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Background: Glycosyltransferase participates in glycosylation modification, and
glycosyltransferase alterations are involved in carcinogenesis, progression, and
immune evasion, leading to poor outcomes. However, in-depth studies on the
influence of glycosyltransferase on clinical outcomes and treatments are lacking.

Methods: The analysis of differentially expressed genes was performed using the
Gene Expression Profiling Interactive Analysis 2 database. A total of 10 machine
learning algorithms were introduced, namely, random survival forest, elastic
network, least absolute shrinkage and selection operator, Ridge, stepwise Cox,
CoxBoost, partial least squares regression for Cox, supervised principal
components, generalized boosted regression modeling, and survival support
vector machine. Gene Set Enrichment Analysis was performed to explore
signaling pathways regulated by the signature. Cell-type identification by
estimating relative subsets of RNA transcripts was used for estimating the
fractions of immune cell types.

Results: Here, we analyzed the genomic and expressive alterations in
glycosyltransferase-related genes in gliomas. A combination of 80 machine
learning algorithms was introduced to establish the glycosyltransferase-related
mRNA signature (GRMS) based on 2,030 glioma samples from The Cancer
Genome Atlas Program, Chinese Glioma Genome Atlas, Rembrandt,
Gravendeel, and Kamoun cohorts. The GRMS was identified as an independent
hazardous factor for overall survival and exhibited stable and robust performance.
Notably, gliomas in the high-GRMS subgroup exhibited abundant tumor-
infiltrating lymphocytes and tumor mutation burden values, increased
expressive levels of hepatitis A virus cellular receptor 2 and CD274, and
improved progression-free survival when subjected to anti-tumor
immunotherapy.

Conclusion: The GRMS may act as a powerful and promising biomarker for
improving the clinical prognosis of glioma patients.
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Introduction

Glioma is the most frequently occurring type of brain cancer,
and its most aggressive pathological form is known as brain
glioblastoma (Louis et al., 2021). Gliomas have significant
heterogeneity, and recent research has reported the tools for
further classification of gliomas (Carlson et al., 2021; Rui et al.,
2023). In clinical interventions, despite receiving the most aggressive
treatments, glioblastoma patients’ median overall survival (OS) of
less than 1.5 years is disheartening. Most antitumor drugs find it
challenging to enter the brain due to the blood–brain barrier (BBB),
a unique central nervous system (CNS) structure that poses a
significant obstacle to developing anti-glioma treatments.

Despite the development of numerous anticancer drugs over the
past decades, only few have been approved for the clinical treatment
of gliomas (Oberoi et al., 2016; Nikolenko et al., 2020). For example,
temozolomide (TMZ) mainly works by inducing DNA damage,
thereby inhibiting DNA replication and cell proliferation (Lang
et al., 2021). Significant advancements and progress have been
made in immunotherapy for lung and liver cancers, resulting in
notable enhancements in patient outcomes (Lee et al., 2015;
Ferrarotto et al., 2021; Theelen et al., 2021). Unfortunately,
however, only a minority of subjects respond to anti-glioma
immunotherapeutic treatments, with most experiencing minimal
or no clinical benefit. The response rate to immunotherapy for
gliomas is disappointing, and regrettably, few patients receive
clinical benefits and exhibit little or no improvement (Li C. et al.,
2020). Exploring sophisticated immune contexts could reveal new
therapeutic targets, as recent research has demonstrated that these
factors influence the effectiveness of immunotherapy (Binnewies
et al., 2018). The mounting evidence suggests that the immune
reprogramming of glioma disrupts chemokines, cytokines, and
growth factors in the glioma immune microenvironment
(GIME), hindering the immune system’s ability to fight cancer
(Klemm et al., 2020; Grabowski et al., 2021; Yu and Quail, 2021).
The upregulation of immunosuppression-associated molecules,
such as programmed cell death protein 1(PD1) and indoleamine
2,3-dioxygenase (IDO) in tumor cells, significantly impairs the
immune system’s ability to recognize and attack cancer cells.
These molecules act by inhibiting T-cell activation and
promoting the development of regulatory T (Treg) cells, thus
creating an immunosuppressive microenvironment that enables
tumor cells to evade immune surveillance. The restricted antigen
presentation mediated by PD1 and IDO further contributes to
tumor immune escape by hampering effective antigen recognition
by immune cells (Jiang et al., 2019). Remodeling of glioma-
associated macrophages (GAMMs) promotes an increase in the
production of immunosuppressive cytokines, such as interleukin-10
(IL-10) and transforming growth factor ß (TGF-β), relative to that in
healthy donors (Coniglio and Segall, 2013), which supports the
formation of a supportive microenvironment for an inefficient
antitumor immune response (Garcia-Fabiani et al., 2020). The
interaction between Treg cells and GAMMs in the GIME has a
functional impact that leads to immunosuppression, promoting
immune invasion and tumor progression. Treg cells play a
specific role in inhibiting the activation and differentiation of
CD4+ helper T cells and CD8+ cytotoxic T cells, thereby
promoting the deficiency of antitumor immunity (Li C. et al.,

2020). As a result, targeting these immunosuppressive pathways
has become a promising strategy for enhancing antitumor immune
responses and improving the clinical outcomes of cancer patients.

Glycosyltransferase is the enzyme responsible for catalyzing the
formation of glycosidic linkages between or among substrates
(Fuster and Esko, 2005). In recent years, cell-specific and tissue-
specific aberrant glycan modifications associated with cancer have
provided a strong basis for identifying potential targets in drug
development and clinical management, thereby facilitating detection
and treatment. The dysregulation of α2,6-sialylated lactosamine
(Sia6LacNAc) has been identified as a prognosticator for adverse
outcomes in colorectal cancer patients (Lise et al., 2000). The
interaction of modified glycans on cancer cell surfaces with
immune cells can lead to the activation of inhibitory immune
processes, as widely documented (RodrÍguez et al., 2018). For
example, the promotion of programmed cell death-ligand 1 (PD-
L1) N-glycosyltransferase has been associated with ß-1,3-N-
acetylglucosaminyl transferase (B3GNT3). In mouse breast cancer
cells, the elimination of B3GNT3 decreases PD-L1 expression,
ultimately amplifying the tumor rejection response (Pinho and
Reis, 2015). An increase in T-cell receptor (TCR) signaling may
possibly decrease the N-glycan branch of cytotoxic T-cell-associated
antigen-4 (CTLA4), leading to the suppression of T-cell function
and evasion of the immune system (Lau et al., 2007). The significant
potential of glycosyltransferase-related markers for cancer
management has been demonstrated by recent research, which
found that the glycosyltransferase gene signature accurately
predicts the prognosis of patients with pancreatic ductal
adenocarcinoma (PDAC) (Mohamed Abd-El-Halim et al., 2021).
The precise functions of these factors in glioma remain unclear and
require further elucidation.

In this study, we examined 40 dysregulated glycosyltransferase-
related genes that are associated with abnormal methylation and
copy number variation in gliomas. The resulting glycosyltransferase-
related mRNA signature (GRMS) was identified as an independent
prognostic factor for gliomas and could serve as a potential tool for
identifying patients who might benefit from chemotherapy or
immunotherapy.

Materials and methods

Data sources and process

For glioma datasets from The Cancer Genome Atlas Program
(TCGA), the Chinese Glioma Genome Atlas (CGGA), and the three
sets from GlioVis databases, namely, Kamoun, Rembrandt, and
Gravendeel, samples with complete follow-up information were
included, and detailed clinical characteristics of the enrolled
observations are displayed in Supplementary Table S1. In total,
2,030 glioma patients from five independent public datasets
(TCGA-glioma, CGGA-glioma, Kamoun-glioma, Rembrandt-
glioma, and Gravendeel-glioma) were included. The downloaded
RNA-seq profiles (fragments per kilobase million (FPKM)-
quantified values) were converted into transcripts per million
(TPM)-quantified values and then subjected to log2 (TPM+1)
normalization. The copy number variation (CNV) profile of
gliomas, named “GBMLGG_minus_germline_cnv_hg19_seg.seg.txt,”
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was downloaded from the Broad GDAC Firehouse database (https://
gdac.broadinstitute.org/) and analyzed by the genomic identification of
significant targets in cancer, version 2.0 (GISTIC 2.0) module on the
GenePattern website (https://cloud.genepattern.org/). DNA
methylation data of gliomas were obtained from the UCSC Xena
official website (https://xena.ucsc.edu/). The glioma somatic mutation
data were collected by the R package TCGAbiolinks and analyzed by
the R package maftools. The correlation of DNA methylation changes
and copy number variations (CNVs) with the corresponding mRNA
expression levels was calculated based on the Spearman correlation
analysis.

Gene selection and survival analysis

A glycosyltransferase gene group including 202 mRNAs was
acquired based on the Hugo Gene Nomenclature Committee
(https://www.genenames.org/data/genegroup/#!/group/424). The
differentially expressed genes (DEGs) between low-grade gliomas
(LGGs) and non-tumor samples, as well as DEGs between
glioblastomas (GBMs) and non-tumor samples, with the cutoffs
of log2|fold change (FC)|>1 and false discovery rate (FDR) < 0.05,
were downloaded from the Gene Expression Profiling Interactive
Analysis 2 (GEPIA2). Finally, 40 glycosyltransferase-associated
genes were obtained (Supplementary Table S2). To establish a
consensus GRMS with significant prediction accuracy, we
introduced 80 algorithm combinations based on 10 machine
learning algorithms. The 10 methods included random survival
forest (RSF), elastic network (Enet), least absolute shrinkage and
selection operator (Lasso), Ridge, stepwise Cox, CoxBoost, partial
least squares regression for Cox (plsRcox), supervised principal
components (SuperPC), generalized boosted regression modeling
(GBM), and survival support vector machine (survival-SVM). The
GRMS-generated process was described as follows: 1) univariate
Cox regression analysis was initially applied to explore prognosis-
associated mRNAs in the CGGA glioma cohort; 2) then,
80 combined algorithms were carried out on the candidate
mRNAs to fit predictive models based on the leave-one-out
cross-validation (LOOCV) framework in the CGGA cohort; 3) all
models were validated in five glioma datasets (TCGA-Glioma,
Kamoun, Rembrandt, Gravendeel, and the merged five cohorts);
and 4) for each model, the concordance index (C-index) was
computed, and the model with the highest average C-index was
regarded optimally and sent to the subsequent analysis. High- and
low-GRMS subgroups were identified based on the surv_cutpoint
function in the R package survminer. Kaplan–Meier (K–M) curves
were generated, and the OS difference was calculated by the log-rank
test. We further assessed the capability of the GRMS to predict the
prognosis of glioma samples using receiver operating characteristic
(ROC) curves.

Enrichment analysis

The empirical Bayesian method in the R package limma was
introduced (Ritchie et al., 2015) to calculate the log2|FC| between the
divided groups in the six cohorts. Gene Set Enrichment Analysis
(GSEA) was performed based on R package clusterProfiler (Yu et al.,

2012) on the log2|FC| value-ranked genes. In addition, the document
“h.all.v7.4. symbols.gmt” was selected as the reference.

Evaluation of tumor microenvironment
immunological characteristics

We collected 69 immunomodulators, such as the major
histocompatibility complex (MHC), receptors, chemokines,
immunostimulants, and inhibitors, from previous research
(Thorsson et al., 2018; Chen et al., 2022; Qing et al., 2022;
Zhang et al., 2022). The correlation of the mRNA expression
of immunomodulators with GRMS values was calculated based
on the Spearman correlation analysis. For further insights into
the association of the GRMS with immune infiltrates in the tumor
microenvironment (TME) of gliomas, we introduced two
methods, including the single-sample gene set enrichment
analysis (ssGSEA) and Microenvironment Cell Populations-
counter (MCP-counter) algorithms (Barbie et al., 2009; Becht
et al., 2016). Moreover, the Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) method, an indicator for the levels of tumor-
infiltrating immune cells, was used to calculate the immune
score for each glioma sample (Yoshihara et al., 2013).

Genomic alterations between GRMS
subgroups

The R package ‘maftools’ was introduced to generate a waterfall
chart of gene mutations in the TCGA glioma cohort. For analysis of
the copy number, CNVs were analyzed with GISTIC 2.0 on the
GenePattern website (https://cloud.genepattern.org/), including
copy number gain and deletion, and the human hg19 genome
sequence was used as a reference set (Mermel et al., 2011). For
analyzing CNVs on the GISTIC 2.0 website, the default parameters
were selected.

Correlation of the GRMS with anti-tumor
therapy

To estimate the potential of the GRMS in clinical applications,
we first used the subclass mapping method (SubMap)-embedded
data and human immunotherapy transcriptome data to further
explore the predictive ability of GRMS in anti-tumor
immunotherapy (Lu et al., 2019; Hoshida et al., 2007). In
addition, we downloaded the drug information from the public
database, Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/). R package pRRophetic was applied to
assess the sensitivity of patients in high- and low-GRMS
subgroups to chemotherapeutic agents.

Statistical analysis

All the statistical analyses were conducted in the R project
(v4.0.5). The Shapiro–Wilk test was used to examine the normal
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distribution of the continuous variables. In order to assess the
correlation between two continuous variables, the Spearman
correlation coefficient was used. The continuous variables
were compared using the Mann–Whitney test or t-test. The R
package ‘survival’ was introduced to perform Cox regression
analysis and Kaplan–Meier analysis. The time-dependent area
under the ROC curve (AUC) analysis was conducted by the
“timeROC” R package. The DEGs between high- and low-
GRMS subgroups were identified by the “Limma” R package,
and genes with |log2FC| and FDR<0.05 were considered to be
expression-changed. All tests were two-sided, and p < 0.05 was
considered significant.

Results

Genetic characteristics and transcriptional
variations of glycosyltransferase-related
genes

We summarized data on glycosyltransferase-related molecules
in glioma samples and non-tumor brain tissues using the
GEPIA2 website (http://gepia2.cancer-pku.cn/) (Figure 1A). As a
result, 16 DEGs were overexpressed, while 24 DEGs were
downregulated in glioma tissues, in comparison to the expression
data of DEGs in non-tumor brain samples (Figure 1B and

FIGURE 1
Expression alterations of glycosyltransferase-related molecules. (A) The Venn diagram demonstrates that 40 glycosyltransferase-associated genes
had changed expression in gliomas, including LGGs and GBMs, compared with non-tumor controls. (B) Heatmap of log2FC values of the DEGs in LGGs
andGBMs. In LGGs andGBMs, the red color represents overexpressed genes, and the green color represents lowly expressed genes. (C) Thewaterfall plot
demonstrates the somatic mutation profiles of the mutated glycosyltransferase molecules in the TCGA-glioma cohort. (D) The bubble chart
demonstrates the correlation betweenmethylation data and themRNA expression of the 40DEGs. The purple color represents a positive correlation, and
the blue color shows a negative correlation. (E) The bubble chart reveals the correlation between the CNV andmRNA expression of the 40 DEGs. The red
color indicates a positive correlation, and the blue color indicates a negative correlation. (F) Gene Ontology analysis of 40 DEGs in terms of biological
processes (BPs), cellular components (CCs), and molecular functions (MFs).
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Supplementary Table S2). Then, we obtained somatic mutation files
of the TCGA-glioma cohort based on the TCGAbiolinks package
(Colaprico et al., 2016). We showed the somatic mutations of
40 glycosyltransferase molecules using a waterfall diagram, and
UGGT1 had the highest mutation percentage (18%) (Figure 1C).
The gene methylation profiles were compared between glioma and
normal tissues, and 24 genes exhibited dysregulated methylation. In
detail, nine molecules were hypermethylated in gliomas: UDP-
GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 4
(B3GNT4), beta-1,4-galactosyltransferase 1 (B4GALT1),
B4GALT4, polypeptide N-acetylgalactosaminyltransferase 10
(GALNT10), glucosaminyl (N-acetyl) transferase 4 (GCNT4),
glycosyltransferase 1 domain containing 1 (GLT1D1), alpha-1,6-
mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B
(MGAT5B), xyloside xylosyltransferase 1 (XXYLT1), and
ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5
(ST8SIA5), and 15 molecules were hypomethylated in gliomas:
UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1),
STT3 oligosaccharyltransferase complex catalytic subunit B
(STT3B), STT3A, ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 6 (ST6GALNAC6), glycogen phosphorylase L
(PYGL), protein O-fucosyltransferase 1 (POFUT1),
phosphatidylinositol glycan anchor biosynthesis class M (PIGM),
alpha-1,6-mannosyl-glycoprotein 2-beta-
N-acetylglucosaminyltransferase (MGAT2), hyaluronan synthase
2 (HAS2), GALNT15, exostosin glycosyltransferase 2 (EXT2),
B4GALT5, beta-1,4-N-acetyl-galactosaminyltransferase 1
(B4GALNT1), chondroitin sulfate synthase 1 (CHSY1), and
ALG5 dolichyl-phosphate beta-glucosyltransferase (ALG5) (p < 0.
05, Supplementary Figures S1, S1B). In total, 11 genes demonstrated
consistent negative correlations with the corresponding mRNA in
LGGs and GBMs: B4GALNT1, B4GALT1, CHSY1, GALNT9,
LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase
(LFNG), MFNG O-fucosylpeptide 3-beta-
N-acetylglucosaminyltransferase (MFNG), PYGL, glycogen
phosphorylase, muscle associated (PYGM), ST6 beta-galactoside
alpha-2,6-sialyltransferase 1 (ST6GAL1), ST8 alpha-N-acetyl-
neuraminide alpha-2,8-sialyltransferase 3 (ST8SIA3), and
ST8SIA5 (|cor|>0.3, p < 0.05, Figure 1D and Supplementary
Table S3). In LGG samples, the expression levels of B3GNT4,
B3GNT9, HAS2, and MGAT5B were negatively correlated with
those of the relevant mRNAs, and in GBMs, the expression levels of
ALG5, B4GALT4, EXT2, exostosin like glycosyltransferase 1
(EXTL1), FUT1, GALNT10, GLT1D1, glycogenin 1 (GYG1),
HAS1, and ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 5 (ST6GALNAC5) were uniquely negatively
associated with their mRNA expression levels (|cor|>0.3, p < 0.
05, Figure 1D, and Supplementary Table S3). Finally, we confirmed
that genetic variations could affect the expressive features of
glycosyltransferase-associated DEGs. Analysis showed that the
most common gene alteration types for glycosyltransferase-
related genes were highly heterogeneous amplification and
heterozygous deletion in glioma samples. For example, five genes
in LGG and seven genes in GBMs demonstrated a close correlation
between the CNV and mRNA levels in gliomas (|cor|>0.3, p < 0.05,
Figure 1E, Supplementary Table S4, Supplementary Figures S2A,
2B), demonstrating that the expression dysregulation of DEGs was
significantly correlated with genome alterations. Enrichment

analysis on 40 DEGs demonstrated that, in GO analysis, DEGs
were involved in protein glycosyltransferase, UDP-
glycosyltransferase activity, acetylgalactosaminyltransferase
activity, and the integral component of the Golgi membrane
(Figure 1F and Supplementary Table S5).

Relationship between glycosyltransferase-
related regulators and cancer pathways

To determine how glycosyltransferase-related regulators were
involved in glioma pathophysiology, a correlation degree was
calculated between glycosyltransferase-involved regulators and
50 tumor hallmark-associated signaling pathways. The expression
levels of regulators were strongly correlated with statuses of multiple
oncogenesis-associated pathways. With the higher number of
connections with activated pathways, including
epithelial–mesenchymal transition (EMT) and the
phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase 1
(AKT)/mechanistic target of the rapamycin kinase (mTOR)
pathway, PYGL, MFNG, CHSY1, STT3A, HAS2, and
B4GALT4 demonstrated a sophisticated association with tumor
promotion in gliomas (Figures 2A, B). However, EXTL1,
ST8SIA3, and GALNT9 demonstrated a negative relation with
oncogenic pathways, suggesting a potentially protective role for
glioma progression (Figures 2A, B). Then, the correlation analysis
of genes with 10 cancer-related pathways at the protein level was
introduced by the online tool-GSCA (Liu et al., 2022). We found
that, for example, B4GALT4, PYGL, and STT3A were strongly
correlated with the high level of EMT activity (percent: 100%);
STT3A and CHSY1 were related to DNA damage activation; MFNG,
HAS2, and CHSY1 were associated with apoptosis activation; and
EXTL1 was related to the inhibition of cell cycle activity. In addition,
ST8SIA3 and GALNT9 might have an inhibitive role in cancer
promotion by negatively modulating the activity of DNA damage
and the EMT, PI3K/AKT, and mTOR pathways (Supplementary
Figure S3). Notably, a growing body of evidence suggests that the
collaboration of aberrantly glycosylate-related modulators
influences cancer progression and development (Thomas et al.,
2021). Therefore, the correlation between these 40 regulators in
gliomas was examined. These associations showed that the
interactions among the candidates might influence glioma
development. In detail, STT3A and POFUT1 demonstrated the
highest correlation degree (Figure 2C, R = 0.84), which might
demonstrate the synergistic effects of both genes to promote
glioma malignant behaviors. The ESTIMATE and MCP-counter
algorithms were introduced to detect the relationship of stromal and
immune cells with glycosyltransferase-associated modulators in
expression levels (Figure 2D). Frequent positive correlations were
identified between XXYLT1, UGGT1, STT3B, STT3A, ST6GAL1,
PYGL, POFUT1, MGAT2, MFNG, LFNG, HAS2, GYG1,
GALNT15, GALNT10, GALNT1, EXT2, EXT1, CHSY1,
B4GALT5, B4GALT4, B4GALT1, B3GNT9, ALG5, and immune-
stromal cells, as well as immune checkpoints. In contrast, ST8SIA3,
ST6GALNAC5, PYGM, MGAT5B, HAS1, GLT1D1, GCNT4,
GALNTL6, GALNT9, FUT1, EXTL1, B4GALNT3, B4GALNT1,
and B3GNT4 had a negative correlation with immune-stromal
cells and immune checkpoints (Figure 2D). Such findings
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indicated that different glycosyltransferase modification patterns
were closely associated with anti-tumor and pro-tumor immunity.

Construction of the GRMS model

Based on the expression profiles of 40 glioma-related mRNAs,
univariate Cox analysis filtered out 34 DEGs, which were
associated with glioma prognosis in the CGGA glioma cohort
(p < 0.05, Figure 2E). A consensus GRMS was developed using the
machine learning-based integrative framework at the root of the
prognostic 34 mRNAs. In the CGGA-glioma dataset, we fitted

80 kinds of prediction models via the LOOCV framework and
further calculated the C-index of each model across all validation
datasets (Figure 3A; Supplementary Table S6). Interestingly, the
optimal model was computed by the Lasso and random forest with
the highest average C-index (0.758), and this model had a leading
C-index among all validation datasets (Figure 3A). In the Lasso
regression analysis, 34 mRNAs were filtered out (Figure 3B), and
18 candidates were subjected to the identification of the GRMS
(Figure 3C). Next, the risk score-GRMS for each patient with
glioma was computed based on the expression of 18 candidate
genes by the rfsrc function in the randomForestSRC package.
Stratification of glioma samples into two groups was achieved

FIGURE 2
Immuno-oncological features and clinical significance of glycosyltransferase regulators in gliomas. (A) Network diagram displays the relationship
between the selected glycosyltransferase regulators and cancer hallmark-related pathways in gliomas. (B) The bar plot demonstrates the number of the
pathways positively and negatively correlated with glycosyltransferase regulators. (C) The heatmap demonstrates the correlation of glycosyltransferase
regulators with tumor purity, immune score, and stromal score in gliomas (upper), with immune infiltrates (middle), and with the expression levels of
immune checkpoints (lower). (D)Correlations between the expressions of each glycosyltransferase regulator in gliomas. The red color indicates a positive
correlation, and the blue color indicates a negative correlation. (E)Univariate Cox regression of the prognostic role of glycosyltransferase regulators in the
CGGA set. The heatmap demonstrates the scaled expression profiles of genes in gliomas (left), and the forest plot reveals the HR and the corresponding
95% CI of the included genes.

Frontiers in Pharmacology frontiersin.org06

Zhang and Zhou 10.3389/fphar.2023.1200795

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200795


by employing the optimal GRMS cutoff function in the R package
‘survminer’. As illustrated in Figure 3D, based on K–M plots,
samples with high GRMS had significantly shorter OS compared to
those with low GRMS (p < 0.05). Previous studies proposed that
clinical characteristics (e.g., WHO grade) and molecular
alterations (e.g., IDH mutation) could influence the prognosis
of gliomas. K–M plots demonstrated that the clinical outcomes

of samples with different clinicopathological characteristics could
still be separated according to the GRMS (p < 0.001, Figure 4A and
S4A-E), which demonstrated that the potential marker might
provide significant OS stratification for gliomas. Multivariate
Cox regression indicated that the GRMS remained a risk factor
(hazard ratio (HR) > 1.00) with statistical significance (p < 0.05)
after adjusted by available clinical and pathological features of

FIGURE 3
Prognostic significance of theGRMS. (A) The complex heatmap demonstrates a total of 80 kinds of predictionmodels via the LOOCV framework and
further calculated the C-index of each model across all the six datasets. The heatmap displays the C-index values (left). Rows represent the algorithms,
and columns represent the dataset. The bar plot demonstrates the average C-index value of the six sets. (B) In the CGGA cohort, optimal λ was
determined when the partial likelihood deviance reached theminimum value and further generated Lasso coefficients of themost useful prognostic
genes. (C) The number of trees for determining the GRMS with a minimal error and the importance of the 18 most valuable mRNAs based on the RSF
algorithm. (D) K–M curves demonstrate a significant difference in the survival rate between the high- or low-GRMS subgroups.

Frontiers in Pharmacology frontiersin.org07

Zhang and Zhou 10.3389/fphar.2023.1200795

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1200795


gliomas, such as age, gender, histology, IDH mutation status, and
chromosome 1p19q codeletion status, which suggested that the
GRMS could be identified and validated as an independent risk
factor for OS of glioma patients (Supplementary Figures S5A–F)).
ROC analysis measured the discriminative ability of the GRMS,
with 1-, 2-, 3-, 4-, and 5-year AUCs of 0.934, 0.971, 0.970, 0.975,
and 0.972 in the CGGA dataset; 0.836, 0.772, 0.743, 0.752, and
0.691 in the Kamoun dataset; 0.740, 0.787, 0.832, 0.803, and
0.785 in the Gravendeel dataset; 0.850, 0.885, 0.896, 0.865, and

0.864 in the TCGA dataset; 0.630, 0.735, 0.762, 0.764, and 0.779 in
the Rembrandt dataset; and 0.847, 0.89, 0.897, 0.898, and 0.894 in
the meta-cohort (Figures 4B, C; Supplementary Table S7). The
performance of the GRMS in predicting prognosis was also
evaluated in comparison with that of other clinical and
molecular variables. As shown in Figures 4B, C and
Supplementary Table S7, in terms of predictive accuracy, the
GRMS outperformed other variables, including age, gender,
WHO grade, IDH mutation, and chromosome 1p19q codeletion.

FIGURE 4
Stratification survival analysis of the GRMS in gliomas. (A) K–M curves of gliomas in the CGGA cohort based on the combined effects of the GRMS
with WHO grade, IDH status, 1p19q status, gender, and age on prognosis. (B, C) Time-dependent AUC values of the GRMS at 1-, 2-, 3-, 4-, and 5-year OS
in the CGGA dataset. (D) GSEA plot reveals the upregulated pathways related to the GRMS. The red color represents the positive value of log2FC of each
gene, and the green color represents the negative value of log2FC of each gene. (E) Heatmaps of log2FC values of top 20 DEGs between the GRMS
subgroups involved in the corresponding pathways. The red color represents the positive value of log2FC of each gene, and the blue color represents the
negative value of log2FC of each gene.
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Enrichment analysis

Through GSEA, we found that pro-tumor processes such as
EMT, hypoxia, and the G2M checkpoint were relatively activated in
the high-GRMS subgroup (Figure 4D; Supplementary Table S8). In

addition, an increase in GRMS levels was likely to be responsible for
the activation of the interferon-gamma (IFN-γ) response,
interleukin 2 (IL2)/signal transducer and activator of
transcription 5 (STAT5) signaling, and tumor necrosis factor a
(TNFA) signaling via nuclear factor kappa B (NFκB).

FIGURE 5
Immune landscape of the GRMS. (A) The dotplot visualizes the activation status of biological pathways between the two subgroups in the six
datasets. Rows display the enriched terms, and columns represent the datasets. (B) Complex heatmap of correlation analysis of immune scores with
GRMS groups. The red and blue colors indicate the positive and negative correlation coefficients, respectively. The yellow color represents the -log10-
transformed p-value. The asterisks indicate the statistically significant p-values calculated by Spearman correlation analysis. (C) The heatmap
demonstrates the immune infiltrates calculated using the MCP-counter, ESTIMATE methods, and expression differences of immune checkpoints
between the two GRMS subgroups. All the data were z-score normalized from −2 to 2. (D) Correlations between the GRMS and immune infiltrates
calculated using the MCP-counter, ESTIMATE methods and the expression levels of immune checkpoints. (E) Multi-omics analysis of the differences in
immune checkpoints between the GRMS subgroups in the TCGA dataset. (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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Furthermore, the top 20 dysregulated genes (FDR<0.05, |log2FC|>1)
were displayed to validate the GSEA findings. We found that TIMP
metallopeptidase inhibitor 1 (TIMP1), COL1A1, collagen type III
alpha 1 chain (COL3A1), and insulin-like growth factor binding
protein 2 (IGFBP2) were significantly upregulated in the EMT
process. Cell division cycle 20 (CDC20) and ubiquitin-
conjugating enzyme E2 C (UBE2C) were involved in the
upregulation of the G2M checkpoint. The overexpression of
vascular endothelial growth factor A (VEGFA) and serpin family
E member 1 (SERPINE1) might contribute to the increase of TNFA
signaling via NFκB and hypoxia in the tumor metabolism, and the
upregulated expression of secreted phosphoprotein 1 (SPP1) and
C-X-C motif chemokine ligand 10 (CXCL10) were related to the
activation of the IL2/STAT5 response; the increase in the major
histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1), the
major histocompatibility complex, class II, DM alpha (HLA-DMA),
and C-C motif chemokine ligand 5 (CCL5) was associated with the
upregulation of the IFN-γ response (Figure 4E). Finally, the GSEA
on the remaining five sets also confirmed the results from the CGGA
cohort (Figure 5A).

Differences in GIME characteristics between
GRMS subgroups

The purpose of the multi-omics analysis was to further explore
the relationship between the immune response and the established
GRMS. According to Danaher and colleagues’ immune infiltration
data, we examined the distribution of immune cells between the
high- and low-GRMS subgroups in detail. The high-GRMS group
demonstrated a higher abundance of TILs, such as macrophages and
CD8 T cells (p < 0.05; Supplementary Figure S7A), and
demonstrated a strong correlation with the level of cytotoxic cells
(cor = 0.54; p < 0.001), macrophages (cor = 0.58; p < 0.001), and
exhausted CD8+ T cells (cor = 0.59; p < 0.001) (Supplementary
Figure S7B). Immune signature scores were calculated using the
ssGSEA method to validate the correlation between the GRMS and
immune-infiltrating patterns. The boxplots revealed the high-
immune infiltration group was significantly enriched in cases
from the high-GRMS group (Supplementary Figures S8A–F).
Furthermore, strong correlation levels between GRMS and glioma
GIME contents were also observed, as displayed in Figure 5B, for
example, gamma delta (γδ) T cell (TCGA, cor = 0.79; Rembrandt,
cor = 0.74; meta-cohort, cor = 0.73; CGGA, cor = 0.71; Kamoun,
cor = 0.65; and Gravendeel, cor = 0.56, p < 0.001, respectively),
natural killer (NK) T cell (TCGA, cor = 0.79; Rembrandt, cor = 0.68;
meta-cohort, cor = 0.67; CGGA, cor = 0.63; Kamoun, cor = 0.61; and
Gravendeel, cor = 0.59, p < 0.001, respectively), and myeloid-derived
suppressor cells (MDSCs) (TCGA, cor = 0.67; Rembrandt, cor =
0.55; meta-cohort, cor = 0.53; CGGA, cor = 0.53; Kamoun, cor =
0.52; and Gravendeel, cor = 0.39, p < 0.001, respectively). In
addition, the GIME compositions from six independent glioma
datasets with publicly available gene expression profiles were
analyzed using the MCP-counter, a gene-expression-based TME
deconvolution tool (Becht et al., 2016), and the ESTIMATE method.
We compared the GIME distribution across different GRMS
subgroups and found that the GIME composites differed
significantly (Figure 5C). The levels of T cells, CD8+ T cells,

cytotoxic lymphocytes, B lineage, NK cells, monocytic lineage,
myeloid dendritic cells, neutrophils, and endothelial cells were
significantly higher in the high-GRMS group and lower in the
low-GRMS group (Figure 5C). A similar trend was obtained in
the immune score calculated using the ESTIMATE algorithm. The
expressions of immune checkpoint-related genes (Figure 5C), such
as genes encoding programmed cell death 1 (PDCD1), programmed
cell death 1 ligand 2 (PDCD1LG2), CTLA4, lymphocyte activating 3
(LAG3), and hepatitis A virus cellular receptor 2 (HAVCR2), were
relatively higher in the high-GRMS group followed by the low-
GRMS group. The aforementioned findings were consistent across
the TCGA, meta-, Rembrandt, and Gravendeel cohorts, except the
Kamoun dataset (Supplementary Figures S9A–E). In the Kamoun
cohort, two checkpoints, namely, CD274 and HAVCR2, were
upregulated in the high-GRMS group. Spearman correlation
analysis revealed the consistent positive relation of the GRMS
with monocytic linage infiltrates in the six enrolled sets (CGGA:
cor = 0.37, p < 0.001; Gravendeel: cor = 0.30, p < 0.001; Rembrandt:
cor = 0.22, p < 0.01; TCGA: cor = 0.33, p < 0.001; meta-cohort: cor =
0.35, p < 0.001; and Kamoun: cor = 0.24, p < 0.01). Moreover, except
the Rembrandt set, as to the immune checkpoints, the estimated
GRMS demonstrated a strong correlation with CD274 expression
level in the CGGA set (cor = 0.39, p < 0.001), Gravendeel set (cor =
0.45, p < 0.001), TCGA set (cor = 0.54, p < 0.001), meta-cohort
(cor = 0.41, p < 0.001), and Kamoun (cor = 0.35, p < 0.01), which
indicated that patients in the high-GRMS group might respond to
anti-tumor immunotherapy (Supplementary Figures S10A–E).

Regulation of immunomodulators

We examined immunomodulator (IM) gene expression, somatic
copy number alterations (SCNAs), and expression control via
epigenetic and miRNA mechanisms. The gene expression of IMs
(Figure 5D) varied across risk subtypes, and IM expression largely
segregated tumors by immune subtypes, perhaps indicative of their
role in shaping the TME. Genes with significant differences between
subtypes, including CXCL10, CD80, CCL5, and the HLA family,
were highly expressed in the high-risk subgroup (p < 0.001). DNA
methylation of many IM genes, e.g., toll-like receptor 4 (TLR4),
IL10, PDCD1LG2, endothelin receptor type B (EDNRB),
TNFRSF18, and integrin subunit beta 2 (ITGB2), was observed
in the high-GRMS group, while IL10, ITGB2, CD28, PDCD1, HLA-
B, CD276, VEGFA, PDCD1LG2, EDNRB, perforin 1 (PRF1),
CD274, and CD40 inversely correlated with gene expression,
suggesting epigenetic silencing (Figure 5D).

Potential of the GRMS as an effective
indicator for immunotherapy

Since the development of the GRMS was immune-related, we
assumed that there were differences in immune characteristics and
immunotherapeutic effects at different levels of the GRMS. Tumor
mutation burden (TMB) plays a crucial role in clinical practice, and
an intrinsic relationship was detected between TMB and GRMS.
TMB values were markedly increased in patients with a higher
GRMS, as shown in Figure 6A (p < 0.001). Using Spearman
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correlation analysis, the GRMS was positively correlated with the
TMB value of gliomas (cor = 0.51, p < 0.001, Figure 6B), indicating
gliomas with a relatively high GRMS may be responsive to anti-
tumor immunotherapy. Given the strong association between TMB
and the GRMS, we calculated the synergistic impact of both variates
on glioma outcomes. The stratification analysis demonstrated that
even when TMB values interfered, the prognostic signature
remained an independent predictor for glioma prognosis (log-
rank test, p < 0.001, Figure 6C). Therefore, these findings
revealed that the GRMS might serve as a potential prognosis
predictor independent of TMB and as an effective tool to screen
patients who will benefit from immunotherapy. The submap

algorithm was used to predict the response of high- and low-
GRMS groups to anti-PD1 and anti-CTLA4 immunotherapy. We
found that the high-GRMS group might derive greater benefits from
anti-PD1 therapy (Bonferroni corrected p = 0.013, Figure 6D). For
further investigation into the association of the GRMS with
immunotherapy, OS and progression-free survival (PFS) were
compared between the two risk subgroups. We found that the
gliomas with higher GRMS values demonstrated better outcomes
in PFS and OS (Figure 6E, and Supplementary Figure S11A). In
addition, the GRMS could predict the PFS, independent of age,
gender, and immunotherapeutic response, calculated using
multivariate Cox regression analysis (Figure 6F). However,

FIGURE 6
Predictive value of the GRMS in immunotherapy response. (A) The violin plot demonstrates that there were significant TMB differences after being
grouped by GRMS values in gliomas. (B) The dotplot demonstrates the close correlation of GRMS values with TMB values. (C) The K–Mplot of gliomas; OS
stratified by TMB and GRMS values. (D) The submap algorithm predicts the probability of anti-PD1 and anti-CTLA4 immunotherapy response in high- and
low-GRMS groups. (E) The K–M plot demonstrates a significant difference in the survival rate between a high or low GRMS in the immunotherapy-
applied set. (F)Multivariate Cox analysis reveals that the GRMS signature was an independent predictor for STAD patients after receiving immunotherapy.
(G) The stacked histogram displays the difference in anti-tumor immunotherapeutic responsiveness between a high and low GRMS. (H) Heatmaps
demonstrate the differences in IC50 values of drugs between the high- and low-GRMS groups. (I) Correlation of IC50 values of drugs with GRMS values in
the six datasets. Rows display the datasets, and columns represent the different drugs. The red and blue colors indicate the positive and negative
correlation coefficients, respectively (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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consistent findings of multivariate Cox analysis were not found in
predicting OS of gliomas (Supplementary Figure S11B). As shown in
Figure 6G, patients with a higher GRMS value were more likely to
benefit from immune checkpoint treatment.

GRMS predicts the response to anti-tumor
adjuvant therapy

A correlation analysis was conducted between
glycosyltransferase-related mRNAs and drug sensitivity. The data
showed that most drugs had a synergistic effect with genes, such as
PYGL, HAS2, GALNT10, EXT2, EXT1, B4GALT5, B4GALT4,

B4GALT1, and B3GNT9, while ST8SIA3, PYGM, MFNG,
GLT1D1, and ALG5 might have a strong antagonistic effect on
the drugs presented in Supplementary Figure S11C. In addition, the
R package “Ridge” was introduced to assess the IC50 value of drugs
on the expression data of RNA-seq samples. The drugs that were
common among the six sets with statistical significance were selected
for further analysis. The IC50 values indicated that PD-0332991
(which targets cyclin-dependent kinase 4/6, CDK4/6), axitinib (an
inhibitor of VEGFR), BIBW2992 (an irreversible inhibitor of the
ErbB family of tyrosine kinases), BIRB0796 (an inhibitor of
mitogen-activated protein kinase, MAPK), and gefitinib (an
inhibitor of epidermal growth factor receptor, EGFR) might be
alternatives in treating gliomas in the high-risk group (Figure 6H).

FIGURE 7
Correlation between the GRMS and genomic variants. The waterfall plots of gene mutation frequency in high- (A) and low- (B) GRMS groups.
Composite copy number profiles in gliomas with gains in red, losses in blue, and gray highlighting differences in high- (C) and low- (D) GRMS groups.
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The Spearman analysis further validated the positive correlation of
GRMS values with IC50 values of PD-0332991, axitinib, BIBW2992,
BIRB0796, and gefitinib (p < 0.05, respectively, Figure 6I). Adjuvant
radiotherapy (ART) and adjuvant chemotherapy (ACT) are
currently the preferred treatments for gliomas and have
significant anti-glioma activity (Rao et al., 2017). Therefore, we
assessed whether the application of adjuvant therapy could affect the
ability of the GRMS to predict the clinical outcomes of gliomas. The
survival advantage was observed in patients treated with ART or
ACT who had low GRMS (p < 0.001, Supplementary Figures
S11D, E).

Correlation between GIME features and the
cancer somatic genome

The somatic variations in the TCGA glioma cohort between
GRMS subgroups were analyzed using the maftools package. The
top 20 altered genes are shown in Figures 7A, B. In the high-GRMS
group, tumor protein P53 (TP53) demonstrated the highest
mutation percentage (30%). In the low-GRMS group,
IDH1 showed the highest mutational frequency (83%). By
GISTIC 2.0 analysis, we found that there were significant
aberrations in total CNV levels for patients in the two groups.
For patients in the high-GRMS group, copy number deletion was
found mainly on 1p, 2q, 6q, 9p, and 10q. Copy number gain was
observed predominantly on chromosomes 7p, 12q, and 19p
(Figure 7C). Among patients in the high-GRMS group, copy
number deletion was found to be mainly located at 1p, 4q, 9p,
and 10q. Copy number amplification was found to be mainly located
at 7p and 12q (Figure 7D). In addition, compared with the low-risk
group, focal amplification peaks were observed for well-
characterized cancer-related genes HAS2 (8q24.13) and PDGFRA
(4q12), which might be the reason for the poor outcomes in the
high-risk group. In summary, the CNV levels in the two subgroups
were significantly distinct.

Discussion

Among the cancers of the central nervous system, GBMs have
the most aggressive subtypes, characterized by poor outcomes and
ineffective treatments (Gusyatiner andHegi, 2018). To overcome the
significant heterogeneity in gliomas, molecular profiles have been
used to identify the homogeneous subtypes (Nicholson and Fine,
2021). The importance of glycosyltransferase in tumor immunity
has become increasingly clear, but the mechanisms by which
glycosyltransferase molecules influence glioma prognosis remain
obscure (Rudd et al., 2001; Li X. et al., 2020).

Here, we analyzed the genetic and expressive characteristics of
40 glycosyltransferase-related DEGs and confirmed that the
imbalance in marker expression might be associated with the
dysregulation of genome variation. Our research established a
comprehensive computational method to identify a prognostic
GRMS with significant stability and robustness through an
integrated analysis of 2,030 glioma cases from publicly available
datasets. First, glycosyltransferase-associated molecules, which were
differentially expressed between glioma and normal brain tissues,

were screened out. Second, 80 combinations of 10 machine learning
methods were introduced, and the combination of Lasso and
random forest was identified as the optimal one with the
maximum c-index value, which remarkably reduced the
dimensionality of variables and contributed to an accurate
mathematical statistical model. Among the 18 most valuable
mRNAs identified for the GRMS, one mRNA has been reported
to be related to gliomas. The overexpression of PYGL in GBM tissues
was associated with poor survival. Knockdown of PYGL decreased
the growth and survival of the GBM cell line (Zois et al., 2022). Our
comprehensive analyses revealed that the GRMS was a hazardous
biomarker for the prognosis of glioma patients, consistent with
previous findings. The calculated AUC values identified that the
GRMS could accurately predict 1-, 2-, 3-, 4-, and 5-year clinical
outcomes of gliomas. Based on the stability assessment of the GRMS
across the six datasets, it could be concluded that the GRMS has
significant potential as an independent biomarker for clinical
applications.

By promoting the metabolism of the glioma cells, metabolic
plasticity not only promoted energy generation and substrate
synthesis but also induced immune evasion (Ganapathy-
Kanniappan, 2017; Venneti and Thompson, 2017). For example,
GIME remodeling, including glioma-associated microglia/
macrophages (GAMMs), T cells, NK cells, and myeloid-derived
suppressor cells (MDSCs), could lead to glioma progression and
development instead of surveillance and improving the prognosis
(Qiu et al., 2021). It has been established that reprogramming the
GIME could influence the treatment of brain tumors and increase the
effectiveness of immunotherapy (Gieryng et al., 2017). In the present
research, there was a positive correlation between the GRMS and the
infiltration level of immune cells, and significant differences in clinical
characteristics and infiltration levels of macrophages and CD8+ T cells
were observed between different GRMS groups. In addition, the GRMS
was reliable in comprehensively assessing immune-associated
molecules. For example, the GRMS displayed a positive association
with the expression of immune checkpoints, such as HAVCR2 and
CD274. As a ligand for the inhibitory receptor PDCD1, CD274 could
mediate anti-tumor immune escape by regulating the activation
threshold of T cells and limiting T-cell effector responses (Jiang
et al., 2019). Furthermore, it has been demonstrated that
HAVCR2 is an inhibitory receptor expressed on innate immunity
cells, such as macrophages and dendritic cells, as well as on the
T cells producing IFN-g and FoxP3+ Treg cells. It suppresses the
immune response when the ligand interacts with HAVCR2 (Das et al.,
2017). Therefore, we hypothesized that the GRMS might be related to
GIME reprograming. It is also recognized that the crucial feature of an
inflamed GIME is the upregulation of immunoinhibitory checkpoints
(Wu et al., 2019). Here, we confirmed that the immune checkpoints
were remarkably overexpressed in the high-GRMS subgroup, which
might be due to the elevated infiltrates of immune cells, demonstrating
that gliomas with high GRMS might have increased sensitivity to anti-
tumor immunotherapy. Recent research reported that the inhibition of
immune checkpoints could contribute to the suppression of tumor
growth by restoring the cytotoxicity of T lymphocytes (Barry and
Bleackley, 2002; Núñez Abad et al., 2022). Immunotherapeutic
strategies with monoclonal antibodies have been confirmed to be
clinically proven to be effective, with significant responses and
acceptable side effects in several types of tumors, such as muscle-
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invasive bladder cancer (MIBC), melanoma, and non-small-cell lung
cancer (NSCLC) (Schmid-Bindert and Jiang, 2015; Tsai and Daud,
2015; Bellmunt et al., 2017). However, the sensitivity of gliomas to
immunotherapy differs remarkably, with a few subjects obtaining
complete remission (CR) and others demonstrating no or low
clinical benefits (Zhao et al., 2022). In the present research, the
GRMS was validated to be significantly associated with the response
of gliomas to immune checkpoint inhibitor (ICI) therapy through the
submap algorithm; that is, the GRMS could stratify ICI-treated patients
into responder and non-responder subgroups. A high-GRMS value
implied elevated response and sensitivity to ICI therapy, which
demonstrated that the clinical application of the GRMS might
contribute to the process of clinical decision making for the
treatment of gliomas. Research has shown that there is a connection
between different glycosyltransferase subtypes and variations in mRNA
transcriptomes, specifically related to immune-related biological
pathways and drug responses. In the present research, TNFA via the
NFκB signaling pathway, the IFN-γ response, hypoxia, the G2M
checkpoint, and the EMT process using the GSEA were positively
correlated with the GRMS. TNF α, also referred to as tumor necrosis
factor, is a cytokine that possesses the ability to directly eliminate tumor
cells, elevated expression levels of inflammatory signatures, and innate
immunity (Pegoretti et al., 2018). Recent research suggests that selective
reduction of the TNF cytotoxicity threshold could increase the
susceptibility of tumors to immunotherapy, which might contribute
to the sensitivity to immunotherapeutic interventions for patients with
high GRMS (Vredevoogd et al., 2019). IFN-γ is a cytokine
predominantly secreted by various immune cells, encompassing NK
cells and CD8 cytotoxic T lymphocytes (CTLs). The upregulated IFN-γ
response could activate the JAK–STAT signaling pathway and promote
the expression of chemokines and antigen-presenting molecules
(including MHC molecules) (Ivashkiv, 2018). In addition, the
increased IFN-γ response could also stimulate a type I immune
response characterized by M1 macrophage polarization (Glass and
Natoli, 2016). Recent reports demonstrate that M1 phenotypic
macrophage activation is characterized by the upregulation of
inducible nitric oxide synthase (iNOS) and interleukins IL6 or
IL12 and the enhancement of the Th1 immune response (Mills
et al., 2000; Stout et al., 2005). Our findings demonstrated that the
samples with high-GRMS values exhibited activation of the IFN-γ
response, which might be responsible for the samples with high-GRMS
values being sensitive to immunotherapy. The upregulated and/or
promoted processes of hypoxia, the G2M checkpoint, the EMT
process, and the features of tumors in the high-GRMS subgroup
might be the reasons for the disadvantageous outcomes of gliomas
(Liu et al., 2019; Liu et al., 2020).

The positive correlation between glycosyltransferase and tumor
immunity has been recognized (Dusoswa et al., 2020; JalaliMotlagh et al.,
2021). Glycosyltransferase alterations could change the nature of the
TME and reverse adverse characteristics of TME cells, altering a “cold
tumor” into a “hot tumor.” For example, the changed glycosyltransferase
motifs onMucin 1 (MUC1) could promote cancer immune surveillance
by interacting with CD169, which enhances macrophage activation after
binding to sialylated MUC1 and promotes tumor growth (Reily et al.,
2019). Moreover, a decrease in the levels of UDP-GlcNAc and
consequently in the levels of complex branched N-glycans promotes
proinflammatory T helper 17 over anti-inflammatory-induced
regulatory T-cell differentiation (Araujo et al., 2017). Therefore, it is

imperative to classify tumors according to their glycosyltransferase
phenotypes, especially considering glycosyltransferase’s role in the
immune regulation of gliomas.

The effectiveness of immunotherapeutic treatment relies on the
infiltrates of CD8+ T cells in tumor nests, and ICIs are more effective
when combined with therapy that increases the number of CD8+

T cells (Yang et al., 2021). In this research, using the ssGSEA and
ESTIMATE algorithms, we found that the CD8+ T-cell infiltration
level was positively correlated with the GRMS value. Samples in the
high-GRMS group demonstrated higher levels of infiltrating CD8+

T cells according to deconvolution methods and exhibited higher
levels of markers related to co-stimulators, HLA, interferons, and
chemokines. Our study also found a remarkable correlation between
the GRMS and immune checkpoint expression levels, and validated
samples with higher GRMS had higher checkpoint molecule
expression. It has been recognized that patients with an
overexpression of the PD-L1 checkpoint generally demonstrate
significant sensitivity to immunotherapy (Sánchez-Magraner
et al., 2020). Therefore, we hypothesized that the combination of
ICIs and glycosyltransferase modifiers might have tremendous
potential in contributing to the development of new therapeutic
strategy regimes. Previous studies have confirmed that
glycosyltransferase-related genes play an important role in
chemotherapy (Mereiter et al., 2019). Based on the drug
sensitivity analysis by the GDSC database and CGGA set, it
might be validated that the GRMS could help guide optimal
chemotherapy treatment. In clinical practice, the GRMS might be
used to assess the expressive patterns of glycosyltransferase-related
makers and the corresponding infiltrate features of GIME in gliomas
to predict the outcomes of objects and guide the clinical decision-
making process.

It is noteworthy that the GRMS has clinical significance in gliomas,
but there are still some limitations. First, all datasets enrolled in the
present research were obtained from retrospective studies conducted in
a single center. In order to validate the GRMS, multicenter prospective
research should be carried out. Second, further investigation is needed
to determine the underlying mechanisms through which valuable
glycosyltransferase-related mRNAs impact the GIME and
immunotherapeutic responsiveness. Finally, more immunotherapy
cohorts are urgently required to validate the response to anti-tumor
immunotherapy in gliomas.

Conclusion

We comprehensively analyzed glycosyltransferase-related
mRNAs in gliomas and established a prognostic marker named
the GRMS. The calculated GRMS might be a suitable candidate
signature for assessing clinical prognosis and has significant
potential to accelerate the development of antitumor treatment
strategies for gliomas.
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