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MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver
disease affecting one-third of adults worldwide, and is strongly associated with
obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of
conditions ranging from simple liver fat accumulation to advanced stages like
chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular
carcinoma. With limited approved drugs for MAFLD, identifying promising drug
targets and developing effective treatment strategies is essential. The liver plays a
critical role in regulating human immunity, and enriching innate and adaptive
immune cells in the liver can significantly improve the pathological state ofMAFLD.
In the modern era of drug discovery, there is increasing evidence that traditional
Chinese medicine prescriptions, natural products and herb components can
effectively treat MAFLD. Our study aims to review the current evidence
supporting the potential benefits of such treatments, specifically targeting
immune cells that are responsible for the pathogenesis of MAFLD. By providing
new insights into the development of traditional drugs for the treatment ofMAFLD,
our findings may pave the way for more effective and targeted therapeutic
approaches.
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1 Introduction

MAFLD is characterized by the accumulation of fat in the liver, which can lead to
inflammation and scarring of the liver over time (Marques et al., 2023). It is closely linked to
obesity, type 2 diabetes, high blood pressure, and dyslipidemia (abnormal levels of fats in the
blood) (Gutierrez-Cuevas et al., 2021). The redefinition of non-alcoholic fatty liver disease
(NAFLD) to MAFLD reflects a shift in the understanding of this condition as being part of a
larger metabolic disease spectrum rather than a standalone liver condition (Eslam et al.,
2020). This new definition also aims to simplify the diagnosis andmanagement of the disease
(Eslam et al., 2020). The proposed criteria for the diagnosis of MAFLD include evidence of
fatty liver on imaging or histology, along with one of the following three criteria: overweight
or obesity, presence of type 2 diabetes, or evidence of metabolic dysregulation (such as
dyslipidemia or high blood pressure) (Eslam et al., 2020). While further research is needed to
fully understand the implications of this new definition, it is hoped that it will improve
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diagnosis and treatment of this increasingly common chronic liver
disease. MASH stands for nonalcoholic steatohepatitis, which refers
to the inflammation and damage to liver cells resulting from the
progression of MAFLD (Wu et al., 2022a). This includes the
presence of a heterogeneous fatty liver, liver cell necrosis, and
inflammatory reactions (Wu et al., 2022a).

Morbidity and mortality associated with MAFLD can vary
depending on factors such as the severity of the disease,
underlying metabolic disorders, and the presence of
comorbidities (Aghemo et al., 2022). However, studies have
shown that MAFLD increases the risk of developing liver-related
complications such as MASH, cirrhosis, and hepatocellular
carcinoma (HCC) (Marengo et al., 2016). It also increases the
risk of developing cardiovascular diseases, which are the leading
cause of death in patients with MAFLD (Gutierrez-Cuevas et al.,
2021). According to recent studies, the global prevalence of MAFLD
is estimated to range from 20% to 30% (Younossi et al., 2016). The
liver-specific mortality rate among patients withMAFLD is reported
to be higher than that of the general population (Younossi et al.,
2016). The total mortality rate among patients with MAFLD is also
reported to be higher than that of the general population, with
cardiovascular disease being a major contributor to mortality (Chen
et al., 2022a). Better understanding of the underlying molecular
mechanisms of MAFLD will be critical for developing new
therapeutic approaches to treat and prevent the complications of
this disease.

The activation of innate immune cells (e.g., macrophages,
neutrophils, monocytes, dendritic cells (DCs), T lymphocytes,
B lymphocytes, natural killer (NK) cells, natural killer T (NKT)
cells, as well as mast cells) can result in phagocytosis of cell
debris and foreign antigens, release of pro-inflammatory
cytokines, and production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) (Kountouras et al., 2023).
These events can lead to hepatocellular injury, cellular stress,
and damage to the extracellular matrix (ECM) (Kountouras
et al., 2023). The activation of adaptive immune cells can
further exacerbate the inflammatory response and contribute
to the development of liver fibrosis (Hu et al., 2020). In
addition to the immune cells, other immune-related
molecules and signaling pathways are also involved in the
pathogenesis of MAFLD/MASH. Toll-like receptors (TLRs)
can recognize pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns
(DAMPs) and activate the innate immune response (An
et al., 2020; Park et al., 2021; Khanmohammadi and Kuchay,
2022). Nuclear factor κB (NF-κB) is a key transcription factor
that regulates the expression of pro-inflammatory genes and is
activated by TLR signaling, as well as other factors such as ROS
and RNS (Kawai and Akira, 2007; Blaser et al., 2016). The
inflammasome, a multiprotein complex that activates caspase-
1 and promotes the secretion of pro-inflammatory cytokines
such as interleukin (IL)-1β and IL-18, has also been implicated
in the development of MASH (Du et al., 2019). In summary, the
liver plays a critical role in the immune response, and the
dysregulation of this response can contribute to the
development and progression of MAFLD/MASH (Zhang
et al., 2021a). Understanding the complex interactions
between immune cells, signaling molecules, and the liver

microenvironment will be crucial for developing effective
therapies for these disorders.

Traditional Chinese medicine (TCM) prescription refers to a
combination of several herbs or natural ingredients that are
formulated to treat a specific health condition (Zhu, 2022). The
prescription is often a unique blend of herbs and other natural
ingredients in specific proportions which have been used for
centuries in TCM (He et al., 2021). Natural products refer to
remedies or supplements that are made from naturally occurring
substances such as plants, minerals, or animal parts (Harvey et al.,
2015). These products can be derived from various sources including
herbs, fruits, vegetables, and other botanicals (Zhang et al., 2020a).
Herb components are the active ingredients present in herbs (Al-
Ishaq et al., 2019). These components may include alkaloids,
flavonoids, terpenes, and other compounds that contribute to the
therapeutic effects of the herb (Dasari et al., 2022). Herb
components are often extracted from herbs and used in TCM
prescriptions or natural products (Dasari et al., 2022). In
summary, TCM prescription is a specific combination of herbs
and natural ingredients used to treat a particular health condition,
while natural products may contain one or more natural substances
including herbs. Herb components are the individual active
ingredients present in herbs that contribute to their therapeutic
effects.

In this comprehensive review, we have examined the various
functions of immune cells in MAFLD and explored the potential
therapeutic benefits of TCM prescriptions, natural products and
herb components for treating MAFLD by targeting immune cells.
Furthermore, we have discussed the underlying mechanisms of these
treatments, particularly with respect to immune cells.

2 Factors contributing to MAFLD

There are multiple contributing factors, such as lipid toxicity,
mitochondria, ER stress, autophagy, oxidative stress (OS), insulin
resistance, bile acids metabolism, intestinal microflflora, etc., that
result in the accumulation of fatty acids in hepatocytes. This
accumulation causes damage to liver cells and ultimately leads to
the formation of MAFLD (as illustrated in Figure 1).

2.1 Lipid toxicity

Lipid toxicity and MAFLD have a close relationship since lipid
toxicity is the primary factor contributing to the development of
MAFLD. Lipid toxicity refers to the accumulation of excess lipids
within cells or tissues, leading to cellular damage and dysfunction
(Weinberg, 2006). In the case of MAFLD, excessive lipid
accumulation in the liver leads to hepatocyte damage,
inflammation, and eventually, liver disease (Abulikemu et al.,
2023). The liver plays a crucial role in regulating lipid
metabolism, including the synthesis, oxidation, and storage of fat
(Alves-Bezerra and Cohen, 2017). When there is an excess of lipids
in the liver, it can lead to impaired liver function, insulin resistance,
and OS, all of which contribute to the development and progression
of MAFLD (Badmus et al., 2022). Several factors can lead to the
accumulation of lipid in the liver, such as dietary habits, genetics,
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and lifestyle factors such as lack of physical activity and alcohol
consumption (Manne et al., 2018). Therefore, it is possible to reduce
the progression of MAFLD and improve overall liver health by
reducing lipid toxicity in the liver.

2.2 Mitochondria

Mitochondria, the cellular organelles responsible for
energy production, play a crucial role in the pathogenesis of
MAFLD. Studies have shown that dysfunctional mitochondria
contribute to the development of MAFLD by promoting OS,
inflammation, and insulin resistance. Immune cells,
particularly macrophages, also play a critical role in the
progression of MAFLD (Ramanathan et al., 2022). In
response to mitochondrial dysfunction and hepatocellular
injury, immune cells infiltrate the liver and release pro-
inflammatory cytokines, exacerbating inflammation and
fibrosis (Fu et al., 2022). The relationship between
mitochondrial dysfunction and immune cells in MAFLD is
complex and bidirectional. Dysfunctional mitochondria can
activate immune cells, leading to an increase in pro-
inflammatory cytokines and OS (Ahmed et al., 2019). In
turn, immune cell infiltration and activation can further
impair mitochondrial function, perpetuating the cycle of
inflammation and injury (Field et al., 2020). Modulating the
immune response and improving mitochondrial function are
potential therapeutic targets for MAFLD.

2.3 Endoplasmic reticulum stress

The ER is a cellular organelle involved in various functions such
as protein synthesis, lipid metabolism, and calcium storage. In
recent years, research has shown that ER stress and dysfunction
are linked to the development of metabolic disorders including
MAFLD and MASH (Yuan et al., 2020). Immune cells play a crucial
role in the pathogenesis of MAFLD and MASH (de Oliveira et al.,
2019). Various immune cells such as macrophages and T cells
infiltrate the liver and contribute to liver inflammation and
fibrosis (Peiseler et al., 2022). The ER is involved in regulating
the immune response through several mechanisms, including the
processing and presentation of antigens, cytokine production, and
maintenance of calcium homeostasis (Oakes and Papa, 2015).
Recent studies have suggested that ER stress can activate the
unfolded protein response (UPR), which can either promote or
suppress immune cell activation and function (Grootjans et al.,
2016). For example, UPR activation can induce the expression of
pro-inflammatory cytokines and chemokines that attract immune
cells to the liver (Zhang et al., 2021b). However, prolonged UPR
activation can also induce the expression of anti-inflammatory
cytokines and regulatory T cells, which can limit liver
inflammation (Salminen et al., 2020). In addition, ER stress can
affect the function of immune cells themselves (Bettigole and
Glimcher, 2015). For instance, ER stress-induced autophagy can
enhance the antigen presentation capacity of DCs, leading to
increased T cell activation (Poncet et al., 2021). However,
excessive ER stress can impair T cell proliferation and survival

FIGURE 1
Mechanism of MAFLD.
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(Cotte et al., 2018). Finally, the ER is involved in lipid metabolism,
and ER stress and dysfunction can lead to the accumulation of lipids
and the generation of lipotoxic metabolites that can activate immune
cells and promote liver inflammation (Mastrototaro and Roden,
2021). Conclusively, the relationship between ER stress, immune
cells, and MAFLD is complex and multifaceted. Further research is
needed to fully understand the mechanisms underlying this
relationship and to develop novel therapeutic strategies for MAFLD.

2.4 Autophagy

The relationship between autophagy and MAFLD immune cells
is complex and not yet fully understood. Autophagy is a cellular
process that involves the degradation of damaged or dysfunctional
cellular components, including pathogens and cellular debris, by
lysosomal enzymes (Mizushima and Komatsu, 2011). It has been
suggested that impaired autophagy may contribute to the
development and progression of MAFLD, as it can lead to the
accumulation of lipid droplets, OS, and inflammation in hepatocytes
(Chen and Lin, 2022). Immune cells also play a crucial role in the
pathogenesis of MAFLD, as they are involved in the processes of
inflammation, fibrosis, and hepatic steatosis (Torre et al., 2021).
Studies have shown that there is a dynamic interplay between
autophagy and immune cells in the development and progression
of MAFLD (Wang et al., 2019a). For instance, autophagy can
modulate the activation and differentiation of immune cells, such
as macrophages and T cells, by regulating the release of pro-
inflammatory cytokines and chemokines (Germic et al., 2019).
Moreover, recent evidence suggests that autophagy can directly
regulate the function of immune cells in the liver, such as NK
cells and NKT cells, by modulating their cytotoxic activity and
cytokine production (Loucif et al., 2022). On the other hand,
immune cells can also regulate the autophagic activity in
hepatocytes, as they secrete cytokines and growth factors that can
either promote or inhibit autophagy (Gukovskaya et al., 2017).
Further studies are needed to fully understand this relationship
and to develop new therapeutic interventions forMAFLD that target
both autophagy and immune cells.

2.5 Oxidative stress

OS is a state in which there is an imbalance between the
production of ROS and the body’s ability to detoxify them (Delli
Bovi et al., 2021). It is a common feature in MAFLD due to the
accumulation of fat in the liver, leading to increased inflammation
and ROS production (Guo et al., 2021). The liver plays a crucial role
in the immune system as it is the site of immune cell recruitment and
activation (Corazza et al., 2009). MAFLD may lead to alterations in
immune cell function and impair the liver’s ability to respond to
infections and other insults (Corazza et al., 2009; Barchetta et al.,
2020). Immune cells, such as macrophages and T cells, are involved
in the development of MAFLD and can also contribute to OS
through the release of inflammatory cytokines and ROS (De
Jesus et al., 2020). There is evidence to suggest that OS can
modulate immune cell activity, whereby excessive ROS
production can cause immune dysfunction and impair the

immune response (Sun et al., 2020). Conversely, activation of
certain immune cells, such as NK cells, can help to control ROS
production and prevent liver damage (Papp et al., 2016). In the end,
OS, MAFLD, and immune cells are closely interlinked, with each
factor impacting the others. Strategies aimed at reducing OS, such as
using antioxidants, and targeting immune cell infiltration hold
promise for preventing or treating MAFLD.

2.6 Insulin resistance

Insulin resistance andMAFLD have a complex relationship with
immunocytes. Insulin resistance is known to be associated with
chronic low-grade inflammation, which can lead to the
accumulation of fat in the liver and contribute to the
development of MAFLD (Sakurai et al., 2021). Immunocytes,
such as macrophages, neutrophils, and T cells, are involved in
the inflammatory response and play a role in the pathogenesis of
MAFLD (Miyake et al., 2010). In MAFLD, there is an increased
infiltration of immunocytes, particularly macrophages, into the liver
(Kolakowski et al., 2022). These macrophages release pro-
inflammatory cytokines and chemokines that further promote
inflammation and insulin resistance (Olefsky and Glass, 2010). In
addition, T cells have also been shown to contribute to liver
inflammation in MAFLD by producing pro-inflammatory
cytokines (Peiseler et al., 2022). Recent studies have suggested
that there is also a bidirectional relationship between MAFLD
and immunocytes (Peiseler et al., 2022). For example, it has been
shown that immunocytes themselves can contribute to insulin
resistance and worsen MAFLD (El-Arabey and Abdalla, 2022).
Additionally, the gut microbiome, which can influence immune
function, has also been implicated in the development of both
insulin resistance and MAFLD (Liu et al., 2016). Ultimately, the
relationship between insulin resistance, MAFLD, and immunocytes
is complex and involves multiple pathways and mechanisms (Liu
et al., 2016). Further research is needed to better understand this
relationship and develop effective treatments for these conditions.

2.7 Bile acids metabolism

Bile acids are essential for the digestion and absorption of dietary
fats in the small intestine. They are also signaling molecules that
regulate several physiological processes, including glucose and lipid
metabolism, energy expenditure, and inflammation. In MAFLD, the
accumulation of fat in the liver triggers an inflammatory response,
characterized by the infiltration of immune cells, such as
macrophages and T cells (Zhang et al., 2021a). These cells release
pro-inflammatory cytokines, which exacerbate liver damage and
promote fibrosis (Brenner et al., 2013). Bile acids play a dual role in
this process (Chen et al., 2022b). On the one hand, they can act as
anti-inflammatory agents by binding to specific receptors, such as
FXR and TGR5, on immune cells and hepatocytes (Chiang and
Ferrell, 2020). Activation of these receptors inhibits the production
of pro-inflammatory cytokines and promotes the expression of anti-
inflammatory genes (Haggerty et al., 2023). On the other hand, bile
acids can also promote inflammation by disrupting the gut
microbiota and increasing the permeability of the intestinal
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barrier (Haggerty et al., 2023). This leads to the translocation of
bacterial products, such as lipopolysaccharides (LPS), into the
bloodstream, which triggers an immune response and promotes
liver inflammation (Carpino et al., 2020). To conclude, the balance
between pro- and anti-inflammatory effects of bile acids is critical
for the development and progression of MAFLD. Understanding
this delicate interplay between bile acids and immune cells may lead
to novel therapeutic approaches for this prevalent disease.

2.8 Intestinal microflora

There is a growing body of research suggesting that intestinal
microflora may play a role in the development and progression of
MAFLD. The intestinal microflora refers to the collection of
microorganisms that live within our gut, including bacteria,
viruses, fungi, and other microorganisms (Pluta et al., 2021).
The interaction between these microorganisms and the immune
cells in our gut is thought to play a key role in the development
and progression of MAFLD (Park et al., 2021). Studies have
suggested that changes in the composition of the intestinal
microflora can lead to an increase in the levels of pro-
inflammatory cytokines in the gut, which can lead to the
activation of immune cells and the development of MAFLD
(Park et al., 2021). For example, studies have shown that
certain types of immune cells, such as T-cells, can be activated
by the presence of certain types of bacteria in the gut, leading to
inflammation and damage to the liver (Im et al., 2012). The
intestinal microbiota plays an important role in modulating the
immune response by facilitating the development of regulatory
T cells, which can help to suppress inflammation and prevent
autoimmune diseases (Behary et al., 2021). All in all, while more
research is needed to fully understand the relationship between
intestinal microflora, immune cells, and MAFLD, there is
mounting evidence to suggest that the composition of the
intestinal microflora plays a key role in the development and
progression of this condition.

3 Immune system in MAFLD

The innate immune system is the first line of defense against
foreign substances (Gandhi and Vliagoftis, 2015). It includes
physical barriers such as skin and mucous membranes, as well as
cells such as phagocytes and NK cells that can recognize and
destroy pathogens (Parkin and Cohen, 2001). The adaptive
immune system is activated when the innate immune system
is unable to eliminate an invading pathogen (Geremia et al.,
2014). This system targets specific antigens and creates a
memory of the pathogen for future encounters. Humoral
immunity is mediated by B cells, which produce antibodies
that recognize and neutralize specific antigens (Cancro and
Tomayko, 2021). Cellular immunity is mediated by T cells,
which can directly kill infected cells or coordinate the
immune response by releasing cytokines that activate other
immune cells (Russo and Brogan, 2014). Immunoreactive
substances such as antibodies, complement proteins, and
leukocytes play a crucial role in the immune response (Mi

et al., 2018). Antibodies bind to specific antigens and can
neutralize or mark pathogens for destruction by phagocytes
(Fischman and Ofran, 2018). Complement proteins can also
mark pathogens for destruction and can activate other
components of the immune system (Stephan et al., 2012).
Leukocytes are involved in all aspects of the immune
response, from recognizing and eliminating pathogens to
coordinating the immune response (Abdallah et al., 2021).
Overall, the immune system is a complex network of organs,
cells, and molecules that work together to protect the body from
infection and maintain a healthy internal environment.

In the early stages of MAFLD, hepatic steatosis and
inflammation are primarily driven by innate immune cells
such as KCs/macrophages, neutrophils, and DCs (Lamadrid
et al., 2021). KCs/macrophages play a critical role in the
initiation and progression of MAFLD by releasing pro-
inflammatory cytokines and chemokines, promoting OS, and
inducing hepatocyte apoptosis (Remmerie et al., 2020).
Neutrophils are also involved in the early stages of MAFLD by
producing ROS, which contribute to OS and inflammation
(Aguilar et al., 2023). DCs are antigen-presenting cells that
present antigens to T cells and play a crucial role in
regulating T cell-mediated immune responses (Lv et al., 2020).
In MAFLD, DCs promote the differentiation of pro-
inflammatory Th1 and Th17 cells, contributing to the
development of liver inflammation and fibrosis (Ye et al.,
2020). In the later stages of MAFLD, adaptive immune cells
such as T cells and B cells become more prevalent and contribute
to the progression of liver injury (Hu et al., 2020). CD4+ T cells,
particularly Th1 and Th17 cells, play a critical role in the
pathogenesis of MAFLD by producing pro-inflammatory
cytokines such as interferon-gamma (IFN-γ) and IL-17,
respectively (Zhou et al., 2022). CD8+ T cells also contribute
to liver injury in MAFLD by inducing hepatocyte apoptosis and
producing cytotoxic molecules such as perforin and granzyme B
(Wang et al., 2019b). B cells, which produce antibodies against
specific antigens, are also involved in MAFLD (Barrow et al.,
2021). Recent studies have shown that B cells can contribute to
the development of liver fibrosis by producing pro-inflammatory
cytokines and activating hepatic stellate cells (HCSs) (Gaul et al.,
2021). Besides, NK cells, NKT cells and mast cells are also
involved in MAFLD, with NKT cells playing a pathogenic role
by promoting inflammation and fibrosis (Kennedy et al., 2021;
Yang et al., 2021; Olveira et al., 2023).

In conclusion, immune cells play a crucial role in the
development and progression of MAFLD. The dysregulation of
innate and adaptive immune responses contributes to the
pathogenesis of MAFLD and its complications. Understanding
the mechanisms of immune cell involvement in MAFLD may
lead to the development of new therapeutic strategies for this
disease.

3.1 Macrophages

The relationship between macrophages and MAFLD is
complex and multifaceted. Macrophages are immune cells that
play a critical role in the development and progression of MAFLD,
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which is characterized by the accumulation of fat in the liver,
inflammation, and damage to liver cells (Remmerie et al., 2020).
Macrophages infiltrate the liver in response to various stimuli,
including excess fat, alcohol consumption, and viral infection
(Skuratovskaia et al., 2020). They are involved in both the
initiation and progression of MAFLD, promoting inflammation,
fibrosis, and insulin resistance (Thibaut et al., 2022). In the early
stages of MAFLD, macrophages secrete pro-inflammatory
cytokines such as TNF-α and IL-6, which contribute to liver
injury and promote the development of insulin resistance
(Zhang et al., 2019). As the disease progresses, macrophages
also contribute to the development of fibrosis by secreting
profibrogenic factors such as transforming growth factor-beta
(TGF-β)1 (Deng et al., 2022). Recent research has also
highlighted the role of macrophage polarization in the
pathogenesis of MAFLD (Kolakowski et al., 2022). In particular,
a shift towards a pro-inflammatory M1 phenotype has been shown
to be associated with the development of MAFLD and its
progression to MASH, while a shift towards an anti-
inflammatory M2 phenotype may have a protective effect (Xu
et al., 2020).

In short, the relationship between macrophages and MAFLD is
complex and dynamic, with macrophages playing a key role in both
the development and progression of the disease (Figure 2).
Understanding the interaction between macrophages and
MAFLD is key to developing effective treatments for this
condition. Some potential strategies include targeting
inflammatory pathways or modulating the activity of
macrophages in the liver.

3.2 Neutrophils

There is emerging evidence to suggest a relationship between
neutrophils and MAFLD (Figure 3). During the early stages of
MAFLD, neutrophils are one of the first immune cells to migrate
towards the liver and become activated (Bourgonje et al., 2022).
Once activated, neutrophils release ROS as part of their
antimicrobial defense mechanisms (Ferreyra Solari et al.,
2012). However, excessive production of ROS can lead to OS
and tissue damage, contributing to the development of
inflammation and liver fibrosis (Farzanegi et al., 2019).
Furthermore, neutrophils also release cytokines and
chemokines that attract other immune cells such as monocytes
and macrophages, leading to a sustained inflammatory response
in the liver (Mridha et al., 2017). This chronic inflammation can
further exacerbate OS and tissue damage, ultimately leading to
the progression of MAFLD to more severe stages such as MASH
and cirrhosis (Luci et al., 2020). Additionally, recent research has
suggested that neutrophil extracellular traps (NETs), a structure
composed of DNA, histones, and antimicrobial peptides released
by neutrophils, may also play a role in MAFLD (Wang et al.,
2021a). NETs can activate innate immune cells such as
macrophages, DCs, and NK cells, leading to the release of pro-
inflammatory cytokines and chemokines, including IL-1β, TNF-
α, IL-6, and CXCL8/IL-8 (Papayannopoulos, 2018). These
mediators can further recruit and activate immune cells,
exacerbating inflammation and tissue damage, contributing to
the development and progression of MAFLD (Wang et al.,
2021a).

FIGURE 2
Macrophages in MAFLD.
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FIGURE 3
Neutrophils in MAFLD.

FIGURE 4
T cells in MAFLD.
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Therefore, targeting neutrophils may be a potential therapeutic
strategy in the early stages of MAFLD. For instance, drugs that
inhibit neutrophil recruitment, activation, or NETosis could be
developed to reduce inflammation and liver damage associated
with MAFLD.

3.3 T cells

T cells play a critical role in the development and progression
of MAFLD (Figure 4). Studies have shown that T cells can
contribute to the pathogenesis of MAFLD through various
mechanisms, including inflammation, OS, and fibrosis (Wang
et al., 2022a). In particular, studies have identified CD4+ T cells,
also known as T helper cells, as playing a significant role in
MAFLD (Ma et al., 2016). These cells can secrete pro-
inflammatory cytokines, such as IL-2, IL-17, IFN-γ and TNF-
α, which can contribute to liver damage and fibrosis. CD8+ T cells
are involved in the killing of infected hepatocytes, but their
activity can also lead to further liver damage and
inflammation, wich secrete several pro-inflammatory
cytokines, including IL-2, IL-6, IL-17, IFN-γ, and TNF-α
(Plochg et al., 2022). Additionally, Tregs have been shown to
play a protective role in MAFLD by suppressing inflammation
and promoting liver regeneration (Wang et al., 2020).

In summary, the relationship between T cells and MAFLD is
complex and multifactorial, and more research is needed to fully
understand the underlying mechanisms and potential therapeutic
targets for this disease.

3.4 B cells

As the disease progresses, chronic inflammation and OS in the
liver cause damage to hepatocytes, which leads to the release of
damage-associated molecular patterns (DAMPs) and microbial
products into the liver microenvironment (Huang et al., 2015).
These molecules activate immune cells such as B cells and T cells
and promote the release of pro-inflammatory cytokines (Segura-
Cerda et al., 2020). B cells are a type of adaptive immune cell that
produce antibodies to recognize and neutralize invading pathogens
(Wang et al., 2022b). In MAFLD, B cells are activated by DAMPs
and produce autoantibodies against self-antigens in the liver (Faas
and de Vos, 2020). These autoantibodies can further damage liver
cells and activate other immune cells to exacerbate inflammation. In
addition, B cells can also differentiate into plasma cells, which
secrete large amounts of pro-inflammatory cytokines (such as IL-
6 and TNF-α) and exacerbate the immune response (Rosser and
Mauri, 2015). Recent studies have shown that B cells also play a role
in regulating lipid metabolism in the liver (Postic et al., 2004). B cells
have the ability to uptake and metabolize lipids, and their activation
can lead to alterations in lipid metabolism that exacerbate steatosis
and liver injury (Zhang et al., 2022).

In brief, the increased presence and activation of B cells in later
stages of MAFLD contribute to the progression of liver injury by
promoting inflammation, damaging liver cells, and altering lipid
metabolism. Targeting B cells may be a promising therapeutic
strategy to treat advanced MAFLD.

3.5 Natural killer (NK) cells

NK cells are innate immune cells that play a role in the early
response to viral infections and tumors. They have also been
implicated in the development of liver diseases, including
MAFLD (Figure 5) (Mendez-Sanchez et al., 2021). NK cells can
recognize and kill damaged or infected liver cells, but in MAFLD,
their activity may be disrupted, leading to liver injury and
inflammation (Abel et al., 2018). For example, NK cells can
produce pro-inflammatory cytokines (e.g., IFN-γ, TNF-α, IL-1,
IL-6, and IL-12), which can exacerbate hepatic inflammation and
promote insulin resistance (Abel et al., 2018). Additionally, NK cells
may contribute to the development of liver fibrosis by producing
TGF-β and activating HSCs (Fisicaro et al., 2020). Interestingly,
recent research has also suggested that NK cells may have a
protective role in MAFLD. Studies have shown that increased
numbers of NK cells in the liver can lead to improved insulin
sensitivity and decreased hepatic steatosis (Wu et al., 2020).
Moreover, NK cells may help to clear damaged or infected
hepatocytes, and prevent the progression of MAFLD to more
severe liver diseases such as cirrhosis and HCC (Sutti and
Albano, 2020).

To sum up, while the precise role of NK cells in MAFLD is not
yet fully understood, it is clear that they play a crucial role in the
development and progression of this disease. Further research is
needed to elucidate the complex interplay between NK cells and
other immune cells in the liver and to identify potential therapeutic
targets for MAFLD.

3.6 Dendritic cells

DCs are a type of immune cell that play a crucial role in the
regulation of hepatic inflammation and fibrosis, which are key
components of the pathogenesis of MAFLD (Figure 6). There is
evidence to suggest that DCs can contribute to the progression of
MAFLD by promoting inflammation and fibrosis in the liver, as well
as by impairing insulin signaling (Ferreyra Solari et al., 2012). In
particular, it has been shown that DCs accumulate in the liver of
patients with MAFLD and produce pro-inflammatory cytokines
(such as IL-1, TNF-α, IL-12, and IL-18) that drive the recruitment
and activation of other immune cells, such as macrophages, T cells,
and neutrophils (Heier et al., 2017; Yang et al., 2021). Moreover,
DCs also contribute to the activation and differentiation of
regulatory T (Treg) cells, which play a critical role in suppressing
immune responses and maintaining immune tolerance (Wang et al.,
2023). Dysregulation of DC function in MAFLD may hinder the
induction of Treg cells and promote inflammation and fibrosis. In
addition to their antigen-presenting capacity, DCs also produce
cytokines and chemokines that influence the recruitment and
activation of other immune cells (Chen and Tian, 2020). For
example, DC-derived IL-12 and IL-18 promote Th1 and NK cell
responses, while DC-derived IL-23 promotes Th17 and γδ T cell
responses (Zwirner and Ziblat, 2017). Additionally, DCs can
stimulate the differentiation of fibroblasts into myofibroblasts,
which are responsible for the excessive deposition of extracellular
matrix in the liver, leading to fibrosis (Lakshman et al., 2015). On the
other hand, there is also evidence to suggest that DCs can play a
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protective role in MAFLD by promoting the clearance of lipids from
the liver and modulating the immune response to reduce
inflammation and fibrosis (Chen and Tian, 2020).

Overall, the relationship between DCs and MAFLD is complex
and context-dependent, and DCs represent a promising therapeutic
target for the management of this disease. Strategies aimed at

FIGURE 5
Natural killer cells in MAFLD.

FIGURE 6
Dendritic cells in MAFLD.
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modulating DC function, such as using DC-based vaccines or
targeting DC-produced cytokines, may help to restore immune
homeostasis and alleviate liver inflammation and fibrosis in
MAFLD.

3.7 Natural killer T (NKT) cells

NKT cells are a subset of T cells that have unique characteristics and
play a crucial role in immune surveillance and defense against
infections. However, they can also contribute to the development of
autoimmune and inflammatory diseases. In MAFLD, NKT cells have
been shown to accumulate in the liver and promote inflammation and
fibrosis by secreting cytokines and activating other immune cells (Van
Herck et al., 2019). Studies have demonstrated that NKT cells are
activated in response to lipid accumulation in the liver and contribute to
the progression of MAFLD (Gebru et al., 2021). These cells can also
recognize and respond to lipid antigens presented by specialized
immune cells called antigen-presenting cells. NKT cells can produce
pro-inflammatory cytokines like IFN-γ, TNF-α and IL-2, which further
activate immune cells and initiate a cascade of events leading to liver
damage (Li et al., 2010). Moreover, NKT cells have been implicated in
the development of hepatic fibrosis, a significant complication of
MAFLD (Chen and Tian, 2020). In animal models of MAFLD,
blocking NKT cell activation has been shown to reduce liver
inflammation and fibrosis (Chen and Tian, 2020).

Broadly speaking, NKT cells are important players in the
pathogenesis of MAFLD, contributing to liver inflammation and
fibrosis. Further research is needed to understand the precise
mechanisms of NKT cell activation in MAFLD and to identify
novel therapeutic targets.

3.8 Mast cells

Mast cells and MAFLD have a complex relationship. Mast cells
are immune cells that play a significant role in allergic reactions and
inflammatory responses, while MAFLD is a metabolic disorder
characterized by the accumulation of fat in the liver, which can
lead to inflammation, fibrosis, and eventually cirrhosis (Kennedy
et al., 2021). Studies have shown that mast cells can contribute to the
development and progression of MAFLD. Mast cells release pro-
inflammatory cytokines and histamine, which can promote the
recruitment of immune cells and cause liver damage (Kennedy
et al., 2021). Furthermore, mast cells can stimulate HSCs, which
are responsible for producing excess collagen and contributing to
liver fibrosis (Kyritsi et al., 2021). On the other hand, some research
suggests that mast cells may also play a protective role in MAFLD
(Takai and Jin, 2020). Mast cells have been shown to reduce
inflammation in certain contexts, and may help clear damaged
liver cells (Meadows et al., 2021). Additionally, mast cell
activation has been associated with increased adipose tissue
browning and improved glucose metabolism in animal models of
obesity and diabetes, which are risk factors for MAFLD (Lama et al.,
2022).

In general, the relationship between mast cells and MAFLD is
complex and may depend on various factors, including the stage and
severity of the disease. Further research is needed to fully understand

the mechanisms involved and potential therapeutic targets for
MAFLD.

4 Traditional Chinese medicine in
MAFLD

TCM prescriptions, natural products and herb components,
which are primarily sourced from plants, microorganisms, and
animals, along with their secondary metabolites, have been found
to be valuable in the treatment of various human diseases, owing to
their accessibility, applicability, and ability to reduce cytotoxicity. A
growing body of evidence supports the use of TCM prescriptions,
natural products and herb components as effective approaches for
treating MAFLD. They can inhibit the secretion and recruitment of
inflammatory factors and cells, regulate liver inflammation and
tissue repair, reverse fatty degeneration in MASH, reduce
hepatocyte apoptosis and liver fibrosis, and delay the progression
of MAFLD (Ma et al., 2021). Recent advances have been made in the
development of TCM prescriptions, natural products and herb
components for the treatment of MAFLD, with a focus on
immune cells such as macrophages, neutrophils, T cells, NK cells,
and DCs (as shown in Figure 7). These findings pave the way for the
discovery and development of new anti-MAFLD drugs using TCM
prescriptions, natural products and herb components.

4.1 Target macrophages

TCMprescriptions, natural products and herb components have
been shown to impact various aspects of MAFLD pathology,
including the secretion and recruitment of macrophages,
polarization of M1 to M2 cells, and inhibition of
NLRP3 inflammasome activation (Zhang et al., 2020b; Zhou
et al., 2021). They can also improve insulin resistance, liver lipid
metabolism, and reduce hepatocyte apoptosis, leading to improved
liver health and reduced fibrosis (Jeon et al., 2022; Liu et al., 2022).
There has been a growing body of research reporting on the effects
and mechanisms of TCM prescriptions, natural products and herb
components for the treatment of MAFLD, as highlighted in Table 1.

For example, a triterpene glycoside called glycyrrhizin (GL),
which is commonly used as a food sweetener or active
pharmaceutical ingredient, possesses a range of medicinal
properties such as anti-ulcer, anti-spasm, anti-inflammatory, anti-
oxidative, anti-viral, anti-microbial, anti-cancer, and anti-androgen
properties (Eisenbrand, 2006). Research suggests that GL has
potential as a therapeutic agent for MAFLD due to its ability to
inhibit NLRP3 inflammasome activation and adipose tissue
inflammation, as well as improve insulin sensitivity and reduce
liver inflammation and fibrosis in animal models (Chen et al., 2018;
Yan et al., 2018; Li et al., 2021a). Therefore, GL could be a promising
natural treatment option for MAFLD. Similarly, hypericin, also
known as quercetin 3-o-β-d-galactoside, is a bioactive flavonoid
glycoside that can be found in Epilobium, Hypericum, and
Hypericum (Wu et al., 2023). Numerous studies have
demonstrated the wide range of pharmacological activities
associated with hypericin, indicating its potential use as a
pharmaceutical ingredient (Jiang et al., 2013). Such activities
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include its antioxidative, hypoglycemic, anti-inflammatory, and
anticancer effects. Recent research has shown that hyprepin,
which contains hypericin, has the ability to significantly improve
hepatic steatosis, insulin resistance, and inflammatory response in
liver tissue from C57BL/6 mice treated with hyprepin (Sun et al.,
2021). It also modulated macrophage polarization, which was found
to be dependent on the nuclear receptor subfamily 4 group a
member 1 (NR4A1) (Sun et al., 2021). This highlights the
therapeutic potential of hypericin in regulating macrophages and
preventing the pathological progression of MAFLD (Sun et al.,
2021). There is evidence to suggest that the cannabinoid Abn-
CBD can have beneficial effects on the liver by impairing
macrophage infiltration, reducing apoptosis, and eliminating liver
inflammation and fibrosis (Romero-Zerbo et al., 2020). Some studies
have shown that Abn-CBD can reduce the levels of pro-
inflammatory cytokines and chemokines, which are responsible
for attracting immune cells to the liver and promoting
inflammation (Romero-Zerbo et al., 2020). Additionally, Abn-
CBD has been shown to activate the CB2 receptor, which is
expressed on immune cells such as macrophages, leading to a
suppression of their activity and infiltration into the liver
(Romero-Zerbo et al., 2020). This can result in a reduction in
liver inflammation and fibrosis (Romero-Zerbo et al., 2020). The
ability of Abn-CBD to reduce apoptosis, or programmed cell death,
in liver cells may also contribute to its therapeutic potential for
MAFLD (Romero-Zerbo et al., 2020). However, further research is
needed to fully understand the mechanisms underlying the effects of

Abn-CBD onMAFLD and to determine its potential as a therapeutic
agent.

By and large, the research suggests that TCM prescriptions,
natural products, and herb components have the potential to be
effective treatments for MAFLD through their modulation of
macrophage activity and inflammation. However, more studies
are needed to identify the optimal composition, concentration,
and dosage of these treatments, as well as to better understand
their mechanisms of action.

4.2 Target neutrophils

TCM prescriptions, natural products, and herb
components have been found to play a significant role in
the anti-MAFLD process by regulating the activation,
infiltration, and metabolism of neutrophils. This helps in
controlling liver inflammation, hepatocyte apoptosis, liver
injury, and the degree of liver lipid accumulation, as
highlighted in Table 2.

Berberine (BBR), an isoquinoline-like quaternary alkaloid
extracted mainly from Coptis chinensis Franch, has been found
to have beneficial effects on various metabolic diseases, including
T2DM, obesity, MAFLD, hyperlipidemia, and gout, based on animal
studies (Imenshahidi and Hosseinzadeh, 2016; Xu et al., 2021). BBR
has shown promising results in improving hepatic steatosis and
reducing serum LDL cholesterol levels (Hu et al., 2022).

FIGURE 7
The mechanism of traditional Chinese medicine prescriptions, natural products and herb components in the treatment of MAFLD by targeting
immune cells, mainly including macrophages, neutrophils, T cells, NK cells, and DCs.
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TABLE 1 Traditional Chinese medicine prescriptions, natural products and herb components target macrophages to treat MAFLD.

Herb
components

Experiment object Diet Intervention
mode

Mechanism References

Glycyrrhizin 6-8-week-old male C57BL/
6 mice

MCD; MCS I.p. 2 weeks Inhibit NLRP3 inflammatory bodies induced
by various DAMPs or pathogen-related
molecular patterns in macrophages.

Yan et al. (2018)

Hyperoside C57BL/6 mice HFD I.p. 8 weeks Upregulate NR4A1, promote pro-
inflammatory M1 macrophages into anti-
inflammatory M2 macrophages, and
reduced MAFLD.

Sun et al. (2021)

Cannabinoid Abn-CBD 10-week-old C57Bl/6J mice HFD I.p. 2 weeks Impair macrophage infiltration, reduce
apoptosis, and eliminate liver inflammation
and fibrosis.

Romero-Zerbo
et al. (2020)

Curcumin Male C57BL/6 mice,
RAW264.7 cell

MCD Gavage 8 weeks Inhibit M1 macrophages. and secretion of
inflammatory.

Tong et al. (2021)

Gallic acid HepG2, murine hepatoma cell
line Hepa, and murine
macrophage cell line RAW 264

PA Gavage 24 h Downregulate MAPK/NF-κB. Tanaka et al.
(2020)

Epigallocatechin-3-
gallate (EGCG)

8-week-old male C57BL/6J
mice

HFD plus
fructose

Oral gavage 8 weeks Promote M1 to M2, reduce the secretion of
inflammatory mediators, reduce liver.

Du et al. (2021)

Cordycepin (CRD) 8–10-week-old male C57BL/6J
mice

HFD Gavage 8 weeks Reduce inflammatory factors. Gong et al. (2021)

Rhodiola 8-week-old male C57BL/6J
mice, HepG2 cell

HFD Gavage 16 weeks Activate macrophage migration inhibitor
and relieve MAFLD.

Liu et al. (2022)

Glucoraphanin Male C57BL/6JSlc mice HFD Feed 14 weeks Macrophage accumulation and M2 polarity
of liver and fat macrophages, and improve
liver steatosis and insulin resistance.

Nagata et al.
(2017)

Honokiol 7-8-week-old male C57BL/6J
mice

CL; HFD Feed 12 weeks Polarize macrophages into M2 phenotype
and improve MASH.

Zhong and Liu
(2018)

Glycyrrhetinic acid 8-week-old male C57BL/6 mice HFD plus
fructose

Intragastric
administration

2 weeks

Regulate the activation of macrophages,
improve the damaged autophagy flux, reduce
the excessive production of inflammatory
cytokines, and improve the excessive
apoptosis of hepatocytes, thus playing a
therapeutic role in MAFLD.

Fan et al. (2022)

Vitexin Male C57BL/6 mice HFD Feed 5 weeks Significantly reduce the infiltration of
hepatic macrophages, significantly
downregulated the mRNA and protein
expression of hepatic SREBP-1c, FAS and
ACC, inhibit the signal transduction of
TLR4/NF-κB, reduce fatty acid synthesis
protein, and improved MAFLD.

Li et al. (2020)

Resveratrol Male C57BL/6 mice, 293T cell MCD Intragastric
administration

4 weeks

Prevent liver cell damage induced by
inflammatory cytokines released by foam
macrophages, and inhibit the development
of MASH.

Che et al. (2020)

Andrographolide
(ANDRO)

10-week-old male C57 BL/
6 mice

CDAA I.p. 22 weeks Significantly reduce the infiltration of liver
macrophages and promote the mRNA level
of liver pro-inflammatory and pro-fibrosis
genes.

Cabrera et al.
(2017)

Rapeseed protein
hydrolysates

Male C57BL/6J mice HFD I.p. 6 weeks Inhibit macrophages infiltration induce liver
pro-inflammatory and fibrosis genes
expression.

Zhao et al. (2019)

Sugar kelp 7-week-old male C57BL/6J
mice

HFD; high-
sucrose; high-
cholesterol diet

Feed 14 weeks Reduce the expression of macrophage
marker adhesion G protein-coupled receptor
E1 (ADGRE1) and M1 macrophage marker
integrin α x (ITGAX), alleviate the
inflammatory reaction and improve the liver
steatosis.

Kim et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Traditional Chinese medicine prescriptions, natural products and herb components target macrophages to treat MAFLD.

Herb
components

Experiment object Diet Intervention
mode

Mechanism References

Tetrahydrocurcumin
(THC)

4-week-old male C57BL/6J
mice

HFD Oral gavage 10 weeks Reduce macrophage recruitment, liver
inflammation and cytokines in adipose
tissue, and improve insulin resistance and
liver steatosis.

Pan et al. (2018)

Geniposide and
chlorogenic acid (GC)

6-week-old male C57BL/6 mice HFD Feed 5 weeks Inhibit macrophage activation to improve
inflammation and achieve the purpose of
treating MASH’s steatosis.

Xin et al. (2021)

Lycopene 7-week-old male C57BL/6J
mice

CL plus HFD Feed 12 weeks Regulate LPS-/IFN-γ/TNFα in peritoneal
macrophages also the expression of fiber
gene, and reverse inflammation and fibrosis
induced by lipid toxicity in MASH mice.

Ni et al. (2020)

β-cryptoxanthin 8-week-old C57BL/6J mice CL plus HFD Feed 2 weeks Downregulate M1-labeled mRNA induced
by lipopolysaccharide in peritoneal
macrophages, promote the expression of
M2-labeled mRNA induced by IL-4, and
alleviate insulin resistance and
steatohepatitis.

Ni et al. (2015a)

An organic extraction
from lemon balm

HUVECs、10-week-old
C57BL/6J mice

HFD Feed 15 weeks Inhibit the expression of inflammatory
marker genes such as TNF-α, CD68 and
MCP-1, reduce macrophages and inhibit the
secretion of inflammatory cytokines.

(Kim et al.,
2017a)

Astaxanthin (ASTX) 8-week-old male C57BL/6J
mice

HFD Feed 18 weeks Reduce the infiltration of macrophages and
the expression of M1 macrophage markers,
and inhibit the inflammation and fibrosis in
the liver and adipose tissue of obese mice.

Kim et al. (2017b)

Naringenin 2-month-old male wistar rat HCD Oral gavage 3 months Decrease the expression of mucin-like
hormone receptor-like 1 (specific gene of
macrophage F4/80), regulate the level of
necrotizing inflammation, promote the
degradation of extracellular matrix, and
prevent MASH and fatty fibrosis induced by
cholesterol in rats.

Chtourou et al.
(2015)

An extract of O ficus-
indica seed

Male C57BL/6 mice HFD Oral gavage 4 weeks Regulate liver macrophage polarization and
adipogenesis to improve liver steatosis and
inflammation, so as to combat experimental
MAFLD.

Kang et al. (2016)

Inulin (INU) 4-week-old male C57BL/6 mice HFD Oral gavage 14 weeks Suppress liver macrophages to alleviate the
inflammatory reaction of the liver and
prevent MAFLD.

Bao et al. (2020)

Baicalin (BA) 6-week-old male C57BL/6J
mice

MCD Oral gavage 4 weeks Alleviate liver inflammation, which is related
to the inhibition of macrophage influx and
NF-κB activation.

Zhang et al.
(2018)

Yinzhihuang (YZH) 8-week-old male C57BL/6J
mice

HFD Oral gavage 16 weeks Reduce the infiltration of macrophages,
especially the infiltration of pro-
inflammatory M1, and inhibite the pathways
of TLR4, Myeloid differentiation primary
response gene 88 (MyD88) to prevent
MASH.

Li et al. (2022)

Emodin 6-week-old female LDLR/mice HFD I.p. 4 weeks Reduce the infiltration of macrophages and
granulocytes in the liver, inhibit systemic
and local inflammatory reactions in the liver,
and inhibit the transition from simple
steatosis to MASH.

Jia et al. (2014)

Myricetin 6-week-old male C57BL/6J
mice, RAW264.7 cell

CDAHFD Oral gavage 8 weeks Regulate the polarization of macrophages,
thus alleviating MASH and liver fibrosis.

Yao et al. (2020)

Boccoliwater 6-week-old male C57BL/6J
mice

MCD; MCS Gavage 8 weeks Regulate the M1/M2 polarization of
macrophages, inhibit the inflammation of
MAFLD, and delay the occurrence and
development of MAFLD.

Huang et al.
(2022)

(Continued on following page)
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Additionally, it has been observed that BBR can alleviate liver
fibrosis by reducing the infiltration of immune cells, inhibiting
neutrophil activation and the expression of inflammatory genes,
and regulating the expression of multiple genes that are involved in
HSCs activation and bile duct cell proliferation (Wang et al., 2021b).
As such, BBR holds great potential as a therapeutic agent for
MAFLD (Wang et al., 2021b). Resveratrol and quercetin are two
natural compounds that have been shown to exert beneficial effects

on various aspects of health (Tian and Liu, 2020). One of their
potential mechanisms of action is down-regulating neutrophil
elastase, an enzyme involved in the breakdown of the
extracellular matrix in tissues (Cano-Martinez et al., 2021).
Neutrophil elastase is released by neutrophils, a type of white
blood cell, in response to inflammation and tissue damage
(Cano-Martinez et al., 2021). While it plays an important role in
fighting infections, excessive production of neutrophil elastase can

TABLE 1 (Continued) Traditional Chinese medicine prescriptions, natural products and herb components target macrophages to treat MAFLD.

Herb
components

Experiment object Diet Intervention
mode

Mechanism References

Curcumin 4-week-old male C57BL/6J
mice

HFD Feed 24 weeks Inhibit the accumulation of macrophages in
liver and improve MAFLD.

Inzaugarat et al.
(2017)

Limonin Zebrafish Fertilized
embryos

Exposure 72 h Inhibit the infiltration of macrophages,
downregulate the relative expression levels of
pro-inflammatory factors IL-6, IL-1β and
TNF-α secreted by macrophages, upregulate
the NRF2/HO-1 signal pathway in the liver
to reverse the reduction of glutathione and
the accumulation of ROS, and exert its
resistance to lipid deposition, antioxidant
and anti-inflammatory effects to protect
MAFLD.

Li et al. (2021b)

RFAs C57BL/6 mice, mouse primary
hepatocyte

MCD Gavage 3 weeks Inhibit NLRP3 inflammatory bodies and
liver Kuffer cells to improve MAFLD.

Wu et al. (2022b)

YCHD C57BL/6 mice, mouse primary
hepatocytes, Kuffer cell

MCD Gavage 9 weeks Inhibit NLRP3 inflammatory bodies and
liver Kuffer cells to improve MAFLD.

Wu et al. (2022b)

Apigenin (API) 4–6 week-old male C57BL/6 J HFD Gavage 4 weeks Regulate the recruitment of macrophages,
inhibit inflammation, regulate liver lipid
metabolism, and inhibit liver steatosis.

Lv et al. (2019)

Abbreviations: i. p, intraperitoneal injection;MCD,Methionine- and choline-deficient diet; MCS, the methionine- and choline-sufficient diet; CDAA, Choline-deficient amino acid-defined diet;

PA, palmitic acid; CDAHFD, Choline-deficient, L-amino acid-defined, high-fat diet.

TABLE 2 Herb components and natural products target neutrophils to treat MAFLD.

Herb
components

Experiment
object

Diet Intervention
mode

Mechanism References

Berberine (BBR) 8–12-weeks-old male
and female mice

HFD plus high-
fructose diet

Oral gavage 9 weeks Reduce immune cells infiltration, inhibit neutrophils
activation, as well as decreasing inflammatory genes
expression to significantly inhibit inflammation and
improve MAFLD.

Wang et al. (2021b)

Resveratrol;
quercetin

25-days-old male
Wistar rat

30% sugar Feed 4 weeks Downregulate neutrophils elastase; reduce hepatocyte
apoptosis and hepatic fibrosis.

Cano-Martinez
et al. (2021)

Tanshinone IIA
(TIIA)

7-week-old female
C57BL/6 mice

MCD I.p. 6 weeks Inhibit the formation of myeloperoxidase (MPO) and
citrullinated histone H3 (CITH3) in NETs, and inhibit
the apoptosis of hepatocytes mediated by caspase-3 and
bax, thus alleviating the liver inflammatory response.

Xu et al. (2022)

Baicalin 6–8-week-old male
C57BL/6J mice

MCD I.p. 4 weeks Reduce the infiltration of neutrophils and macrophages,
reduce liver inflammation, reduce hepatocyte apoptosis
and liver injury, reduce liver lipid accumulation, reduce
liver fibrosis and improve MAFLD.

Liu et al. (2020)

Hazelnut oil 5-week-old male
hamster

HC Feed Reduce neutrophils infiltration in MASH, reduce
glycogen accumulation in liver, and inhibit liver
inflammation and fibrosis.

Lu et al. (2019)

Quercetin Sprague-Dawley rat HFD Feed 8 weeks Reduce neutrophils infiltration and lymphocytes
infiltration, inhibit liver inflammation and steatosis, and
delay the progress of MAFLD.

Zhou et al. (2013)
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lead to tissue destruction, especially in chronic inflammatory
conditions (Cano-Martinez et al., 2021). Resveratrol and
quercetin have been found to inhibit neutrophil elastase activity,
which may help prevent tissue damage and reduce inflammation in
various organs, including the liver (Cano-Martinez et al., 2021). In
fact, studies have shown that these compounds can reduce
hepatocyte apoptosis (cell death) and hepatic fibrosis (excessive
scar tissue formation) in animal models of MAFLD (Cano-Martinez
et al., 2021). In addition, tanshinone IIA (TIIA) is a natural
compound found in the roots of Salvia miltiorrhiza, a traditional
Chinese herb (Subedi and Gaire, 2021). Research has shown that
TIIA has anti-inflammatory and anti-oxidative effects, making it a
potential therapeutic agent for inflammatory liver diseases (Xuan
et al., 2017). Neutrophil extracellular traps (NETs) are web-like
structures composed of DNA, histones, and granule proteins that are
released by neutrophils during inflammation (Yang et al., 2020).
MPO and CITH3 are two components of NETs that contribute to
the pro-inflammatory response (Saisorn et al., 2021). TIIA has been
shown to inhibit the formation of MPO and CITH3 in NETs,
thereby reducing the inflammatory response in the liver (Xu
et al., 2022). Caspase-3 and bax are two proteins involved in the
apoptotic pathway in cells (Xu et al., 2022). Inflammatory liver
diseases often lead to hepatocyte apoptosis (Xu et al., 2022). TIIA has
been shown to inhibit caspase-3 and bax-mediated apoptosis of
hepatocytes, thereby preventing liver damage and inflammation (Xu
et al., 2022). Overall, TIIA’s ability to inhibit NET formation and
hepatocyte apoptosis make it a promising therapeutic agent for
MAFLD (Xu et al., 2022).

Generally, these herb components and natural products
have shown promising effects in the treatment of MAFLD by
regulating neutrophils involved in its pathogenesis. However,
further studies are needed to confirm their efficacy and
safety in humans before they can be recommended for
clinical use.

4.3 Target T lymphocytes

Popular herb components and TCM prescriptions, including
astaxanthin, β-cryptoxanthin, theaphenon E (TE), curcumin, rhein,
and qushi huayu decoction, have shown promise for the prevention
and treatment of MAFLD/MASH. Through cellular or animal
experiments, these natural substances have been observed to
target T cells and effectively treat MAFLD (Table 3).

For example, astaxanthin, a ketocarotenoid with the chemical
name 3, 3′-dihydroxy-4, 4′-diketonyl-β, β′-carotene, can directly
enter cells and quench ROS and free radicals, allowing it to function
as a natural antioxidant, which is 500 times more active than vitamin
E (Ambati et al., 2014). Astaxanthin is known to show a wide range
of beneficial effects, involving anti-inflammatory and antitumor
activities (Jia et al., 2016; Kim et al., 2017b). Astaxanthin reduces
the recruitment of CD4+ and CD8+ T cells in the liver, reverses
insulin resistance, and liver inflammation and fibrosis, and has been
shown more effective than vitamin E in the prevention and
treatment of MASH (Ni et al., 2015b). Therefore, astaxanthin is
particularly promising as a drug for MASH in resource-limited
settings, such as underdeveloped countries. In addition, β-
cryptoxanthin (other names: β, β-carotene-3-ol), a precursor
carotenoid, is widely found in paprika, pumpkin, persimmon,
orange, papaya, and peach (Ni et al., 2016). Several potential
medicinal values of β-cryptoxanthin have been revealed, such as
anti-MAFLD, antioxidant, cancer prevention, and anti-metabolic
syndrome (Burri, 2015; Hirata et al., 2019). Application of β-
cryptoxanthin helps to inhibit the recruitment of CD4+ and
CD8+ T cells in the liver, attenuate insulin resistance and
excessive lipid accumulation and peroxidation in the liver, and
ultimately prevent or reverse inflammation and fibrosis in MASH
(Ni et al., 2015a). Several other natural compounds with regulating
T cells and anti-inflammatory properties have been studied for their
potential use in MAFLD, including theaphenon E (TE) (Coia et al.,

TABLE 3 Traditional Chinese medicine prescriptions, natural products and herb components target T cells to treat MAFLD.

Herb
components

Experiment object Diet Intervention
mode

Mechanism References

Astaxanthin 7-week-oldmale C57BL/6J mice,
5-week-old male ob/ob mice

HFD Feed 10 weeks Inhibit the CD4+ and CD8+ T cells recruitment in liver,
promote M2 macrophages, reduce liver inflammation,
fibrosis, and prevent MASH.

Ni et al. (2015b)

β-cryptoxanthin 8-week-old C57BL/6J mice CL Feed 2 weeks Inhibit the CD4+ and CD8+ T cells recruitment in liver,
improve steatosis, inflammation and fibrosis in MASH
progression.

Ni et al. (2015a)

Theaphenon E (TE) Male C57BL/6J mice, primary
human liver cells

HFD Feed 35 weeks Regulate CD4+ T cells viability; induce apoptosis, inhibit the
lipid accumulation of MAFLD.

Coia et al. (2021)

Curcumin 4-week-old male C57BL/6J mice HFD Feed 24 weeks Monocytes accumulation, improve liver histological
function in MAFLD.

Inzaugarat et al.
(2017)

Rhein 10 to 12-week-old female C57BL/
6J mice, GW-3965

HFD Gavage 40 days Inhibit T-box (T-bet) in T cells and increase the activation
of transcription 6 (STAT6) phosphorylation, thus
regulating the Th1/Th2 response, inhibiting pro-
inflammatory cytokines expression and reversing hepatic
steatosis.

Sheng et al.
(2011)

Qu shi hua yu
decoction

4-week-old male Sprague-Dawley
rats or C57BL/6J mice

CL Gavage 4 weeks Promote the function of Tregs induced intestinal
microflora, and decreased the synthesis of MASH.

Feng et al. (2017)

Abbreviations: HFD, high-fat diet; CL, High-cholesterol diet.
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2021), curcumin (Inzaugarat et al., 2017), rhein (Sheng et al., 2011),
and qu shi hua yu decoction (Feng et al., 2017).

However, the bioavailability and stability of TCM prescriptions
and herb components in vivo are limited, due to its poor solubility
and rapid metabolism and elimination. Therefore, various strategies
have been developed to enhance the delivery and efficacy of TCM
prescriptions and herb components, such as using nanoparticles,
liposomes, phospholipid complexes, or analogs of TCM
prescriptions and herb components with improved
pharmacokinetic properties.

4.4 Target natural killer cells

The treatment of MAFLD has long been a focus of TCM
prescriptions, natural products, and herb components research
and has captured the attention of researchers worldwide. Korean
red ginseng (KRG), urushiol, and qiang gan formula have been
extensively studied for their potential therapeutic benefits in
addressing MAFLD. In fact, studies have shown that KRG,
urushiol and qiang gan formula may have a positive impact on
NK cell activity in a mouse model of MAFLD.

The KRG herb has been found to have multiple pharmacological
effects on immune deficiency, metabolic syndrome, and cancer (Kim
et al., 2013). Urushiol, derived from Rhus vernicifera plants, has
been shown to inhibit the growth of ovarian cancer, murine
leukemia, and human adenocarcinoma (Suk et al., 2010).
Additionally, the mechanism of inhibition of MAFLD by KRG
and urea is related to its anti-fibrotic and antioxidant
mechanisms by inhibiting NK cell expression in rats (Hong et al.,
2013). Qiang gan, a traditional Chinese medicine formula consisting
of 16 herbs, has also been reported to be effective in treating
MAFLD/MASH, with enhanced NK cell activity and improved
hepatic steatosis and inflammation in mice. This formula works
by inhibiting NK cell-mediated cytotoxicity, eliminating the pro-
inflammatory state of fatty liver, reducing hepatocyte inflammation,
and improving lipid metabolism (Zhu et al., 2019).

Despite promising results from preclinical studies, further
research is needed to determine the safety and efficacy of these
TCM prescriptions, natural products, and herb components in
treating MAFLD in humans. Additionally, the use of these herbs
should be supervised by a qualified healthcare provider, as somemay
interact with medications or have potential side effects.

4.5 Target dendritic cells

In addition to the previously mentioned TCM prescriptions,
natural products, and herb components, several other drugs have
demonstrated potential therapeutic effects on MAFLD by mediating
DCs. The Jiang Zhi Granule (JZG), composed of main compounds
from Salvia miltiorrhiza Bunge (Lamiaceae), Folium nelumbinis,
Polygala tenuifolia Willd. (Polygalaceae), Artemisia capillaris
Thunb. (Asteraceae), and Gynostemma pentaphyllum (Thunb.)
Makino (Cucurbitaceae), has been reported to be effective against
MAFLD (Yu et al., 2021). Additionally, studies have shown that JZG
can promote the maturation of intestinal mucosal DCs and induce
the differentiation of immature CD4+ T cells into Th1 cells (Yu et al.,

2021). It can also reduce damage to the intestinal mucosal immune
barrier and decrease liver fat in MASH rats, resulting in significant
improvements in liver function and liver tissue pathology (Yu et al.,
2021).

On the whole, the TCM prescription have been reported to have
potential therapeutic effects on MAFLD by mediating DCs. The
treatment can improve liver function and decrease liver fat
accumulation by reducing inflammation and inhibiting lipid
accumulation in hepatocytes. Further studies are needed to
investigate the underlying mechanisms of these treatments and to
develop effective therapies for MAFLD.

5 Discussion

MAFLD encompasses a range of liver diseases, such as MASH
which is characterized by the accumulation of fat in the liver. Its core
histopathological features include inflammation, hepatocyte
damage, and varying levels of fibrosis. The global prevalence of
MAFLD is on the rise, but unfortunately, there are currently no
FDA-approved medications to treat this condition. The primary
treatment for MAFLD is weight loss through dietary and lifestyle
modifications, managing metabolic risk factors, and drug therapy.
However, these treatments have not produced satisfactory results. In
the liver, immune cells, both innate and adaptive, tend to exhibit a
pro-inflammatory phenotype in MAFLD and MASH and play a
significant role in driving the progression of these diseases.
Targeting liver immune cells presents a promising strategy for
effective treatment of MAFLD/MASH.

According to statistics from the World Health Organization
(WHO), a significant portion of the global population in developing
countries relies on TCM prescriptions, natural products, and herb
components for primary healthcare. Furthermore, combining TCM
with clinical medicines can enhance the curative effect of
conventional medicine, mitigate its side effects, and improve the
patient’s survival rates and quality of life. Recently, there has been
growing interest in exploring the therapeutic potential of TCM
prescriptions, natural products, and herb components in treating
MAFLD. Therefore, this review aims to investigate the effectiveness
of TCM prescriptions, natural products, and herb components as
potential treatments for MAFLD.

The therapeutic efficacy of TCM prescriptions, natural products,
and herb components in the treatment of MAFLD lies primarily in
their ability to regulate immune cell infiltration (including
macrophages, neutrophils, DCs, T cells and NK cells), which in
turn inhibits the secretion and recruitment of inflammatory factors
and cells, as well as regulates hepatic inflammatory responses and
tissue repair. These interventions can also reverse fatty degeneration
in MASH, reduce hepatocyte apoptosis, and alleviate liver fibrosis,
ultimately slowing down the progression of MAFLD.
Nevertheless, few clinical reports are available on the use of
TCM prescriptions, natural products, and herb components in
immune cell-targeted treatment of MAFLD. In this review, we
summarize and analyze existing evidence of TCM prescriptions,
natural products, and herb components that mediate immune
cells to improve MAFLD, providing new guidance for the clinical
search for new anti-MAFLD targets and the development of new
anti-MAFLD drugs.
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However, despite the potential benefits of TCM prescriptions,
natural products, and herb components, the application of these
treatments in clinical practice is still fraught with difficulties. For
instance, it remains unclear whether some natural products can be
safely used as clinical drugs or dietary supplements. To better
understand the therapeutic effects of TCM prescriptions, natural
products, and herb components on MAFLD, further in-depth
studies are required. Additionally, while certain active ingredients
may have greater efficacy when used in combination with other
drugs, their use is often limited due to poor water solubility and low
bioavailability, making it challenging to modulate immune cells
against MAFLD. Lastly, most studies conducted thus far have been
limited to cellular and animal models, underscoring the need for
more extensive clinical trials to establish their reliability.

Another challenge in using TCM prescriptions, natural products,
and herb components is the lack of standardization and quality control.
The composition and concentration of active ingredients can vary
widely depending on factors such as the source, processing, and
storage of the raw materials. This inconsistency may lead to variable
therapeutic effects and unpredictable adverse reactions.Moreover, there
is also a need for proper regulation and oversight of the production and
marketing of TCM prescriptions, natural products, and herb
components. The absence of appropriate regulations may lead to
substandard products and misleading claims about their efficacy and
safety. To overcome these challenges, more rigorous research is needed
to develop evidence-based guidelines for the clinical use of TCM
prescriptions, natural products, and herb components. This includes
better characterization and standardization of active ingredients, as well
as clinical trials to evaluate their safety and efficacy. In addition, there
should be closer collaboration between traditional medicine
practitioners and mainstream healthcare professionals to ensure
coordinated and integrated care for patients with MAFLD.
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