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Background: The tricarboxylic acid cycle (TCA cycle) is an important metabolic
pathway and closely related to tumor development. However, its role in the
development of esophageal squamous cell carcinoma (ESCC) has not been fully
investigated.

Methods: The RNA expression profiles of ESCC samples were retrieved from the
TCGA database, and the GSE53624 dataset was additionally downloaded from the
GEO database as the validation cohort. Furthermore, the single cell sequencing
dataset GSE160269 was downloaded. TCA cycle-related genes were obtained
from theMSigDB database. A risk scoremodel for ESCC based on the key genes of
the TCA cycle was built, and its predictive performance was evaluated. The
association of the model with immune infiltration and chemoresistance were
analyzed using the TIMER database, the R package “oncoPredict” score, TIDE
score and so on. Finally, the role of the key gene CTTNwas validated through gene
knockdown and functional assays.

Results: A total of 38 clusters of 8 cell types were identified using the single-cell
sequencing data. The cells were divided into two groups according to the TCA
cycle score, and 617 genes were identified that were most likely to influence the
TCA cycle. By intersecting 976 key genes of the TCA cycle with the results of
WGCNA, 57 genes significantly associated with the TCA cycle were further
identified, of which 8 were screened through Cox regression and Lasso
regression to construct the risk score model. The risk score was a good
predictor of prognosis across subgroups of age, N, M classification and TNM
stage. Furthermore, BI-2536, camptothecin and NU7441 were identified as
possible drug candidates in the high-risk group. The high-risk score was
associated with decreased immune infiltration in ESCC, and the low-risk group
had better immunogenicity. In addition, we also evaluated the relationship
between risk scores and immunotherapy response rates. Functional assays
showed that CTTN may affect the proliferation and invasion of ESCC cells
through the EMT pathway.
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Conclusion: We constructed a predictive model for ESCC based on TCA cycle-
associated genes, which achieved good prognostic stratification. The model are
likely associated with the regulation of tumor immunity in ESCC.

KEYWORDS
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microenvironment, prognostic markers, selection of drugs

Introduction

Esophageal cancer is one of the leading causes of cancer-related
deaths worldwide. According to the Global Cancer Statistics 2020,
esophageal cancer ranks 7th and 6th in terms of incidence and
mortality (Chen et al., 2016; Arnold et al., 2020; Sung et al., 2021).
The 5-year survival rate for patients with resectable esophageal
cancer is close to 30%, while unresectable tumors are mainly
treated with radiotherapy and chemotherapy, with a median
survival of only 17–54 months (Cookson, 2000; Pape et al.,
2022). Thus, it is crucial to identify novel therapeutic targets of
ESCC in order to improve prognosis.

The tricarboxylic acid cycle (TCA cycle) is a crucial pathway
for the metabolism of sugars, lipids, and amino acids (Fernie et al.,
2004; Salway, 2018), and its key enzymes are succinate
dehydrogenase (SDH), ferredoxin hydratase (FH), and
isocitrate dehydrogenase (IDH) (Eniafe and Jiang, 2021). In

the last decade, several dominant mutations in genes encoding
the mitochondrial and cytoplasmic subtypes of SDH, FH and IDH
have been identified that are associated with tumorigenesis
(Kaelin and McKnight, 2013; Laurenti and Tennant, 2016).
Furthermore, previous study showed that TCA cycle played an
important role in promoting cancer metastasis (Cai et al., 2020).
Therefore, it is worth investigating the role of the TCA cycle in
tumorigenesis. However, any specific association between TCA
cycle-related genes and ESCC development has not been
demonstrated.

Given the significance of the TCA cycle and the metabolic
dysfunction that occurs during tumor development, we used an
innovative bioinformatics approach to screen for the key TCA-
related genes involved in ESCC in order to identify potential
therapeutic targets. In addition, we established a risk score model
based on the prognostically significant TCA cycle-related genes to
identify patients with poor prognosis andmonitor therapeutic response.

FIGURE 1
Single-cell sequencing data analysis and annotation. (A)UMAP downscaling of ESCC single cell samples into 38 detailed cell clusters. (B) Annotation
of 8 cell types, including T cells, B cells, endothelial cells, epithelial cells, myeloid cells, fibroblast cells, fibroblastic reticular cells (FRC), and pericytes. (C)
The high and low subgroups divided by AUC scores of cell populations. (D) AUC scores in ESCC annotated with the results of the different cell types. (E)
Biological function enrichment of TCA cycle-related differential genes.
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Methods

Data acquisition

The RNA expression profiles of ESCC were obtained from The
Cancer Genome Atlas (TCGA) database. The samples were
subsequently split into a training and validation cohort at 5:5 ratio.
The GEO dataset (GSE53624) was downloaded as an independent
validation cohort. All data were in FPKM format and converted to
log2 scale. The R package “limma” was used to adjust the batch effects
between TCGA and GSE53624. In addition to DNA expression, DNA
methylation, IncRNA and mRNA expression data, clinical
information (pathological type, tumor location, tumor stage, age,
ethnicity, survival status, etc.) was also extracted from the datasets.
The single-cell sequencing dataset GSE160269 that includes
60 samples was obtained from the GEO database. All datasets
were required to meet the following analysis criteria: 1) availability
of complete information, 2) sample size >50, and 3) all cases
underwent surgery without prior radiotherapy or other treatment.

Annotation of major cell types in ESCC

The quality control of the scRNA-seq data was performed using
the “seurat” R package. The TCA cycle-related genes were extracted

from the MSigDB database. To assign a TCA cycle activity score to
each cell type, the “AUCell R” package was used to determine the
status of gene set activity. The TCA cycle score for each patient in
TCGA cohort was determined by Single sample gene set enrichment
analysis (ssGSEA). Finally, weighted correlation network analysis
(WGCNA) was performed to derive gene clusters that were
correlated with TCA cycle scores using transcriptomic data of ESCC.

Construction and evaluation of TCA cycle
gene-based risk model

The TCA cycle genes significantly associated with survival in
ESCC were first identified through univariate Cox analysis, with p <
0.05 as the threshold. Lasso regression was then performed on the
survival-associated genes to eliminate covariates, and the best gene
combination was determined to construct a risk score prediction
model. The risk scores for all patients in the training cohort were
calculated, and the patients were stratified into the high-and low-risk
groups using the median risk score as the threshold value. The
survival curves of two groups were plotted using the Kaplan-Meier
method, and compared with the log-rank test to assess the predictive
effect of the model. The prognostic model was similarly tested on
multiple validation cohorts. The predictive performance of the
prognostic model was further assessed by plotting ROC curves at

FIGURE 2
Distribution of TCA cycle-related genes. (A). PCA of the TCGA and GEO datasets before batch processing. (B) PCA of the TCGA and GEO datasets
after batch processing. (C) Network topology analysis of different soft threshold powers. (D) Hierarchical clustering dendrogram of co-expressed genes
identified by ESCCmodules. (E)Module feature genes associated with TCA cycle-relatedmodule in ESCC. (F) Enrichment of TCA cycle-related DEGs for
grey modules.
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different endpoints and calculating the area under the curve (AUC).
A nomogram was then constructed by combining the TCA risk
score and other clinical parameters, and its predictive performance
was evaluated by the Kaplan-Meier method and log-rank test as
described. The clinical practicability of the nomogram was assessed
by decision curve analysis (DCA). Stratified analyses were also
performed for subgroups based on different clinical features.

Immune infiltration analysis and drug-
sensitivity analysis

The level of immune infiltration in ESCC patients was
determined by seven algorisms, including CIBERSORT,
CIBERSORT_ABS, EPIC, MCPcounter, quanTIseq, TIMER,
xCell. In addition, ssGSEA was performed on genes in the TCA-
related model. The “estimate” R package was used to determine the
relative abundance of stromal cells, immune cells, and tumor cells,
and compare these values across risk categories. The genetic
mutations in the high-risk and low-risk patients were also
compared by analyzing the mutation profiles of ESCC patients
from TCGA using the “maftools” software. The half-maximal
inhibitory concentration (IC50) of common chemotherapeutic
agents in the two risk groups using the R package “oncoPredict”.

Cell culture and siRNA transfection

Two esophageal cancer cell lines, KYSE150 and TE-1, were
procured from the American Type Culture Collection (ATCC)
repository. All cell lines were cultured in RPMI medium at 37°C
in a humidified incubator containing 5% CO2. CTTN was knocked
down in both cell lines using two specific siRNAs (si-CTTN-1, si-
CTTN-2) that were synthesized by GenePharma (Shanghai, China).
The cells were transfected with the siRNA constructs using
JetPRIME (PolyPlus transfections SA, Illkirch, France) according
to the manufacturer’s instructions, and harvested 48 h later for
follow-up experiments.

Quantitative reverse transcription PCR (RT-
qPCR)

Total RNA was extracted from the cells using TRIzol reagent
(Invitrogen, United States), and reverse transcribed using
PrimeScript RT Master Mix (Takara, Japan). RT-PCR was
performed using TB Green Premix Ex Taq II (Tli RNaseH Plus)
(Takara, Japan) on the ABI 7500 qPCR cycler (Applied Biosystems,
United States). The primers were synthesized by Sangon Biotech
(Shanghai), and the sequences were as follows: CTTN forward, 5′-
GTGGTTTTGGCGGCAAGTATG-3′; CTTN reverse, 5′-CTCTCT
GTGACTCGTGCTTCT-3′; GAPDH forward, 5′-CGAGATCCC
TCCAAAATCAA-3′, GAPDH reverse, 5′-TTCACACCCATG
ACGAACAT-3′; E-cadherin forward, 5′-ATTTTTCCCTCGACA
CCCGAT-3′; E-cadherin reverse, 5′-TCCCAGGCGTAGACC
AAGA-3′; Vimentin forward, 5′-AGTCCACTGAGTACCGGA
GAC-3′; Vimentin reverse, 5′-CATTTCACGCATCTGGCGTTC-
3′; N-cadherin forward, 5′-ATTGGACCATCACTCGGCTTA-3′;

N-cadherin reverse 5′-CACACTGGCAAACCTTCACG-3′; Snail
forward, 5′-TCGGAAGCCTAACTACAGCGA-3′; Snail reverse,
5′-TCGGAAGCCTAACTACAGCGA-3′. Each reaction was
performed in triplicate.

EDU assay

The cells transfected with si-NC, si-CTTN-1 or si-CTTN-2 were
seeded in a 24-well plate at the density of 6 × 104 cells/well, and
labelled using the BeyoClick™ EdU-488 Cell Proliferation Assay Kit
after 24 h of culture. The fluorescence intensity of the cells was
measured, and the ratio of EdU-488+ cells to DAPI+ cells was
calculated to determine the proliferative capacity.

Clone formation assay

KYSE150 and TE-1 cells were seeded in 6-well plates at the
logarithmic growth stage, and the culture medium was replaced
every 3 days. Following transfection, the cells were cultured for
12 days. The resulting colonies were fixed with 4%
paraformaldehyde, stained with 0.1% crystal violet, and counted.

Transwell assay

The suitably transfected cells were seeded into the upper
chamber of Transwell inserts pre-coated with 1:5 diluted Matrigel
in serum-free medium. The lower chambers were filled with
complete medium. After culturing for 24 h, the cells remaining
on the upper surface were swabbed off, and those that migrated to
the lower surface were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet. The number of cells were counted in
5 random fields of view per well to determine migration rate.

Western blotting

Proteins isolated from the transfected cells were separated by SDS-
PAGE and transferred to PVDF membranes. After blocking with 5%
skimmed milk powder for 2 h, the membranes were incubated
overnight with primary antibodies specific for GAPDH (ab9485,
Abcam; dilution: 1:2500), E-cadherin (ab40772, Abcam; dilution: 1:
2000), Snail (ab216347, Abcam; dilution: 1:1000), Vimentin (ab92547,
Abcam; dilution: 1:2000) and N-cadherin (ab76011, Abcam; dilution:
1:5000) at 4°C. The membranes were washed thrice with TBST for
10 min each time, and then incubated for 1 h with peroxidase-
conjugated secondary antibody (ab6721, Abcam; dilution: 1:2000).

Results

Single-cell analysis and functional
annotation of ESCC samples

Using the UMAP method, we annotated the ESCC single cell
samples into 38 clusters (Figure 1A) and eight distinct cell types,
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including T cells, B cells, endothelial cells, epithelial cells,
fibroblasts, fibroblastic reticular cells (FRC), myeloid cells and
pericytes. The T cells, fibroblasts and epithelial cells were the
predominant cell types, whereas pericytes and FRCs were
relatively less abundant (Figure 1B). The AUCell R package
was used to determine the TCA cycling activity in the
individual cells, which were then stratified into the high and
low TCA cycle groups based on the AUC scores. The epithelial
and myeloid cells were the predominant cell types with high
expression of TCA-related genes (Figures 1C, D). To elucidate

the potential biological mechanisms, we screened for the
differentially expressed genes (DEGs) and pathways associated
with the TCA cycle between the high and low TCA-AUC
subgroups. A total of 617 genes were identified that are most
likely to influence the TCA cycle, and showed significant
enrichment of tumor-associated pathways such as Myc targets
v1, coagulation, estrogen response, EMT, and myogenesis
(Figure 1E).

The differential genes obtained from the TCGA cohort
were used for WGCNA after logarithmic transformation and

FIGURE 3
Construction and validation of TCA cycle-related risk score model. (A) Intersection of the most relevant genes affecting TCA cycle activity in single
cells and the differential genes identified by WGCNA. (B) Screening of genes for constructing TCA cycle risk score model by LASSO Cox regression. (C)
The weights of the eight genes constituting the TCA risk score model. (D) PCA and t-SNE analysis in the training cohort. (E) PCA and t- SNE analysis in the
validation cohort. (F–H) ROC curves of the TCA cycle risk score model for predicting 1-year, 2-year, and 3-year survival in the TCGA training cohort
(F), validation cohort (G), and complete cohort (H). (I) ROC curves of the TCA cycle risk score model for predicting 1-, 2-, and 3-year survival in the
GSE53624 dataset. (J–M) Survival curves of the high-risk and low-risk groups in the (J) TCGA training cohort, (K) TCGA validation cohort, (L) complete
cohort, and (M) GSE53624 cohort.
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removal of genes with missing values. Principal component
analysis of the samples with clinical features indicated that the
TCGA and GSE53624 cohorts were independent, with
significant batch effects (Figure 2A). To further elucidate
the correlation between the TCA cycle and ESCC
microenvironment, we performed de-batch effect
manipulation. As shown in Figure 2B, elimination of batch
effects resulted in enhanced accuracy. Furthermore, we
constructed a gene co-expression network with optimal soft
threshold P (weighing parameter) set to 6, which ensured

scale-free distribution (Figure 2C). Modules with similarity
less than 12 were merged and the minimum number of
modules was set to 30 (Figure 2D). As shown in Figures 2E,
F, the grey modules contained 976 genes, and were most closely
associated with the TCA cycle (COR = 0.44, p < 0.001). To
further explore the relationship between TCA and prognosis of
ESCC patients, we intersected the most relevant genes
affecting TCA cycle activity in single cells and the
differential genes identified by WGCNA, and identified
57 genes for further analysis (Figure 3A).

FIGURE 4
Clinicopathological analysis of different risk groups. (A) Heatmap of different clinical features of the two risk groups. (B–E) Distribution of the risk
groups in (B) age, (C) M stage, (D) N stage and (E) TNM stage (F–H). IC50 of the high-risk and low-risk groups to (F) BI-2536, (G) camptothecin and (H)
NU7441.
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Model construction and functional
validation of ESCC riskmodels based on TCA
cycling genes

The risk score model was constructed using the TCGA-ESCC
training cohort. After initial screening of genes by univariate COX
regression, LASSO regression further identified ATF3, MIDN,
MAP3K8, PPP1R15A, CTTN, ARPC1A, CXCL14 and KRT19 as
prognostically significant (Figure 3B), which were used to construct
the model. The risk score for each sample was calculated as follows:

riskscore � ∑
k

n�i
(CoefiExpi) Based on the median value, patients

were divided into the high- and low-risk groups. Of the eight model
genes, five were risk factors and three were protective factors, and
their specific weights are shown in Figure 3C. Furthermore, PCA
and t-SNE assessments of these genes in the training and validation
sets indicated that the ESCC patients could be grouped into training
and validation cohorts (Figures 3D, E). We performed ROC curve
analysis in both the training and test cohorts to further evaluate the
predictive accuracy of the TCA cycle-based risk model. As shown in
Figure 3F, the AUC values for predicting 1-, 2-, and 3-year survival in
the training cohort were 0.814, 0.909 and 0.921 respectively, indicating
that the TCA cycle genes can achieve prognostic stratification of ESCC

patients. The AUC of the risk model for the validation cohort and the
complete dataset were both greater than 0.7 (Figures 3G, H), thereby
confirming the above findings. In the independent GSE53624 dataset,
the AUC of the prognostic model for 1-, 2- and 3-year survival were
0.55, 0.588 and 0.591 respectively (Figure 3I). Although the values
were less than optimum, they still confirm the predictive ability of
the risk model. Furthermore, the high-risk group showed worse
prognosis in the training, validation and entire TCGA cohort
(Figures 3J–L; p < 0.05), and this result was validated in the
GSE53624 cohort (Figure 3M). A nomogram was constructed
using the TCA cycle risk score and clinical parameters
(Supplementary Figure S1A). DCA and consistency index
showed that the clinical value of the nomogram was
significantly better than the individual clinical indicators,
indicating a net benefit of using the nomogram for predicting
patient prognosis in a clinical setting (Supplementary Figures
S1B, C). Furthermore, the AUC of the nomogram for predicting
1-, 2-, and 3-year survival were 0.72, 0.754 and 0.902 respectively
(Supplementary Figures S1D–F), which were significantly higher
compared to the individual clinical predictors that comprised the
model. Taken together, the TCA cycle risk score can accurately
predict the prognosis of ESCC patients.

FIGURE 5
Correlation of TCA cycle-based risk score with immune cell infiltration and immune checkpoint expression in ESCC patients. (A)Correlation plots of
22 tumor-infiltrating immune cells (TICs) in different patients was mapped by the seven algorithms. (B) Scatter plots of linear correlation between tumor
purity and TCA cycle risk score. (C) Violin plots showing the distribution of immune score, ESTIMATE score, Stromal scores, and tumor purity in the TCA
cycle high-risk and low-risk groups. (D) Box plot showing the difference in the expression of immune checkpoint genes between the two risk
groups.
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Clinicopathological analysis of the TCA
cycle-related risk model

To further elucidate the clinical relevance of the TCA cycle risk
model in ESCC, we compared the clinical parameters between the high-
risk and low-risk groups. As shown in Figure 4A, there were significant
differences (p < 0.05) in the age, M classification, N classification,
and TNM stage between the two groups. Patients in the high-risk
group were younger, and had lower M-stage, higher N-stage and
higher TNM stage (Figures 4B–E). We also compared the
chemosensitivity of the risk groups, and identified BI-2536,
camptothecin and NU7441 as possible drug candidates in the
high-risk group (Figures 4F–H). This finding will aid in the
selection of the most suitable drugs for clinical practice.

Analysis of mutation profiles revealed that missense mutations were
most the common type. In addition, TP53, TTN and KMT2D were the
top 3 most frequently mutated genes in ESCC, and C>T was the most
common base pair substitution (Supplementary Figure S1A). The
representative gene variants in the high-risk and low-risk groups are
shown in Supplementary Figure S2B. We also analyzed the mutation
status of the eight prognostic model genes, and found that the mutation
frequencies of PP1R15A and CTTN were around 1% (Supplementary
Figure S2C). Furthermore, analysis of the top 25 genes showed significant
mutational correlations between TP53 and SMARCA4, PIK3CA,

NOTCH1 and KMT2D, as well as between TTN and FMN2
(Supplementary Figure S2D). The combined prognostic impact
of the risk score and the tumor mutational burden (TMB) was
also assessed. As shown in Supplementary Figure S2EA, patients
with higher TMB levels had a significantly worse prognosis.

Association of the TCA cycle risk model with
immune infiltration and drug sensitivity

The CIBERSORT algorithm was used to determine the
relationship between risk score with tumor immune infiltration. As
shown in Figure 5A, immune infiltration was higher in the low-risk
group compared to the high-risk group, except uncharacterized cells,
common lymphoid progenitor cells and M2 macrophages. The
correlation analysis of the risk score and multiple immune
infiltration scores also showed greater tumor purity in the high-
risk score group (Figure 5B). Furthermore, the low-risk group
displayed higher stromal score, immunological score, and
ESTIMATE score, suggesting greater immunogenicity (Figure 5C).
The expression levels of different immune checkpoint-related proteins
in the two groups were also compared. As shown in Figure 5D, TIGIT
was significantly upregulated in the high-risk group (Figure 5D),
which is indicative of an immunosuppressive TME. Taken together,

FIGURE 6
Evaluation of the predictive performance of TCA cycle risk score. (A) The ratio of response to immunotherapy of the risk groups. (B) Distribution of
TIDE scores in the risk groups. (C) Heat map of the correlation between risk score and immune cell-related gene expression. (D) Heat map of the
correlation between risk score and immune-related pathways. (E) Survival curves of patients stratified by the response to immunotherapy combining with
TCA cycle risk score.
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the poor immune infiltration in ESCC may be associated with
aberrant TCA cycle activity. To assess the performance of the
TCA risk score in predicting immunotherapy response, we
examined susceptibility to immunotherapy in different subgroups
and found that patients in the high-risk group were more sensitive to
immunotherapy (Figure 6A). As shown in Figure 6B, the high-risk
group had lower TIDE scores, indicating better response to
immunotherapy. In addition, we found that the risk score was
positively related to step 1 of tumor immune process (Release of
cancer cell antigens), and the risk score was also positively correlated
to the apoptosis, cholesterol homeostasis, glycolysis, hypoxia,
mTORC1 signaling, p53 pathway, peroxisome, TNFA signaling via
NFKB, and UV response pathways (Figures 6C, D). Finally, survival
analysis showed worse prognosis in the high-risk group with positive
immunotherapy response (Figure 6E).

CTTN is a potential oncogene for ESCC

To further elucidate the biological significance of the TCA-
related genes in ESCC, we selected cortactin (CTTN), a key gene in
risk score, for further analysis. The CTTN gene was successfully

knocked down in the KYSE150 and TE-1 cell lines using specific
siRNA sequences (Figure7A). The EdU assay showed that lower
fluorescence intensity of cells transfected with si-CTTN-1/si-
CTTN-2 compared to the si-NC group, indicating that CTTN
influences proliferation of ESCC cells (Figures 7B, C). Consistent
with this, the CCTN-knockdown cells formed markedly fewer
colonies compared to the control cells (Figures 7D, E).
Furthermore, knockdown of CTTN in the ESCC cells
significantly decreased their invasiveness in the Transwell
(Figures 7F, G). Since the high-risk score was positively
correlated to EMT pathways, we also analyzed the expression
levels of EMT-related proteins. CTTN knockdown upregulated
the epithelial marker E-cadherin, and downregulated the
mesenchymal markers Snail, Vimentin and N-cadherin in the
ESCC cells (Figures 7H–I). These findings suggested that CTTN
promotes invasion of ESCC cells by inducing their EMT.

Discussion

ESCC is a major public health challenge worldwide. Although
the prognosis of ESCC has improved in recent years with

FIGURE 7
Functions of CTTN in the ESCC cells. (A) The relative expression levels of CTTNmRNA in KYSE150 and TE-1 cells transfected with si-NC, si-CTTN-1
and si-CTTN-2. (B) Representative fluorescence images showing EdU assays in the si-NC, si-CTTN-1 and si-CTTN-2 groups. (C) The proliferation rates in
the groups. (D) Representative images of colonies formed by cells transfected with si-NC, si-CTTN-1 and si-CTTN-2. (E) Number of colonies in the
groups. (F) Representative images of transwell assays showing invasion of cells transfected with si-NC, si-CTTN-1 and si-CTTN-2. (G) Proportion of
invading cells in the groups. (H) Protein expression of E-cadherin, Snail, Vimentin and N-cadherin in the groups. (I) The quantification of protein levels.
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development of multimodality approaches, there is still lack of
effective treatment approach for ESCC (Kakeji et al., 2021; Wang
et al., 2022). Conventional clinical parameter such as TNM stage is
often used to predict prognosis of ESCC (Marom, 2022). However,
due to the significant tumor heterogeneity, the predictive accuracy
of it is limited (Mahar et al., 2018). Therefore, there is an urgent
need to identify new prognostic biomarkers and construct an
effective model to predict patient prognosis and guide clinical
treatment. The TCA cycle is a key metabolic pathway, that is,
frequently dysregulated during tumor development (Anderson
et al., 2018). Therefore, biomarkers based on the TCA cycle
may have potential in prognostic prediction in ESCC.

Metabolic reprogramming is a hallmark of tumorigenesis
(Martínez-Reyes and Chandel, 2021), and its underlying
pathways and mechanisms are increasingly being explored as
potential therapeutic targets for cancer (Hay, 2016). Recent
studies have shown that the metabolism reprogramming of
ESCC is conducive to tumor progression and chemoresistance
(Chu et al., 2020; Liu et al., 2020). Given that the TCA cycle plays a
crucial role in cellular energy metabolism, we analyzed the
expression profile of TCA-related genes in ESCC at the
population and single cell level, and identified key prognostic
genes. A risk score model was constructed based on these genes
to predict the prognosis of ESCC patients. The TCA-related risk
score was correlated to the immune infiltration, immunotherapy
response, chemoresistance and mutational burden in ESCC, and
therefore has the potential to facilitate individualized clinical
treatment plans. Bioinformatics analysis showed that the genes
comprising the risk score model were significantly enriched in
EMT-related pathways. Furthermore, knockdown of CTTN, a key
gene of the risk score model, inhibited the malignant potential of
ESCC cell lines in vitro. A previous study showed that
downregulation of RNF128 induced EMT and stemness in
melanoma cells through CD44 and CTTN ubiquitination (Wei
et al., 2019). We have shown for the first time that CTTN promotes
EMT and invasiveness of ESCC cells, which provides a new
perspective to the relationship between metabolic abnormalities
and EMT.

However, several limitations of this study also need to be
considered. First, only a few ESCC datasets have complete clinical
information (especially survival information) and gene
expression data, which affect the reliability of the results.
Therefore, the present findings will have to be validated
further on independent datasets. Secondly, genetic differences
among different ethnic groups may have an impact on the results,
and should be taken into consideration in future studies. Thirdly,
most of the genes in the risk model have not been previously
associated with ESCC, and the correlation between these genes
and esophageal cancer need to be investigated further. Finally, it
remains to be elucidated whether this model can be applied to
esophageal adenocarcinoma or even esophageal cancer in
general.

In conclusion, we constructed a TCA cycle-based risk score to
evaluate the prognosis, immune infiltration, immunotherapy

response, and chemoresistance of ESCC patients. The risk score
achieved good predictive performance in several independent
datasets. CTTN, a key gene of the risk score model, affects the
proliferation, invasion and EMT of ESCC cells, thus providing new
insights into the relationship between metabolic abnormalities
and EMT.
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