
tumor microenvironment, autoimmune diseases, infections, and fibrosis,
and CXCL has been a major focus of pharmaceutical research and
development to enhance the efficacy of tumor immunotherapy (Daniel
et al., 2020). Therefore, we inferred the cellular communication networks
based on specific pathways and ligand receptors and found that the CXCL
signaling pathway is crucial in the T and B Cell communication network
(Figure 2F, Supplementary Figure S2B).

Identification of candidate TEX-related
genes

Drawing on prior research, we computed GSVA enrichment
scores for four pathways linked to T-cell exhaustion for each TCGA-
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OV sample. We then identified 627 marker genes from T cells and
incorporated them into WGCNA to pinpoint the key modules that
were most pertinent to the advancement of T-cell exhaustion in the
TCGA cohort. While constructing the co-expression network, we
observed that the soft threshold power B reached a value of 4 with a
scale-free topology fit index of 0.9 (Figure 3B). Afterward, we applied
the ‘merged dynamics’ algorithm to generate three modules
(Figure 3A). After scrutinizing correlation coefficients and
p-values, we discerned that the blue module exhibited the
strongest correlation with scores linked to T-cell exhaustion
progression (Figure 3C); as a result, we designated the blue
module as the pivotal module. Our KEGG enrichment analysis
indicated that 195 TEXRGs from the blue module were notably
associated with T-cell leukemia virus infection, as well as pathways
related to immunodeficiency virus infection (Figure 3D).

Construction of TEXRPS

The TCGA-OV cohort, consisting of 376 patients, served as
the training cohort. Initially, 47 prognostic genes were identified
via univariate Cox analysis, with a cut-off p-value of 0.2, and were
subsequently used as seed genes in our machine learning-based
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FIGURE 4

TEX-related prognostic signature and its prognostic value constructed by machine learning-based integration. (A) Eighty machine learning-based
integration prediction models were fitted with 10-fold cross-validation. The C-index was calculated for each model in the training and validation cohorts,
including the TCGA-OV, GSE9891, and GSE63885 cohorts. (B) The number of trees is determined by minimal error. (C) Importance of the 22 most
valuable genes based on the RSF algorithm. (D—F) Kaplan-Meier survival curves for OS in patients in the HR and LR groups in the TCGA-OV, GSE9891,

and GSE63885 cohorts. (G) Kaplan-Meier survival curves for PFS in patients in the HR and LR groups in the TCGA-OV cohort.

integrative procedure, which aimed to construct a prognostic ~ 10-fold cross-validation was conducted in the training cohort,
signature for TEX-related diseases. To evaluate the predictive ~ where the C-index was computed for each model across all
performance of 80 machine learning-based integrative models,  datasets. Notably, the evaluation of a model’s performance not
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FIGURE 5

Prognostic value of risk scores and clinical characteristics of OC patients. (A—C) Risk maps were used to illustrate the survival status of each sample in

the TCGA-OV, GSE9891, and GSE63885 cohorts. (D) Univariate and (E) multivariate COX analysis to assess prognostic characteristics and clinical features
(including age, grade, and stage). (F) Nomogram of risk groupings and clinical characteristics predicting survival at 1, 3, and 5 years. (G) Calibration curves
tested for agreement between actual and predicted outcomes at 1 year, 3 years, and 5 years. (H) AUC values for the TCGA cohort risk groupings at 1,
3,and 5 years. (1) AUC values for TCGA cohort risk subgroups and clinical characteristics at 3 years. (J) Concordance index (C-index) for the TCGA cohort.
*p < 0.05; **p < 0.01; ***p < 0.001.

only relied on its robustness in the training cohort but also its  (Figure 4A). Accordingly, the optimal TEX-related prognostic
performance in the validation cohort. Remarkably, the most  signature was developed based on the combination of the
superior model comprised a combination of CoxBoost and  CoxBoost and RSF algorithms, where the former identified
Random Survival Forest (RSF), which yielded an average 22 TEX-related genes (Supplementary Table S2) and the latter
C-index of 0.7, the only model with such a high C-index  was responsible for constructing the most reliable prognostic
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model (Figures 4B, C). Subsequently, using the above procedure,
the risk score for each patient was computed. Based on the
median risk score of the training cohort, the patients were
classified into two groups: high-risk (HR) and low-risk (LR).
Strikingly, the LR group displayed better overall survival (OS)
than the HR group in the TCGA cohort (Figure 4D).
Additionally, the prognostic significance of TEXRPS was
confirmed by adopting the same cut-off values obtained from
the GEO training cohorts. For the GSE9891 and
GSE63885 cohorts, patients classified into the LR group
exhibited a superior OS (Figures 4E, F). Notably, in the TCGA
cohort, the LR group also demonstrated better progression-free
survival (PFS) than the HR group (Figure 4G).
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Establishment of prognostic nomograms
and validation of clinical features

The risk plots for the TCGA-OV, GSE9891, and GSE63885 cohorts
illustrate the individual survival outcomes of each patient, with higher
risk scores associated with worse prognostic outcomes (Figures 5A-C).
Through univariate and multivariate Cox analysis of the TCGA and two
GEO validation cohorts, we determined that risk scores could serve as
an independent prognostic factor for patients, even when compared to
other common clinical characteristics (Figures 5D, E, Supplementary
Figures S3A-D). To enhance the clinical utility of the risk model, we
integrated a risk regression model based on the TCGA cohort, age,
grade, and stage into a nomogram for predicting the overall survival of
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tumor mutational load between the HR and LR groups. (D) Correlation between risk score and tumor mutation load. (E) Kaplan-Meier curves for the high
and low TMB groups. (F) Kaplan-Meier curves for combined risk scores and TMB groupings.

OC patients (Figure 5F). Notably, risk scores demonstrated greater
prognostic accuracy compared to other clinical characteristics. Our
results suggest that utilizing a risk model based on 22 TEXRGs can
improve the accuracy of OC patient prognosis. The calibration curves
demonstrated good agreement between predicted and observed values
at 1, 3, and 5 years (Figure 5G). In the TCGA cohort, our constructed
TEXRPS exhibited excellent performance in predicting OS for patients
(AUC: for 1-, 3-, and 5-year OS: 0.898, 0.975, and 0.981) (Figure 5H).
The area under the curve for the 3-year risk score was significantly
higher than for other clinical features (Figure 5I). Additionally, the risk
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score C-index was much greater than for other clinical features
(Figure 5]). Our findings indicate that risk scores remain a reliable
prognostic indicator in the GSE9891 and GSE63885 cohorts
(Supplementary Figures S3E-]).

The chi-square test revealed that the risk grouping was significantly
associated with only three clinical characteristics, including survival
status, age, and stage of the patients (Figure 6A). To further investigate
and compare the differences in clinical characteristics among different
risk groups for OS, we stratified OC patients into three subgroups based
on age (<60 and >60), pathological stage (I-II and III-IV), and
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Risk score predicts TME and immune cell infiltration. (A) Bubble plots obtained by different algorithms show the correlation between risk scores and
immune cell content. (B) Differences inimmune cell infiltration between populations in different risk groups. (C) Differences inimmune function between
populations in different risk groups. (D) Correlation between immune cell infiltration scores and risk scores. (E) Differences in TME scores between

populations in different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.

pathological grade (G1-2 and G3-4). Notably, patients with lower risk
scores had clear advantages in all subgroups, suggesting that TEXRPS is
a dependable clinical prediction tool (Figures 6B-G). These results
provide additional support for the reliability of our model.

TMB analysis and survival analysis of TMB

Gene mutations are widely known to play a crucial role in
tumorigenesis. Using the TCGA database, we utilized TEXRPS to
visualize and correlate somatic mutation data, revealing TP53, TTN,
and CSMD3 as the three most frequently mutated genes in both the HR
and LR groups (Figures 7A, B). Variations in mutation status and
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expression patterns can have a significant impact on the immune
response and subsequent clinical outcomes. To explore this
relationship, we performed TMB analysis and found a marked
difference between the two groups (p = 0.0043), with the LR group
exhibiting higher TMB (Figure 7C). Interestingly, risk scores were
strongly and negatively correlated with TMB (Figure 7D). Moreover,
Kaplan-Meier survival analysis based on median TMB values divided
into high and low TMB groups showed a better prognosis in the high
TMB group (p < 0.001). This finding suggests that TMB may serve as an
indicator of poor prognosis in OC patients (Figure 7E). Significantly, the
combined use of risk scores and TMB to stratify patients into four
groups for survival analysis highlighted the high TMB and LR groups as
having the best prognosis (p < 0.001). These results further validate the
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predictive capability of the model and identify the optimal prognostic
subgroup for clinical application (Figure 7F).

The tumor microenvironment and immune
cell infiltration

The clinical outcome of patients and their response to treatment
are significantly influenced by the tumor microenvironment (TME),
which includes tumor-infiltrating immune cells (TIICs) that play a
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crucial role in tumorigenesis and progression (Low et al,, 2022). We
used algorithms from different platforms to investigate the
correlation between risk scores and TIICs (Figure 8A). To gain
deeper insights into the relationship between risk scores and
immune cells and functions, we used the “ssGSEA” approach to
measure the enrichment scores of various immune cell
subpopulations, activities, or pathways (Figures 8B, C). The
results indicated that the LR group had higher scores for
and immune cell infiltration.

immune-related  functions

Furthermore, the degree of immune cell infiltration showed a
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significant negative correlation with the risk score (Figure 8D). As
immune checkpoint molecules have a profound influence on tumor
immunotherapy, we investigated the correlation between risk scores
and immune checkpoint (IC) expression. Notably, almost all
immune checkpoint genes and our model genes displayed a
strong correlation, including a significant positive correlation
between CD3G and PD1, and CTLA4. Overall, our risk scores
were negatively correlated with IC expression (Figure 9A). We
used “ESTIMATE” to estimate tumor purity and calculate the
proportion of stromal and immune cells in the different risk
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groups (Figure 8E). Collectively, these findings suggest that
patients in the LR group have better prognoses, higher
immunological activity, and possibly greater sensitivity to
immunotherapy. To explore potential differences in biological
function between the HR and LR groups, we performed a GSEA
based on normalized enrichment scores (NES) and p values and
identified the six most enriched signaling pathways (Figure 9B).
Interestingly, lower risk scores were associated with T-cell receptors
and immune-related signaling pathways, consistent with the theme
of our study. Although our TEX-related prognostic model exhibited
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significant potential in identifying the immune landscape of patients
and predicting their prognosis, we acknowledge limitations that
need to be addressed in future studies, such as the use of more
sophisticated techniques to detect TEX in the scRNA-seq data and
validation of the model’s utility and accuracy in predicting
immunotherapy outcomes using additional data from OC patients.

Immunotherapy and drug sensitivity analysis

The violin plot displayed in Figures 10A-D depicts the correlation
between risk groups and the Immunophenotype Score (IPS), where
higher IPS scores indicate better responses to PD-1 and CTLA-4 blockers.
Immune checkpoint blockade (ICB) has been extensively studied as an
immunotherapeutic agent that blocks inhibitory signaling of T-cell
activation, thereby enabling tumor-reactive T cells to generate an
effective anti-tumor response (Morad et al, 2021). Despite its
significant advancements, ICB therapy only benefits a subset of
patients. In order to investigate the association between risk scores
and positive  signals ICB, we conducted a
comprehensive analysis. The findings indicated that several signals,
including the Proteasome, Fanconi anemia pathway, p53 signaling
pathway, and Pyrimidine metabolism, exhibited an inverse correlation

associated  with
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with risk scores (Figure 10G). Moreover, enrichment scores for these
signals were higher in the LR group (Figure 10E). We also examined the
biological functions of chemokine systems and immunomodulators and
observed an increase in the activity of tumor immune steps among a
subset of cycle steps in the LR group, including cancer antigen release
(Step 1), cancer antigen presentation (Step 2), Priming and activation
(Step 3), recruitment of immune cells (Step 4), infiltration of immune
cells into the tumor (Step 5), and recognition of cancer cells by T cells
(Step 6) (Figure 10F). Additionally, we discovered a significant negative
correlation between each of these steps in the tumor immune cycle and
risk score (Figure 10G). These findings suggest that patients in the LR
group may be more responsive to ICB therapy. Furthermore, we
investigated the correlation between risk scores and the IC50 of
chemotherapeutic agents. As demonstrated in Figure 11, BMS-536924,
Pictilisib, and Taselisib were found to be more effective in the LR
group. Conversely, patients in the HR group were more responsive to
PF-4708671, AGI-6780, AZD6482, LCL161, ML323, and Ribociclib.

Validation of the expression of TEXRGs

The UCSC Xena database provided the combined TCGA-GTEx
cohort, and expression levels of most model genes were differentially
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expressed between normal and tumor samples, except for
SEPT1 and UBB (Figure 12A). We further confirmed the
expression pattern of TEXRGs in OC patients using the HPA
data. We that
CD44 protein expression levels were markedly higher in ovarian

database for immunohistochemical found

cancer tissues compared to healthy liver tissues (Figure 12B).
Additionally, gRT-PCR demonstrated
upregulated CD44 expression levels in ovarian cancer cell lines

analysis significantly
(Figure 12C). These results suggest that abnormal expression of
these genes may play a role in promoting oncogenic transformation
in ovarian cancer.

Discussion

Immunotherapy has shown promising results in treating tumors
like melanoma and non-small cell lung cancer, particularly through the
use of immune checkpoint inhibitor (ICB) therapy and peripatetic T
lymphocyte therapy. However, the efficacy of immunotherapy for
ovarian cancer is still being researched (Torre et al., 2018). Ovarian
cancer is considered a “cool tumor,” with little infiltration of cytotoxic T
lymphocytes (CTLs) and limited recognition of tumor antigens by
infiltrating T lymphocytes (Cai and Jin, 2017; Zhao et al., 2023b). An
important factor limiting the response to immunotherapy and disease
progression in ovarian cancer is the immunosuppressed tumor
microenvironment (Fialova et al, 2013). The immunosuppressive
tumor microenvironment in ovarian cancer is a major obstacle to
effective immunotherapy, as high levels of immunosuppressive
molecules like VEGF and IL-10 induce regulatory T Cell
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differentiation and further inhibit the immune response of effector T
lymphocytes against the tumor (Metz et al., 1975).

NFAT, a transcription factor activated by prolonged T Cell
receptor (TCR) stimulation and downstream Ca2+ signaling,
upregulates the transcription of suppressive immune checkpoint
proteins such as PD-1, CTLA-4, CD-39, and LAG-3 in T cells (Liu
et al., 2019; Scott et al., 2019; Seo et al.,, 2019). Combined receptor
inhibitor therapy can block these signals, reverse tumor immune
evasion, restore the function of tumor-infiltrating lymphocytes, and
enhance the efficacy of immunotherapy (Dolina et al., 2021). These
advances in ICB research and the understanding of the tumor
immunosuppressive  microenvironment  have  generated
considerable interest in TEX.

The continuous phenotype and intermediate functional state
known as TEX represent a persistent T-cell grade dysfunction that is
increasingly recognized (Ma et al., 2019; Zhang et al, 2022).
Understanding the dysregulated and diminished state of T cells
in ovarian cancer is critical to overcoming the TEX barrier and
enhancing the effectiveness of immune checkpoint blockade
therapy. However, despite the significant role of T-cell exhaustion
in the progression of several cancers, including ovarian cancer (OC),
research on this topic remains limited. Hence, we aimed to develop a
multi-biomarker model based on TEX-related genes to aid
healthcare professionals in assessing the prognosis and tumor
microenvironment of OC patients, as well as to establish a
theoretical foundation for personalized precision therapy.

We performed clustering analysis on scRNA-seq data from
the GSE154600 dataset and identified 22 cell subpopulations.
Through cell communication analysis, we discovered that the
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CXCL signaling pathway plays a crucial role in T and B cells. The
importance of chemokines (CXCL) in the development of tertiary
lymphoid structures (TLS) has been emphasized in several
studies. CXCL13, for example, has been identified as a
prognostic factor in ovarian cancer owing to its association
with the number of tumor-infiltrating lymphocytes (Dai et al,,
2021; Ukita et al., 2022). Abnormal chemokine distribution
promotes  the  differentiation  and  infiltration  of
immunosuppressive cells (e.g., Treg cells, MDSC, and TAM)
into tumors (Bule et al., 2021). To identify the driver genes of
TEX progression in ovarian cancer, we extracted T Cell marker
genes and used the GSVA algorithm with TCGA-OC data to
identify the most relevant key modules. We obtained a set of
185 post-selected genes by combining two GEO validation sets.
Instead of using the Lasso method to model multiple marker
genes, we used a metric that aggregated the expressions of these
genes to construct the final model (Xie et al., 2022a; Xie et al,,
2022b). Although the Lasso method aims to minimize the
number of variables by compressing the coefficients of the
variables and setting certain regression coefficients to zero
through a penalty function, it has inherent drawbacks, such as
not yielding an explicit solution and the estimated results being
less stable and prone to error. To address these limitations, we
transformed ten machine-learning algorithms into eighty
combinations and developed a stable and robust TEX-related
prognostic signature based on the average C-index of three
ovarian cancer cohorts (Liu et al., 2022). We determined that
the combination of CoxBoost and RSF was the optimal method to
construct a novel and enduring prognostic model. Our analysis
showed that the TEXRPS we developed was a robust predictor of
prognosis in OC, and we identified significant differences in
prognostic outcomes between the two groups. The predictive
ability of TEX features for patient prognosis was demonstrated by
ROC and calibration curve analyses, with excellent results (insert
ROC curve and calibration curve images here). In addition, our
highlighted the
prognostic features compared to various indicators currently

nomograms superiority of TEX-related
utilized in clinical practice.

In our study, we have identified a panel of 22 genes that
together serve as a stable risk score signature for ovarian
cancer. Differential analysis revealed that 20 of these genes
exhibit differential expression between tumor and normal
tissues. Subsequently, we narrowed our focus to CD44 and
CD3G for further experimental validation. The non-kinase
CD44
therapeutic target for ovarian cancer treatment, as it has been
implicated in the development of chemoresistance, maintenance of

transmembrane  receptor represents a promising

cancer stem cells, and promotion of metastatic progression
2020).
CD44 also facilitates tumor angiogenesis, immunosuppression,

with
tumor

through diverse mechanisms (Martincuks et al,

and metabolic interactions
STAT3, thereby supporting the
microenvironment (Wielenga et al., 1993; Ponta et al., 2003; Li
etal., 2014). Conversely, the CD3G protein, which forms the TCR/
CD3 complex and is expressed on the surface of T cells, exhibits

reprogramming through

pro-tumorigenic

potent antitumor activity by recognizing tumor-associated
antigens and initiating intracellular signaling (Marshall et al,
2018). Notably, CD3G-deficient patients display reduced T-cell
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diversity, diminished suppressor function, and increased
autoimmune clonality, highlighting the potential of CD3G as a
target for immunotherapy (Rowe et al., 2018; Wang et al., 2022).
Nonetheless, the precise role of CD3G in ovarian cancer warrants
further investigation.

The interaction between PD-L1 and PD-1 leads to the
apoptosis and exhaustion of T lymphocytes, as previously
reported (Chen and Han, 2015). Our findings are in line with
previous studies, indicating that ovarian cancer patients with
highly infiltrated PD-1-positive immune cells have a better
prognosis (Ojalvo et al, 2018). Clinical trials of anti-PD-
anti-PD-L1

underway, and early results suggest that anti-PD-1 antibodies

1 antibodies and antibodies are currently
alone may be effective in treating recurrent ovarian cancer, with
PD-L1 expression strongly correlated with the efficacy of immune
checkpoint blockade (ICB) therapy (Dai et al., 2018). It is widely
accepted that the tumor microenvironment plays a critical role in
various tumor phenotypes. In particular, immune cell infiltration,
as a major feature of the tumor microenvironment, contributes
significantly to the immune escape of tumor cells and the
development of an inflammatory milieu (Tower et al, 2019).
Therefore, understanding the immune cell infiltration and the
features of Tumor-Associated Lymphocytes (TALs) in patients
with ovarian cancer, stratified by different risk groups, can provide
valuable insights into the overall immune status of patients and
the role of immune regulation in tumor development.
Immunotherapy has been explored in ovarian cancer; however,
its efficacy remains limited, possibly due to the tumor’s
heterogeneity, lack of antigenic targets, and low infiltration of
immune cells in the ovarian tumor microenvironment. Tumor-
(TEX)
receptors, and immune checkpoint inhibitors can counteract
these TAL function.

Combining ICB with immune checkpoint inhibitors can

Associated Exosomes express immunosuppressive

signals, reverse TEX, and restore
partially overcome the adaptive immune resistance in the
tumor microenvironment, thus restoring the immune function
of CD8" T lymphocytes in the tumor microenvironment and
enhancing the anti-tumor immune response (Pan et al., 2022).
Although  our

demonstrated remarkable ability in identifying the immune

TEX-related prognostic  features have
landscape of patients and predicting their prognosis, there are
still limitations that must be acknowledged and addressed in
future studies. Firstly, due to the limited conditions and number
of cells, our scRNA-seq data was insufficient to detect TEX, and
more sophisticated techniques and tools are required to construct
models. Furthermore, analyzing data from public databases may
introduce bias in predictions that do not reflect the actual situation.
Therefore, further data from OC patients are necessary to validate
the model’s utility and accuracy in predicting immunotherapy
outcomes.

In conclusion, our findings suggest that the TEX-related
prognostic signature is a unique and promising prognostic
biomarker and therapeutic target for OC patients. The TEXRPS
enables the characterization of the immune microenvironment of
OC patients and the accurate prediction of their prognosis, thus
facilitating the identification of patient subgroups that may benefit
treatment  with

from  personalized immunotherapy and

chemotherapy.
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