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Introduction: Exploring the potential efficacy of a drug is a valid approach for drug
development with shorter development times and lower costs. Recently, several
computational drug repositioning methods have been introduced to learn multi-
features for potential association prediction. However, fully leveraging the vast
amount of information in the scientific literature to enhance drug-disease
association prediction is a great challenge.

Methods: We constructed a drug-disease association prediction method called
Literature BasedMulti-Feature Fusion (LBMFF), which effectively integrated known
drugs, diseases, side effects and target associations from public databases as well
as literature semantic features. Specifically, a pre-training and fine-tuning BERT
model was introduced to extract literature semantic information for similarity
assessment. Then, we revealed drug and disease embeddings from the
constructed fusion similarity matrix by a graph convolutional network with an
attention mechanism.

Results: LBMFF achieved superior performance in drug-disease association
prediction with an AUC value of 0.8818 and an AUPR value of 0.5916.

Discussion: LBMFF achieved relative improvements of 31.67% and 16.09%,
respectively, over the second-best results, compared to single feature methods
and seven existing state-of-the-art prediction methods on the same test datasets.
Meanwhile, case studies have verified that LBMFF can discover new associations to
accelerate drug development. The proposed benchmark dataset and source code
are available at: https://github.com/kang-hongyu/LBMFF.
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1 Introduction

In recent decades, drug discovery techniques and biological systems have been
intensively studied by multidisciplinary researchers. However, drug development remains
a time-consuming, costly and labor-intensive process. It normally requires more than one to
two billion dollars and an average of about 10–15 years to discover a new drug (Berdigaliyev
and Aljofan, 2020). Approximately 90% of experimental candidates fail to pass the clinical
trials (Mullard, 2022; Sun et al., 2022), owing to the unpredictable adverse reactions from
newmolecular structures. Drug repositioning (commonly known as “reuse of old drugs”) is a
strategy for identifying new uses for approved or investigational drugs that are outside the
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scope of the original medical indications (Pushpakom et al., 2019;
Schcolnik-Cabrera and Juárez-López, 2021). It can facilitate the drug
development process, shorten the required time to 6.5 years and
reduce the cost to 300 million dollars (Nosengo, 2016; Breckenridge
and Jacob, 2019). From a drug safety perspective, repositioning drug
candidates that have already passed early-stage clinical trials can
sufficiently reduce the risk of failure.

In recent years, computational drug repositioning methods (Wu
et al., 2013; Chan et al., 2019; Deng et al., 2022) have attracted
continuous attention with explosive growth of large-scale genomic
and phenotypic data. A variety of studies have confirmed the
availability and desirable performances of computational drug
repositioning (Giuliani et al., 2018; Piplani et al., 2021;
Firoozbakht et al., 2022; Huang et al., 2022). Previous typical
computational approaches include, but are not limited to, the
following three: complex network methods, machine learning
methods, and deep learning methods. In addition, knowledge
organization methods have recently been gradually applied to the
study of drug-disease relationship prediction.

Complex network methods refer to linking drugs to diseases
through heterogeneous networks construction (Holzinger and
Ritchie, 2012) with high-throughput omics data calculation (e.g.,
similarity calculation (Meng et al., 2021)). Network-based
algorithms (e.g., random walk) have been demonstrated
effective in drug-disease association prediction based on the
topological characteristics in these heterogeneous networks.
Wu et al. (2013) considered not only gene features, but also
pathway, phenotype, biological process and other features in
KEGG (2023) database to build a weighted disease-drug
heterogeneous network, and predicted all possible drug-disease
pairs through a clustering algorithm; Cami et al. (2013)
constructed Predictive Pharmacointeraction Networks (PPINs)
together with intrinsic and taxonomic properties of drugs and
adverse events for drug-disease association prediction. Not
limited to binary networks, Wang et al. (2014) calculated
similarities through an iterative algorithm based on a three-
layer heterogeneous graph of drugs, diseases and targets called
TL-HGBI. Luo et al. (2016) first integrated comprehensive
similarities of drugs and diseases and then identified potential
indications of drugs with a double random walk method
(MBIRW). In the follow-up study (Luo et al., 2019), they
added phenotypes and genes into an upgraded drug
repositioning recommendation system (DRRS) to predict
novel drug indications with improved accuracy.

Machine learning methods have been established techniques in
drug repositioning in recent years, which can be divided into two
steps: first extracting biological features of drugs and diseases and
then predicting novel drug-disease associations. Gottlieb et al.
(2011) integrated multiple drug and disease similarity
measurements and sorted predicted drug-disease pairs by logistic
regression algorithm, which can be applied to large-scale data.
Support vector machine (Wang et al., 2013) and random forest
(Kim et al., 2019) are also considered brilliant methods for drug-
disease association predictions and achieved good performance in
early studies. Napolitano et al. (2013) reported a joint kernel based
on drug-related data, such as gene expression, chemical structure
and target information, in support vector machine classification to
predict drug repositioning. Machine learning approaches are

effective in integrating prior information. However, its biological
interpretability is limited (Shah et al., 2021) and the performance is
constrained by the sparsity of biological interactions. Also, due to the
complexity of matrix operations, processing large-scale data is
highly challenging.

The remarkable rise of deep learning has led to an
overwhelming amount of new research. Long Short-Term
Memory (Lyu et al., 2017), Bidirectional Encoder
Representation from Transformers (Lee et al., 2020) and
Graph Neural Network have provided significant
improvements in biomedical information retrieval (Sun et al.,
2021), question and answer systems (Wen et al., 2020) and image
recognition (Vellal et al., 2021). In addition, several studies have
described the use of these techniques for drug discovery. Zitnik
et al. (2018) presented a graph convolution neural network to
handle multimodal graphs with a large number of edge types
including drug, protein, target and side effect. Fatehifar amd
Karshenas (2012) proposed a BI-LSTM model and Pang et al.
(2022) proposed a novel attention-mechanism-based
multidimensional feature encoder to extract the drug-drug
interaction, which performed better than some state-of-the-
art methods. Li et al. (2020) acquired potential feature
representations from miRNA and disease similarity network
with graph convolutional network and developed a Neural
Inductive Matrix Completion method for miRNA-disease
association prediction. Graph Neural Network (GNN) (2023)
performs particularly well in handling comprehensive
information and heterogeneous semantically-rich graphs. The
existing GNN processing methods (Wu et al., 2021) contain
Graph Convolutional Network, Graph Sample and Aggregate,
Graph Attention Network, etc. With the rapid accumulation of
biological network data, GNN has become an effective tool in
bioinformatics tasks (Zhang et al., 2021). Taking drug
development as an example, it has been proven a practical
way of achieving greater efficiency in drug attribute
prediction (Gu et al., 2021), drug side effect prediction
(Zitnik et al., 2018), relationship extraction (Al-Sabri et al.,
2022), etc.

Ontology (Bandrowski et al., 2016) and knowledge graph
(Nicholson and Greene, 2020) can provide structured,
computable organization and management of large amounts of
data. Several biomedical ontologies have been proven useful in
biomedical text mining studies (Shen and Lee, 2016; Kafkas and
Hoehndorf, 2019), including Disease Ontology (2023), Human
Phenotype Ontology (HPO) (2023), UMLS, etc. Different
ontologies can also be constructed based on their research
objectives. Brown and Patel (2017) mined drug-drug links by
mapping drug terminology to standardized terms from MeSH.
Karim et al. (2019) extracted attribute and relationship
embedding from a drug-adverse reaction knowledge graph they
developed to infer drug-drug interactions according to biomedical
databases and literature. Moon et al. (2021) constructed a knowledge
graph to learn drug-disease-target embedding to inform drug
repurposing hypotheses.

In addition to the drug-disease associations proved by clinical
practice, physicians and researchers have conducted further studies
and explorations into new drug combinations and drug indications.
They detailed the entire process and reported it in a timely manner
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in the form of scientific literature. Compared with public databases
such as Drugbank (2023), PharmGKB (2023), and MeSH (2023),
etc., biomedical literature contains not only a massive number of
biomedical entities (Chen et al., 2020), such as drugs, indications,
side effects, and targets, but also associations have been discovered
recently. Considering the vast amount of semantic information
contained in scientific literature, current approaches need to
improve the integration ability of validated relational features in
public databases presented as structured data along with the newly
discovered relational features and semantic features s in biomedical
scientific literature.

To overcome the mentioned limitation, we proposed a novel
drug-disease association prediction method called Literature Based
Multi-Feature Fusion (LBMFF). LBMFF not only integrated
multiple heterogeneous biological interactions (drug, disease, side
effect and target), but also extracted semantic embeddings and
contextual information from large-scale of scientific literature.
Specifically, we constructed drug-drug similarities and disease-
disease similarities based on multi-feature and associations from
public databases and PubMed literature. Then, a GCN with an
attention mechanism was employed to capture structural
information from a comprehensive similarity matrix and known
drug-disease associations. LBMFF achieved optimal results
compared to single-feature methods, which demonstrated the
significance of literature information and feature fusion. It also
showed superior performance in drug-disease association prediction
compared to 7 state-of-the-art methods.

2 Materials and methods

2.1 Dataset

In our study, the benchmark dataset downloaded from Zhang
et al. (2018), contains 269 drugs, 598 diseases and 18,416 drug-
disease associations originated from Comparative Toxicology
Database (CTD). What’s more, we extracted drug chemical
structures (represented by SMILES) and drug-target associations
from Drugbank, drug-side effect associations from SIDER (2023)
and diseases tree numbers from MeSH as multi-features for drug-
drug similarities and disease-disease similarities calculation. Overall,
in addition to the raw data from CTD, we extended the benchmark
dataset to 269 drug SMILES sequences, 3,797 side effects and
43,508 drug-side effect associations, 266 targets and 722 drug-
target associations.

More importantly, we searched and selected 673,665 full-text
scientific literature, which titles or abstracts contained the drugs or
diseases from the benchmark dataset. This vast literature serves as a
corpus for the semantic similarity computation section based on a
pre-training and fine-tuning BERT model.

Furthermore, we introduced a dataset from Wang et al. (2014),
named TL-HGBI, for method portability validation. It contains
963 drugs, 1,263 diseases and 54,921 drug-disease associations
originating from CTD. Similarly, we also collected drug SMILES
sequences, disease MeSH tree numbers, drug-side effect
associations, drug-target associations and scientific literature.

FIGURE 1
The workflow of LBMFF.
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2.2 Architecture of LBMFF

The LBMFF combined embeddings in drug-disease-target-side
effect networks from public databases including CTD, Drugbank,
SIDER and MeSH. What’s more, semantic features from a vast
amount of scientific literature were added to LBMFF as an improved
approach. The workflow of LBMFF was briefly shown in Figure 1.

• Association and Semantic Feature Extraction. We integrated
several measurements for drug and disease similarities
computing, including drug SMILES sequences, disease
MeSH tree numbers, drug-side effect associations, drug-
target associations, and literature semantic information. A
Pre-training and fine-tuning BERT model was introduced for
semantic information recognition and understanding.

• Similarity Calculation and Feature Representation. For feature
fusion and similarity computing, an adjusted weight for each
measurement was applied to achieve optimal performance by
a step of 0.01. We then constructed a feature matrix based on
the drug fusion similarity, disease fusion similarity and known
drug-disease associations.

• Association Prediction. We applied two GCN layers to learn
the embeddings of drugs and diseases with an attention
mechanism. An inner product decoder was used to
discover unknown drug-disease associations.

2.3 Feature extraction

2.3.1 Drug chemical structure
Drugs can usually be characterized by biological or chemical

descriptors, that is, molecular fingerprints. Molecular fingerprints are
ways of encoding the structure of amolecule. Themost common type of
fingerprint is a series of binary digits (bits) that represent the presence or
absence of particular substructures in the molecule (Cao et al., 2012). In
this study, we adopt the drug SMILES sequences and generated their
Morgan fingerprint to capture the molecular substructure and to
calculate the chemical structure drug-drug similarities.

Based on this principle, we convert a drug into an n-dimensional
fingerprint vector X � [x1, x2, . . . . . . , xn], where n is the number of
all substructures. If there is a substructure in the drug, xn will be 1,
otherwise, it will be 0. In this section, we adopt the Jaccard index to
calculate drug-drug similarity:

Scij � Xi ∩ Xj

∣∣∣∣ ∣∣∣∣/ Xi ∪ Xj

∣∣∣∣ ∣∣∣∣ (1)

where Scij is the similarity between drug ri and drug rj, Xi is an
n-dimensional vector of drug ri, Xj is an n-dimensional vector of
drug rj.

2.3.2 Drug-side effect interaction
From the view of “if a drug has the same side effects, it may have the

same indication”, in 2008, Campillos et al. (2008) proposed amethod to
calculate drug similarity based on drug-side effect interaction, which
has been widely used in subsequent studies. A k-dimensional drug
vector Y � [y1, y2, . . . . . . , yk] can be generated based on the known
drug-side effect interaction from SIDER, where k is the number of
related side effects. If there is an interaction between the drug and side

effects, yk will be 1, otherwise, it will be 0. We also adopt the Jaccard
index to calculate drug-drug similarity Ssij on this dimension.

2.3.3 Drug-target interaction
Similarly, drug-target interactions are also a valid approach for drug

similarity calculations.We extract this information fromDrugbank and
adopt the Jaccard index to measure drug-drug similarity Stij.

2.3.4 MeSH semantic attribute for disease
The Medical Subject Headings (MeSH) thesaurus is a controlled

and hierarchically-organized vocabulary produced by the National
Library of Medicine. Wang et al. (2010) proposed a disease semantic
similarity method by usingMeSH hierarchically organized information,
which was regarded as a directed acyclic graph (DAG). For the disease
d, we denote its DAG as DAG(d) � (N(d), ε(d)), where N(d) is a
node set including disease d and its ancestor nodes, ε(d) is the set of
direct links from parent nodes to child nodes in N(d). We define the
semantic value of disease d asDV(d) � ∑n∈N(d)Cd(n), where semantic
contribution decay factor Cd(n) can be formulated as:

Cd n( ) � 1 if n � d
max 0.5*Cd n′( )∣∣∣∣n′ ∈ children of n{ } if n ≠ d{ (2)

Based on this definition, disease semantic similarity can be
presented as follow:

Sdij �
∑n∈N di( )∩N dj( ) cdi n( ) + cdj n( )( )

DV di( ) +DV dj( ) (3)

where Sdij is the similarity between disease di and disease dj.
Intuitively, two diseases with more ancestor nodes tend to have a
higher semantic similarity.

2.3.5 Literature semantic similarity based on BERT
BERT (2023), which represents Bidirectional Encoder

Representations from Transformers, is based on a multi-layer
bidirectional Transformer model in which every output element
is connected to every input element, and the weightings between
them are dynamically calculated based upon their connection. The
transformer mechanism gives BERT its increased capacity to
understand context and ambiguity in language.

The model architecture was shown in Figure 2.
The BERT model is firstly pre-trained on the dataset containing

673,665 full-text scientific literature downloaded from PubMed,
which includes drugs and diseases mentioned in the benchmark
dataset. We implement parameters during the pre-training step,
with training epochs of 10,000, vector dimension of 128, learning
rate of 0.01and dropout of 0.1.

After pre-training the BERT model, we used fine-tuning to train
a binary classification model via five-fold cross validation. Fine-
tuning is a method of making small adjustments to a pre-trained
model for a specific task. In the binary classification task, our
objective was to minimize the cross-entropy loss function, which
can be represented as following:

Loss � −y log p( ) − 1 − y( )log 1 − p( ) (4)
where y is the label (in our case, either 0 or 1), and p is the predicted
probability of the label being 1. The cross-entropy loss function is
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used to measure the difference between the predicted probability
distribution and the true label, allowing us to optimize the model’s
parameters to minimize error. During the fine-tuning process, we
used the training dataset to adjust the BERT model’s parameters,
improving the model’s classification accuracy. Using this approach,
we were able to apply the BERT model to predict associations
between drugs and diseases and calculate similarities between
drug-drug and disease-disease pairs. In this binary classification
task, when a drug is associated with a disease, it is 1. Otherwise,
it is 0.

The training procedure uses only drug-disease associations from
the training set and no associations from the test set. Specifically, we
use this fine-tuning process to improve the accuracy of semantic
comprehension and ability of similarity calculation for drugs and
diseases. When we feed drug-drug or disease-disease pairs into the
BERT-model, it can compute the corresponding drug-drug
similarities and disease-disease similarities (semantically similar
to the binary classification task of associations) based on the
previous mentioned fine-tuning BETT-model.

2.4 Similarity matrix fusion

Based on the above four characteristics (chemical structure,
drug-side effect, drug-target, literature-based semantic
representation) of drugs, drug similarity Srij between drug ri and
drug rj based on multi-feature fusion can be expressed as:

Srij � αScij + βSsij + γStij + δ1S
l r( )
ij (5)

where α + β + γ + δ1 � 1. The optimization step for the combination
is 0.01.

Similarly, disease similarity Sdij between disease di and disease dj
based onMeSH and literature semantic features can be expressed as:

Sdij � θSdij + δ2S
l d( )
ij (6)

where θ + δ2 � 1.

2.5 Feature representation

In this paper, we construct the association feature
representation between drug and diseases based on drug
comprehensive similarity matrix, disease comprehensive
similarity matrix and known drug-disease associations.
Binary matrix Aϵ 0, 1{ }m*n represents drug-disease associations,
where m is the number of drugs and n is the number of diseases.
When drug ri is associated with disease dj, Aij � 1; otherwise,
Aij � 0.

The adjacency matrix of drug-disease association features can be
expressed as:

AH � ~ Sr A
AT ~ Sd

[ ] (7)

where ~ Sr and ~ Sd are the normalization matrix of comprehensive
similarity matrix Sr and Sd through Laplace transformation.

~ Sr � D−1
2

r SrD−1
2

r (8)
~ Sd � D

−1
2

d SdD
−1
2

d (9)
where D � diag(∑jSij) is the degree matrix.

2.6 Associated prediction based on GCN

GCN is a multilayer connected neural network architecture used
to learn low-dimensional representations of nodes from graph-
structured data (Thomas and Kipf, 2017).

2.6.1 Encoder
The adjacency matrix AH mentioned above is introduced into

the GCN encoder to extract drug and disease embeddings
respectively. We initialize the embeddings of drugs and diseases

asH 0( ) � 0 A
AT 0

[ ], and set the associations in the test dataset to 0.

Subsequently, the GCN layer is denoted as:

FIGURE 2
Pre-training and fine-tuning BERT.
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H l+1( ) � f H l( ), A( ) � ReLU ~D
−1
2A ~D

−1
2H l( )W l( )( ) (10)

whereH(l+1) is the embedding at the lth-layer, ~D is the degree matrix
of AH,W(l) is a trainable weight matrix of the lth-layer. At the same
time, we use ReLU as an activation function.

2.6.2 Decoder
Furthermore, we introduce a layer attention mechanism

(Thomas and Kipf, 2017) in LBMFF to fully utilize the drug and
disease embedding and adaptively adjust their importance weights
dynamically of different GCN layers.

The final embedding of drugs and diseases is denoted as follows:

E � Er

Ed
[ ] � ∑

l
alH

l( ) (11)

where Er ∈ Rm*d is the final embedding of drugs, Ed ∈ Rn*d is the
final embedding of drugs. al is a weight initialized as 1/(l + 1) and
auto-learned by neural networks thereafter.

To reconstruct the adjacency matrix for drug-disease associations,
we introduce sigmoid as the activation function into the GCN decoder,
and the predicted association matrix can be expressed as:

A′ � sigmoid Er ·W · Ed( ) (12)
where Aij

′ is the associated prediction score of drug ri and disease dj,
W ∈ Rd*d is the trainable parameter matrix.

Due to the fast training speed of the GCN model, it can be
retrained when new drug/disease nodes were added.

3 Result and discussion

3.1 Experimental setup and performance
evaluation

We constructed five-fold cross validation to evaluate the
performance of LBMFF in our study. All known drug-disease
associations were randomly divided into five mutually exclusive
subsets of the same size, that is, four subsets were selected as the
training set each time, while the remaining one was used as the test set.
Each round of training started from the initial state and the association
prediction was performed on the test set after training. At last, we
adopted the average of the five training performances as the final results.

Area Under Curve (AUC) and Area Under Precision/Recall Curve
(AUPR) were used as the primary metrics to evaluate the prediction
performances. In addition, we also take several binary classification
metrics into consideration, including accuracy (Acc), recall (Rec),
specificity (Spe), precision (Pre) and F1-score (F1).

3.2 Performances of literature based multi-
feature fusion (LBMFF)

In this study, we considered multi-features of drugs and diseases,
which were chemical structure, drug-side effect association, drug-target
association, disease similarity from MeSH, and especially semantic
similarity supported by a large scale of literature. The weights of

TA
B
LE

1
A
lg
or
it
h
m

p
er
fo
rm

an
ce

C
om

p
ar
is
on

b
et
w
ee

n
m
ul
ti
-a
tt
ri
b
ut
e
fu
si
on

an
d
si
n
g
le

at
tr
ib
ut
e.

M
et
ho

ds
Fe
at
ur
es

A
U
PR

A
U
C

F1
A
cc

Re
c

Sp
e

Pr
e

C
he

m
ic
al

st
ru
ct
ur
e

Ta
rg
et

Si
de

ef
fe
ct

Li
te
ra
tu
re

Se
m
an

tic

1
√

0.
57
99

±
0.
00
1

0.
87
11

±
0.
00
3

0.
55
41

±
0.
01
7

0.
89
04

±
0.
00
0

0.
59
07

±
0.
00
2

0.
92
94

±
0.
00
8

0.
52
20

±
0.
00
0

2
√

0.
58
52

±
0.
00
0

0.
87
07

±
0.
00
1

0.
55
98

±
0.
00
2

0.
89

10
±
0.
01

6
0.
60
07

±
0.
00
0

0.
92
89

±
0.
03
6

0.
52
44

±
0.
02
1

3
√

0.
57
87

±
0.
00
1

0.
86
88

±
0.
00
5

0.
55
34

±
0.
00
3

0.
88
47

±
0.
00
2

0.
61
94

±
0.
00
0

0.
91
93

±
0.
02
0

0.
50
09

±
0.
00
2

4
√

0.
59
28

±
0.
00
2

0.
87
79

±
0.
00
0

0.
56
44

±
0.
02
1

0.
89
34

±
0.
00
3

0.
59
86

±
0.
01
3

0.
92
77

±
0.
00
1

0.
52
42

±
0.
05
6

M
FF

√
√

√
0.
58
97

±
0.
00
2

0.
87
69

±
0.
00
2

0.
56
23

±
0.
03
0

0.
89
04

±
0.
00
0

0.
60
95

±
0.
00
1

0.
92
70

±
0.
00
5

0.
52
30

±
0.
00
03

LB
M
FF

√
√

√
√

0.
59
61

±
0.
00
1

0.
88
18

±
0.
00
3

0.
56
55

±
0.
00
1

0.
88
85

±
0.
00
1

0.
62
87

±
0.
00
5

0.
92
24

±
0.
00
0

0.
51
54

±
0.
03
1

T
he

be
st

re
su
lts

ar
e
in

bo
ld

fa
ce
s
an
d
th
e
se
co
nd

-b
es
t
re
su
lts

ar
e
un

de
rl
in
ed
.

Frontiers in Pharmacology frontiersin.org06

Kang et al. 10.3389/fphar.2023.1205144

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1205144


each feature were optimized at a step of 0.01 during the process
of feature fusion. The optimal prediction results appeared with
the fusion coefficients of
α � 0.08, β � 0.16, γ � 0, 16, δ1 � 0.60; θ � 0.40, δ2 � 0.60. Our
predictive model achieved AUC and AUPR of 0.8743 and
0.5694 in these cases.

3.3 Ablation study

To demonstrate the significance of the vast amount of literature
texting mining for association prediction, we did ablation studies
that compared LBMFF with single-feature methods and Multi-
Feature Fusion (MFF) method in Table 1.

Firstly, it should be noted the significance of literature-based
semantic feature on the prediction of unknown relations compared
to other single-feature methods, with the most relative
improvements of 2.4% on AUPR. Secondly, the results also
indicated that MFF outperforms the single-feature methods in
terms of AUPR, AUC and Acc. Thirdly, LBMFF reached the best
performance: AUC = 0.8818, which achieved relative improvements
of 1.23%, 1.28%, 0.49%, 0.56% higher than single-feature methods
and 0.56% higher than MFF; AUPR = 0.5961, achieving relative
improvements of 2.79%, 1.87%, 3.02%, 0.44% higher than single-
feature methods and 1.09% higher than MFF. We reached the best
performance in both F1 and Rec.

According to the aforementioned performance metrics, MFF first
achieved better performance than single-feature methods due to the
adjusted weights for each measurement. It demonstrated that feature
fusion played an essential role in drug-disease association prediction due
to the integrated information from different dimensions. LBMFF further
extracted semantic information from large-scale literature, which then led
to improved performance of MFF-based model.

3.4 Comparison with state-of-the-art
methods

In this section, we compared LBMFF with seven state-of-the-art
association prediction methods by using the same dataset, Bdataset:

Specifically, we listed these methods as follows.

• BNNR (Yang et al., 2019) was a bounded nuclear norm
regularization method carried out on an adjacency matrix
of a heterogeneous drug-disease network.

• DRHGCN (Cai et al., 2021) and DRWBNCF (Meng et al., 2022)
partly usedGCN-based, deep-learningmethodology andweighted
bilinear neural collaborative filtering based on heterogeneous
information fusion for the drug repositioning approach.

• LAGCN (Yu et al., 2022) predicted drug-disease associations
through a layer attention graph convolutional network.

• NIMCGCN (Li et al., 2020) was a novel method of neural
inductive matrix completion with GCN for miRNA-disease
association prediction.

• DDA-SKF (Gao et al., 2021) constructedmultiple similarity kernels
for drugs and diseases, and the Laplacian regularized least squares
algorithms were used to obtain the association matrix.

• REDDA (Gu et al., 2022) proposed a general heterogeneousGCN-
based node embedding block, a topological subnet embedding
block, a graph attention block, and a layer attention block.

According to Table 2; Figure 3, LBMFF achieved the best
performance in terms of all the evaluation metrics. LBMFF
achieved an AUC value of 0.8818, which was higher than the seven
state-of-the-art methods with AUC values of 0.8561, 0.7006, 0.8529,
0.8045, 0.6684, 0.8375, and 0.8466. Meanwhile, our method
significantly outperformed all baseline methods on AUPR. More
specifically, LBMFF achieved an AUPR value of 0.5961 and
achieved a relative improvement of 16.09% compared to the
second-best result of 0.5135 from LAGCN. Focusing on the F1 and
precision (Pre), our method had distinct advantages over all the
baseline methods with relative improvements of 10.71% and
10.51% to the second-best results of BNNR. Even though our
method achieved slightly better performance in terms of recall
(Rec = 0.6287) and specificity (Spe = 0.9224) than the second-best
results (Rec = 0.6005, Spe = 0.9166), these two evaluation metrics were
significantly better than the other methods with the average relative
improvements of 24.31% and 6.84%. We extracted multiple
heterogeneous biological interactions and semantic embeddings to
improve prediction accuracy. These results tended to indicate that
LBMFF had a state-of-the-art performance against all baseline
methods in novel drug-disease association prediction, owing to the
superior integration ability of multi-feature from not only public
databases and scientific literature.

TABLE 2 Performance compared with 7 baseline methods.

Methods AURP AUC F1 Acc Rec Spe Pre

BNNR 0.5166 ± 0.008 0.8561 ± 0.002 0.5108 ± 0.001 0.8761 ± 0.036 0.5649 ± 0.002 0.9164 ± 0.000 0.4664 ± 0.001

DDA-SKF 0.2521 ± 0.001 0.7006 ± 0.000 0.3281 ± 0.002 0.7900 ± 0.007 0.4478 ± 0.005 0.8342 ± 0.004 0.2591 ± 0.001

DRHGCN 0.5063 ± 0.002 0.8529 ± 0.004 0.5013 ± 0.000 0.8746 ± 0.001 0.5503 ± 0.022 0.9166 ± 0.006 0.4604 ± 0.002

LAGCN 0.5135 ± 0.000 0.8045 ± 0.002 0.4699 ± 0.005 0.7966 ± 0.000 0.6005 ± 0.008 0.8220 ± 0.052 0.4198 ± 0.002

NIMCGCN 0.2316 ± 0.004 0.6684 ± 0.000 0.2889 ± 0.007 0.7611 ± 0.026 0.4227 ± 0.001 0.8049 ± 0.003 0.2199 ± 0.006

DRWBNCF 0.4552 ± 0.035 0.8375 ± 0.020 0.4739 ± 0.001 0.8646 ± 0.001 0.5321 ± 0.000 0.9076 ± 0.002 0.4280 ± 0.000

REDDA 0.4903 ± 0.000 0.8466 ± 0.016 0.4936 ± 0.045 0.8693 ± 0.004 0.5562 ± 0.003 0.9098 ± 0.000 0.4440 ± 0.002

LBMFF 0.5961 ± 0.001 0.8818 ± 0.003 0.5655 ± 0.001 0.8885 ± 0.001 0.6287 ± 0.005 0.9224 ± 0.000 0.5154 ± 0.031

The best results are in bold faces and the second-best results are underlined.
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To further verify the effectiveness of LBMFF, we denoted
another public benchmark, TL-HGBI with 963 drugs,
1,263 diseases and 54,921 drug-disease associations, into LBMFF
and the seven baseline methods mentioned above. The results in
Table 3; Figure 4 verified the superior predictive solidarity of our
method. REDDA respectively achieved excellent performance
measured by AURP, F1 and Rec. What’s more, AUPR was 5.86%
higher than the second best method LAGCN.

3.5 Case study

To demonstrate the capability of LBMFF to discover new
indications and new therapies, all known drug-disease
associations have been used to predict unknown drug-disease
associations with this model. We conducted case studies with
verification from clinical indications that were already in use,
ClinicalTrials, CTD and public literature. ClinicalTrials is the

FIGURE 3
AUC and AUPR metrics of 8 methods.

TABLE 3 Performance compared with 7 baseline methods on TL-HGBI dataset.

Methods AURP AUC F1 Acc Rec Spe Pre

BNNR 0.4502 ± 0.002 0.9065 ± 0.001 0.4640 ± 0.003 0.9462 ± 0.000 0.5098 ± 0.020 0.9671 ± 0.015 0.4261 ± 0.004

DRHGCN 0.4824 ± 0.000 0.9295 ± 0.032 0.4723 ± 0.016 0.9442 ± 0.035 0.5459 ± 0.004 0.9633 ± 0.000 0.4161 ± 0.000

DRWBNCF 0.3432 ± 0.001 0.8927 ± 0.004 0.4013 ± 0.000 0.9306 ± 0.002 0.5090 ± 0.002 0.9508 ± 0.030 0.3314 ± 0.001

LAGCN 0.4970 ± 0.004 0.9155 ± 0.005 0.4586 ± 0.007 0.9413 ± 0.002 0.5440 ± 0.033 0.9603 ± 0.000 0.3968 ± 0.001

NIMCGCN 0.1532 ± 0.003 0.7490 ± 0.018 0.2317 ± 0.020 0.9012 ± 0.000 0.3265 ± 0.005 0.9287 ± 0.001 0.1802 ± 0.006

DDA-SKF 0.2266 ± 0.015 0.8608 ± 0.007 0.3136 ± 0.000 0.9071 ± 0.001 0.4646 ± 0.003 0.9283 ± 0.002 0.2368 ± 0.003

REDDA 0.4243 ± 0.000 0.9225 ± 0.001 0.4493 ± 0.013 0.9406 ± 0.001 0.5308 ± 0.002 0.9602 ± 0.025 0.3898 ± 0.010

LBMFF 0.5261 ± 0.003 0.9160 ± 0.000 0.4821 ± 0.002 0.9429 ± 0.003 0.5898 ± 0.002 0.9596 ± 0.005 0.4078 ± 0.007

The best results are in bold faces and the second-best results are underlined.

FIGURE 4
AUC and AUPR metrics of 8 methods on TL-HGBI dataset.
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largest clinical trials database run by theUnited StatesNational Library of
Medicine (NLM), holding registrations from over 329,000 trials from
209 countries. CTD is a publicly available research resource that curates
scientific data describing relationships between chemicals, genes and
human diseases by professional curators. In our study, we constructed

three kinds of case studies to verify the predictive capability: 1) the top
10 drug-disease associations predicted by LBMFF in Table 4, 2 the top
10 associated diseases for given drugs predicted by LBMFF in Table 5, 3
the top 10 associated drugs for given diseases predicted by LBMFF in
Table 6.

TABLE 4 Top 10 drug-disease associations.

No. MESH ID Drug Name MESH ID Disease Name Evidence

1 C055162 Clopidogrel D006973 Hypertension ClinicalTrials/CTD

2 D002738 Chloroquine D018771 Arthralgia NA

3 D012293 Rifampin D011014 Pneumonia CTD/PMID: 28870736

4 D019808 Losartan D001281 Atrial Fibrillation ClinicalTrials/PMID: 25787020

5 D019821 Simvastatin D010190 Pancreatic Neoplasms ClinicalTrials/CTD/PMID: 32402990

6 D009270 Naloxone D007859 Learning Disorders CTD/Clinical indications

7 D002927 Cimetidine D006331 Heart Diseases Clinical indications

8 D002927 Cimetidine D007249 Inflammation Clinical indications

9 D011239 Prednisolone D008582 Meningitis CTD/PMID: 33260200

10 D004294 Domperidone D012640 Seizures NA

TABLE 5 Top 10 drug-disease association prediction for dexamethasone and doxorubicin.

Drug Name No. MESH ID Disease Name Evidence

Dexamethasone MeSH ID: D003907 1 D004342 Drug Hypersensitivity ClinicalTrials/CTD/PMID: 28704328

2 D000743 Anemia, Hemolytic CTD/PMID: 21848879

3 D004417 Dyspnea ClinicalTrials/PMID: 27330023

4 D029424 Chronic Obstructive Pulmonary Clinical indications

5 D008581 Meningitis NA

6 D002637 Chest Pain ClinicalTrials/CTD/PMID: 21799397

7 D010190 Pancreatic Neoplasms ClinicalTrials/CTD/PMID: 32619553

8 D002318 Cardiovascular Diseases NA

9 D009205 Myocarditis NA

10 D012141 Respiratory Tract Infections ClinicalTrials

Doxorubicin MeSH ID:D004317 1 D002289 Carcinoma, Non-Small-Cell Lung ClinicalTrials/CTD/PMID: 33075540

2 D014652 Vascular Diseases ClinicalTrials/Clinical indications

3 D009190 Myelodysplastic Syndromes ClinicalTrials/CTD/PMID: 27299619

4 D006463 Hemolytic-Uremic Syndrome NA

5 D002543 Cerebral Hemorrhage NA

6 D015473 Leukemia ClinicalTrials/CTD/PMID: 32949646/Clinical indications

7 D017202 Myocardial Ischemia NA

8 D011658 Pulmonary Fibrosis ClinicalTrials/CTD/PMID: 22607134

9 D050197 Atherosclerosis NA

10 D005910 Glioma ClinicalTrials/CTD/PMID: 33475372
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3.5.1 Top 10 drug-disease associations
We listed the top 10 drug-disease associations predicted by

LBMFF in Table 4, and eight out of them can be demonstrated by the
four verification methods mentioned above. For example, we found
evidence from public literature for rifampin combinations for treating
pneumonia (PMID: 28870736), losartan for the prevention of paroxysmal
atrial fibrillation in patients with sick sinus syndrome (PMID: 25787020)
and simvastatin for improving the early survival rate of patients with
pancreatic cancer (PMID: 32402990). As a prospective study, the
combination therapy of prednisolone and azathioprine for steroid-
responsive meningitis-arteritis treatment in dogs also appeared to be
effective for primary treatment. Besides, several predictions have been
confirmed effective by ClinicalTrials and CTD records, such as
clopidogrel in patients with idiopathic pulmonary arterial
hypertension and simvastatin in patients with advanced pancreatic
cancer. We further verified three of the predictions have been applied
as mature clinical treatments by passing clinical trials and safety tests.
Naloxone is used to relieve respiratory depression and wake people
up. Cimetidine is indicated for the treatment of arrhythmia and chronic
hepatitis B hepatitis. This is consistent with the predicted treatment of
heart disease and inflammation.

3.5.2 Top 10 associated diseases for given drugs
We selected dexamethasone (MeSH ID: D003907) and

doxorubicin (MeSH ID: D004317) as two drug cases to validate

the ability to discover new indications. For each drug, the top
10 candidate diseases are ranked according to the prediction
scores as shown in Table 5. We also visualized the predicted
relationships (Figure 5) with different colors and types of lines to
represent different validation methods. The more lines between two
nodes, the more evidences there were for this relationship.

Dexamethasone is a corticosteroid that prevents the release of
substances in the body that cause inflammation, such as allergic
disorders and skin conditions. It is also used to treat ulcerative
colitis, arthritis, lupus, psoriasis, and respiratory disorders. Seven
of the top 10 predicted associations have been confirmed by
databases, literature and clinical use of dexamethasone.
According to literature, dexamethasone works against paclitaxel
drug allergy (PMID: 28704328), chest syndrome in patients with
sickle cell disease (PMID: 21799397) and dyspnea in cancer
patients (PMID: 27330023). What’s more, WHO (2023)
welcomes preliminary results about dexamethasone use in
treating critically ill COVID-19 patients, as evidence of
respiratory tract infection treatment.

Doxorubicin is an anthracycline type of chemotherapy that is
used to treat several different types of cancer. Six of the top ten
predicted associations have been confirmed in this section. It is
approved for the treatment of non-small cell lung cancer, glioma,
hematologic tumors and acute lymphoblastic leukemia, either
alone or in combination with other drugs. Additionally, a

TABLE 6 Top 10 drug-disease association prediction for seizures and hypertension.

Disease Name No. MESH ID Drug Name Evidence

Seizures 1 D002034 Bumetanide ClinicalTrials/CTD/PMID: 33201535

2 D011239 Prednisolone ClinicalTrials/CTD/PMID: 33359047

3 D020123 Sirolimus ClinicalTrials/CTD/PMID: 35931213

4 C043211 Carvedilol ClinicalTrials/CTD

5 D013752 Tetracycline ClinicalTrials/CTD/PMID:22579030

MeSH ID: D012640 6 D011802 Quinidine ClinicalTrials/CTD/PMID: 30112700

7 D014805 Vitamin B 12 ClinicalTrials/CTD/PMID: 29563977

8 D013739 Testosterone ClinicalTrials/CTD

9 D017292 Doxazosin NA

10 D008691 Methadone NA

Hypertension 1 C055162 Clopidogrel ClinicalTrials/CTD/PMID: 35656824

2 C060836 Pioglitazone ClinicalTrials/CTD/PMID: 31712626

3 C065180 Fluvastatin ClinicalTrials/CTD/PMID: 17666915

4 D000086 Acetazolamide ClinicalTrials/PMID: 26154918

5 D002738 Chloroquine ClinicalTrials/CTD

MeSH ID: D006973 6 D004155 Diphenhydramine ClinicalTrials

7 D004958 Estradiol NA

8 D013629 Tamoxifen ClinicalTrials/CTD

9 D015283 Citalopram NA

10 D000068877 Imatinib Mesylate ClinicalTrials/CTD
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combination of prednisone, azathioprine, and N-acetylcysteine
(NAC) has also been used as a treatment for idiopathic
pulmonary fibrosis (Behr, 2012).

The remaining associations predicted by the LBMFFmodel have
not received much attention so far, providing an avenue for new
indications to be discovered.

3.5.3 Top 10 associated drugs for given diseases
Furthermore, we conducted two detailed case studies to

further verify the capability of new therapies discovery, and
the chosen diseases were seizures (MeSH ID: D012640) and
hypertension (MeSH ID: D006973). The top 10 related drugs for

both diseases were listed in Table 6. We also visualized the
predicted relationships (Figure 6) with different colors and
types of lines to represent different validation methods. The
more lines between two nodes, the more evidences there were
for this relationship.

In the section on seizures, we confirmed eight of the top
10 results through database and literature evidence. Specifically,
quinidine significantly reduced the seizure burden (by about 90%).
Tetracycline-class antibiotics were protective against partial seizures
in vivo. The Drug combinations of bumetanide plus phenobarbital
and vitamin B12 plus carbamazepine have been proven effective in
treating seizures (PMID: 29563977). Moreover, animal models in

FIGURE 5
Top 10 associated diseases for given drugs. Different validation methods are represented with different colors and types of lines. The more lines
between two nodes, the more evidences there are for this relationship.

FIGURE 6
Top 10 associated drugs for given diseases. Different validation methods are represented with different colors and types of lines. The more lines
between two nodes, the more evidences there are for this relationship.
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mice presented with prednisolone or sirolimus had less severe
seizures than the negative control group.

In the section on hypertension, we found evidence for eight drug
candidates in the top ten through databases and literature. For
example, pioglitazone modulated the vascular contractility in
hypertension by interference with the ET-1 pathway (PMID:
31712626), and acetazolamide leads to more effective control of
increased intracranial pressure (PMID: 26154918). Furthermore,
ClinicalTrials and CTD proved the possibility of the other six new
drug-disease associations.

4 Conclusion

In this study, we proposed a method called LBMFF for drug-
disease association prediction. Due to the huge amount of
information contained in both biomedical public databases and
scientific literature, we computed drug-drug and disease-disease
similarities by multi-feature fusion and utilized two GCN layers
to capture structural embeddings from the association feature
matrix. Concretely, the association feature matrix consisted a
drug comprehensive similarity matrix, a disease comprehensive
similarity matrix and a known drug-disease association.
Moreover, an attention mechanism was denoted into the GCN
model to extract information more effectively. The proposed
method achieved excellent performance compared to seven state-
of-the-art methods on the same test datasets, and we demonstrated
its potential for identifying new drug-disease associations for
practical use.

However, there are still some limitations in our work that
require an in-depth investigation. First, more association
features should be further considered in our work. We can
collect more prior biological knowledge from literature, such as
drug-protein, drug-gene, disease-gene and drug-pathway, to
improve similarity accuracy. Second, the two-layer GCN is a
basic model for learning on graph-structured data, while some
other graph neural network models are worth investigating in
the future.

Above all, LBMFF is able to learn scattered information from
both public databases and scientific literature to identify the
latent drug-disease associations. It gives researchers,
pharmacologists, and pharmaceutical companies a tremendous
opportunity to study and validate predictive associations that are
more likely to exist. We expect LBMFF to be an efficient approach
that can further improve drug repositioning and shorten its cost
and time.
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