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The glutamate-gated ion channels known as N-methyl-d-aspartate receptors
(NMDARs) are important for both normal and pathological brain function.
Subunit-selective antagonists have high therapeutic promise since many
pathological conditions involve NMDAR over activation, although few clinical
successes have been reported. Allosteric inhibitors of GluN2B-containing
receptors are among the most potential NMDAR targeting drugs. Since the
discovery of ifenprodil, a variety of GluN2B-selective compounds have been
discovered, each with remarkably unique structural motifs. These results expand
the allosteric and pharmacolog-ical spectrum of NMDARs and provide a new
structural basis for the development of next-generation GluN2B antagonists that
have therapeutic potential in brain diseases. Small molecule therapeutic inhibitors
targeting NMDA have recently been developed to target CNS disorders such as
Alzheimer’s disease. In the current study, a cheminformatics method was used to
discover potential antagonists and to identify the structural requirements for Gly/
NMDA antagonism. In this case we have created a useful pharmacophore model
with solid statistical values. Through pharmacophore mapping, the verified model
was used to filter out virtual matches from the ZINC database. Assessing receptor-
ligand binding mechanisms and affinities used molecular docking. To find the best
hits, the GlideScore and the interaction of molecules with important amino acids
were considered essential features. We found some molecular inhibitors, namely,
ZINC13729211, ZINC07430424, ZINC08614951, ZINC60927204, ZINC12447511,
and ZINC18889258 with high binding affinity using computational methods. The
molecules in our studies showed characteristics such as good stability, hydrogen
bonding and higher binding affinities in the solvation-based assessment method
than ifenprodil with acceptable ADMET profile. Moreover, these six leads have been
proposed as potential new perspectives for exploring potent Gly/NMDA receptor
antagonists. In addition, it can be tested in the laboratory for potential therapeutic
strategies for both in vitro and in vivo research.
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1 Introduction

Synaptic transmission is important for the nervous system’s
ability to process and store information. Synapses are particular
junctions between neurons where presynaptic neurons induce
postsynaptic neurons to express neurotransmitter receptors. The
amino acid glutamate plays an important role in mediating
excitatory synaptic neurotransmission by involving two distinct
glutamate receptor subtypes: ionotropic and metabotropic. Ion
channels controlled by ligands are known as ionotropic
glutamate receptors (Hansen and Traynelis, 2011; Swanger et al,
2018; Swanger and Traynelis, 2018; Benke and Traynelis, 2019). The
N-methyl-D-aspartate (NMDA) receptors are excitatory
neurotransmitter-activated, ligand-gated ion channels. Because
they are mainly found at excitatory synapses, these N-methyl-D-
aspartate receptors (NMDAR) play a role in excitatory
neurotransmission in the central nervous system. Besides
generating an electrical signal, open NMDARs also induce
calcium influx, which is essential for synaptic signaling and
neuroplasticity in learning and memory (Wang and Reddy, 2017;
Swanger et al, 2018; Benke and Traynelis, 2019). However, activation
of extrasynaptic NMDARs causes excitotoxicity and promotes cell
death, underlying a possible mechanism of neurodegeneration
occurring in Alzheimer’s disease (AD) (Thal et al, 2015; Lopez
and Kuller, 2019; Lei et al, 2021). Abnormalities in both structure
and function are part of the pathogenesis of AD. As ADworsens, the
brain develops numerous anatomical abnormalities, such as senile
plaques of A and neurofibrillary tangles of phosphorylated tau, and
significant loss of synaptic profiles (Perl, 2010). To date, AD has no
known treatment. However, there are some therapies. The National
Institute on Aging’s Alzheimer’s disease Medications Fact Sheet lists
two groups of FDA-approved prescription drugs currently used to
treat AD patients. For mild to severe AD, cholinesterase inhibitors
are an option. The other contains memantine, an antagonist to
NMDARs, a receptor controlled by the neurotransmitter glutamate,
and is used to treat moderate to severe Alzheimer’s disease.
Neuronal cell viability is compromised by inadequate synaptic
NMDAR signaling. However, excessive glutamatergic signaling
stimulation causes excitotoxicity, in which nerve cells are
damaged or destroyed, or neurological damage such as stroke
(Rothman and Olney, 1986). Numerous studies indicate that
glutamate excitotoxicity plays a role in delayed, steadily
progressing neurodegeneration in addition to the acute effect
(Lipton and Rosenberg, 1994; Chifor et al, 2022). Because
NMDARs have much higher calcium ion permeability than other
iGluRs, increasing evidence suggests that toxicity is mainly mediated
by excessive Ca2+ entry, mainly via NMDARs (Daw et al, 1993; Liu
et al, 2004; Myoga and Regehr, 2011; Tan et al, 2022). In this regard,
the slight depolarization of the postsynaptic membrane, as well as
other factors that unblockMg2+, canmildly and chronically activate
NMDARs, leading to prolonged Ca2+ influx into the postsynaptic
neuron. This in turn justifies clinical testing of memantine, an
NMDAR antagonist, for the symptomatic and protective
treatment of AD. Pathologic Ca2+ signaling leads to a gradual
loss of synaptic function and eventual neuronal cell death, which
clinically correlates with a gradual decline in cognition/memory and
the establishment of pathologic neural anatomy seen in AD patients
(Danysz et al, 1995; Day and Langston, 2006; Czapski and

Strosznajder, 2021). Therefore, the amount of NMDAR signaling
must be high since NMDARs are also crucial for cell survival. Some
of the inhibitors for NMDAR have been reported in previous reviews
(Danysz et al, 1995; Ates-Alagoz and Adejare, 2013; Davoudian and
Wilkinson, 2020). The following side effects are possible with
NMDA antagonists, including high blood pressure, confusion,
headache, constipation, cough, back pain, pain, lightheadedness
(daytime sleepiness), vomiting, yawning and dyspnea (shortness
of breath), fatigue. There is still a lack of inhibitors for NMDA with
high potency and low side effects. There has been some reports
which have suggested the use of various computational approaches
for identifying inhibitors (Sharma et al, 2020; Sharma et al, 2021;
Sharma et al, 2022). Therefore, there is a need for new approaches to
identify new inhibitors for NMDARs. Our current work here focuses
on computational methods that open a new field for designing novel,
highly potent inhibitors against the enzyme and predicting potential
inhibitors of NMDAR using these structural details.

2 Materials and methods

2.1 Binding site analysis

The RCSB-PDB database (https://www.rcsb.org/) contains a
number of molecules with their inhibitory activity and bound
complexes with NMDAR (Burley et al, 2018). The bound
conformation of this compound was used to understand the
critical protein-ligand interaction. Through these studies, we were
able to identify critical residues important for NMDAR inhibition,
which could play a crucial role in the design and optimization of new
inhibitors.

2.2 Pharmacophore model generation and
validation

The RCSB-PDB database contains a number of molecules with
their inhibitory effects and bound complexes with NMDARs. The
bound conformation of this compound was used to generate
structure-ligand based pharmacophore theory. Using the
pharmacophore modeling based screening approach initially in
our workflow, led us to shortlist hit molecules having 3D features
similar to the already known inhibitor molecules in the initial
step. Thus, the approach would help us to identify hit molecules
having 3D based molecular features. Schrödinger’s PHASE module
was used to develop the pharmacophore hypothesis (Dixon et al,
2006). It uses variable molecular orientation through
superimposition and adjustment to similarity constraints. Spin
angles of the dangling bonds are included in the conformational
data to probe molecular alignments. The conformation of the
molecule that satisfies the constraints is allowed to generate
additional conformations that are similar. The similarity and
quantity of aligned features, the volume of that alignment, and
the van der Waals energy of the conformation are used to assess the
suitability of the alignment. Distance and angle constraints are
introduced and pharmacophoric features are extracted. To verify
the pharmacophore theory, a test kit database was created consisting
of these 20 recognized NMDA inhibitors added to 380 molecules
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derived from the DUDE database and treated as inactive (Mysinger
et al, 2012). This test database was used to verify that a model could
discriminate between active ingredients and baits. Calculated
metrics such as enrichment factor (EF) and goodness of hit score
(GH) are critical in determining the caliber of pharmacophore
theory produced. A flexible search approach was implemented
for screening purposes.

2.3 Virtual screening of ZINC database

The ZINC database was utilized for our simulated screening
(Tingle et al, 2023). For virtual screening, the pharmacophoric
model that had the most significant statistical parameters was
selected. The resultant hit molecules which were screened using a
structure-based pharmacophore model were subsequently added to
a new database.

2.4 Molecular docking

The atomic structure of NMDA linked to the Ifenprodil ligand
(PDB ID-5ewj) was used for docking studies (Stroebel et al, 2016).
The docking tests were carried out with the docking programGLIDE
(Friesner et al, 2004). Redocking experiments were performed first
after the pharmacophore-based screen to optimize settings for an
additional docking-based virtual screening of hit compounds.
Docking experiments were conducted to find potential hit
substances. This required preparing the protein, the ligand,
creating the lattice and studying the docking pose.

2.5 Molecular dynamics simulation

The stability with time of the bound orientations of the
chemicals in the receptor’s binding pocket can be assessed using
molecular dynamics (MD). Its usefulness in locating new inhibitors
has been demonstrated in numerous experiments (Sharma and
Siddiqi, 2019; Siddiqui et al, 2021; Xiong et al, 2021; Sharma
et al, 2022; Siddiqui et al, 2023a; Siddiqui et al, 2023b; Siddiqui
et al, 2023c). The gromacs 2020 version was used for MD research
(Sharma et al, 2021). MD experiments were performed using the
CHARMM force field (Páll et al, 2020). The CHARMM parameters
of the ligand were recorded using the SwissParam web service
(Vanommeslaeghe and MacKerell Jr, 2015). Using the TIP3P
water model and the CHARMM force field, we first create the
structure of the protein. A cage was defined around the protein-
ligand complex with a radius of 12 cubic. Using counterions, the
solvated compound was neutralized. The energy consumption of the
system was further reduced for 50,000 steps by the steepest descent
technique. The system was then calibrated for 200 ps using NVT and
NPT based on the Leap Frog algorithm. The system was exposed to
anMD of 200 ns after equilibration. AfterMD, the systemwas scaled
down by removing the periodic boundary conditions, and then
examined for link stability and other investigations. UCSF chimera
software was used for theMD study (Pettersen et al, 2004; Zoete et al,
2011). Plots were generated after analysis using the XMGRACE tool
[https://plasma-gate.weizmann.ac.il/Grace/].

2.6 Solvent based binding energy
calculations

The post-processing final state method known as MM-PBSA is
used to determine the free energies of compounds in solution. Using
ensembles created from MD or Monte Carlo simulations, Python
software MMPBSA.py streamlines final state free energy
calculations. With MMPBSA.py, a number of implicit solvation
models are accessible, such as the Reference Interaction Site Model,
the Generalized BornModel, and the Poisson-BoltzmannModel. To
approximate the entropy of the solute, vibrational frequencies can be
calculated using normal mode analysis or quasi-harmonic analysis.
Specific interactions can also be unraveled using alanine scanning or
free energy analysis. By evenly distributing frames across available
processors, a parallel implementation significantly speeds up
computation. Effective and easy to use, MMPBSA.py tool is
flexible enough to meet the needs of users performing final state
free energy calculations. Solvent-based binding analysis of the
protein-ligand complexes was performed using the method
described in various previous studies using the GMX MMPBSA
tool (Valdés-Tresanco et al, 2021).

3 Results and discussion

3.1 Binding site analysis

The RCSB-PDB database contains a number of molecules with
their inhibitory activity and bound complexes with NMDAR, namely,
5EWJ, 5EWL, 5EWM (Stroebel et al, 2016). The bound conformation
of this compound was used to understand the critical protein-ligand
interaction (Figures 1A–D). Through these studies, we were able to
identify critical residues important for NMDAR inhibition, which could
play a crucial role in the design and optimization of new inhibitors. We
observed that most of the reported antagonists for NMDAR bind to the
cleavage site of two chains of NMDAR, namely, chain A (GLUN1) and
chain B (GLUN2B). residues of chain A, namely, A75, P106, Y109,
T110, G112, W113, R115, K131, S132, I133, L135 and residues of chain
B, namely, P78, I82, A107, N110, I111,W114, T174, Y175,W176, P177,
M207, T233, D236 play an important interaction role. These two
B-chain residues Phe114, Phe176 were observed to form a pi-pi
stacking interaction with the ifenprodil inhibitor. In general,
molecules with hydrophobic moieties towards the two opposite sites
showed a strong interaction pattern. The same was observed for the
molecules MK-22 and EVT-101. Comparing the binding pocket of
glutamate with NMDAR, it was observed that it is separate and can
regulate NMDAR in different ways (Zhu et al, 2016; Yu and Lau, 2018).
Therefore, it can be concluded that inhibitor molecules with the same
molecular features similar to ifenprodil and related molecules that bind
to the A-chain and B-chain interface can be used as antagonists to
treat AD.

3.2 Pharmacophore model generation and
validation

3D structure determination of proteins is required for drug
design and today the most established structure can be found in
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various protein databases or via homologymodelling. Themolecular
structure of NMDAR in a linker complex (PDB: 5EWJ, 5EWL,
5EWM) was identified and a structural ligand-based
pharmacophore model was constructed. Using an IC50 value and
X-ray diffraction, the empirically determined affinity of the chosen

ligand for NMDAR protein was confirmed. The inhibitor can
control overall expression by binding to NMDAR. In some cases,
poor potency of an inhibitor against a particular protein can be
caused by unstable inhibitor binding. In order to identify the active
series of inhibitors, they must interact appropriately to result in

FIGURE 1
(A) The image indicates the binding interface of the two chains of NMDAR and ifenprodil. (B) Various inhibitors, namely, ifenprodil (hot pink), MK-22
(dark grey), EVT-101 (green) binding to the same interface with varied conformation. (C) 3d interaction plot of inhibitor with the residues at interface. (D)
2d interaction plot of the ifenprodil and various interacting residues within the 5 Å radius.

TABLE 1 Statistical parameters for screening of NMDA test set molecules using pharmacophore models.

Parameters Model-1 Model-2 Model-3 Model-6

Total no. of molecule s in database (D) 400 400 400 400

Total no. of active (A) 20 20 20 20

Total hits (Ht) 43 48 31 24

Active hits (Ha) 17 16 14 19

% yield of actives (H a/H t × 100) 39 33.33 45.16 79.17

% ratio of actives (H a/A × 100) 85 80 70 95

Enrichment factor (EF) 7.90 6.67 9.03 15.83

False positives (Ht - Ha) 26 32 17 5

False negatives (A- Ha) 3 4 6 1

Goodness of hit score (GH) 0.47 0.26 0.49 0.82
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significantly higher biological activity compared to the current
inhibitors. Using the Schrödinger PHASE module, the structural
ligand-based pharmacophore models were used to generate
important chemical properties. A variety of models were created
andmodel 6 was selected for its highest score (Table 1). The different
molecular properties were identified and a total of 7 were found.
Among them, a protein-ligand complex interaction was shown that
involved two hydrophobes, two aromatic ring bonds, 2 H-bond
acceptors, one H-bond donor, and a few void volume features.
Some features were omitted from the pharmacophore model to
retain the best ligand-based pharmacophore features. By carefully
analyzing the MD pattern of the top ligands, we observed that
hydrophobic features and aromatic features can play crucial roles in
the interaction. Therefore, more weight has been added to these
features. Also, placing a donor group can increase the interaction of
the ligand by interacting with the residue, namely, Glu236B. Also the
acceptor group can increase the interaction by interacting with the
Arg115A side chain. Other features have been mutated to become a
top model. Our top model consisted of 4 traits including a
hydrophobic trait (H9), an aromatic trait (R13), a donor trait
(D8), and an acceptor trait (A6) (Figure 2). Verified
pharmacophore analysis is required to ensure the accuracy of the

pharmacophore analysis and to confirm its validity. Prior to
database screening, a structure-based pharmacophore model
developed in this research was tested for its ability to
discriminate between drugs and mimics. The pharmacophore
model was verified using 20 recognized NMDAR inhibitors.
380 baits were added from the DUDE database. The structural
ligand-based model built above was the modified model 6 with a
fidelity of 0.82. This was the highest score we could achieve with a
structural ligand-based model. Different statistical parameters of
different models are summarized in Table 1. For the top models we
found that adding tolerance to the distance constraints decreases the
accuracy of the pharmacophore model. Therefore, optimal distance
constraints were used for top models.

3.3 Virtual screening of ZINC database

After virtual screening of the ZINC database using the above
structure-ligand based pharmacophore model, only 38,105 hits were
screened out, filtering out the remaining molecules. So, after the
pharmacophore-based screen, we only had 38,105 molecules with
pharmacophoric characteristics.

FIGURE 2
(A) The image indicates the 4 feature pharmacophore model. (B) The image indicates the overlapped structure of pharmacophore model and the
known inhibitors of NMDAR which are bound to the interface.
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3.4 Molecular docking and ADMET analysis

The GLIDE docking suite was used to perform docking
experiments using the atomic structure of Ifenprodil attached
to NMDAR. To optimize the variables by removing the ligand
ifenprodil from the active site, redocking experiments were
initially performed. The structure of the compound was
recreated using the Marvin sketch, and redocking experiments
were performed using the 3D conformation of the compound. As
we noticed, our re-docked pose had a slight deviation of 0.819
(Supplementary Figure S1). After performing redocking studies
to optimize the docking study settings, we performed docking
studies on all 38,105 molecules that passed the pharmacophore-
based virtual screening using the HTVS scoring method. Also,
we selected top molecules with higher binding affinity as the
control molecule for XP-based docking, which is a more robust
method to determine the binding positions of ligands with
respect to protein. The table below summarizes the binding
energies of the top 10 molecules and the control molecule
(Table 2). According to careful conformational analysis, all
hits with higher or similar binding energies than the
ifenprodil blocker interacted with this binding pocket.
(Figures 3.1–3.10). The majority of molecules interfere in
some way with the hydrophobic cavity composed of A chain
residues, namely, A75, P106, Y109, T110, G112, W113, R115,
K131, S132, I133, L135, and B chain residues, namely, P78, I82,
A107, N110, I111, W114, T174, Y175, W176, P177, M207, T233,
D236. In most molecules, part of their unit interacts with the
hydrophobic pocket composed of residues Ala75, I133, L135 of
chain A and I111, W114, P177, and W176 of chain B. Some
molecules showed hydrogen bonding interactions with the
residues, mainly Tyr109 of chain A and Gln110, Asp206,
Met207, Glu235, Glu236 of chain B with different units or
parts of their total molecular structure. The other main

interaction we found in most residues was the Pi-Pi, Pi-cation
interaction in some of the ligands with the residues, namely,
Phe114, Phe176 of chain B and Tyr109, Arg115 of chain A. All of
it was found that the top 10 compounds have higher binding
energies than ifenprodil, and they also showed interaction with
residues that were found to interact with control ligands. Also,
some new interaction especially hydrogen bond interaction with
Glu236 residue of chain B and cation-Pi interactions with
Arg115 of chain A were some of the new observed
interactions. Furthermore, these compounds shared
pharmacophoric properties with the active ingredients, which
prompted us to conduct additional research on these molecules.
All of the molecules selected above have an acceptable golden
triangle rule like the control molecule Ifenprodil. The ADMET
profile values of the molecules are summarized in Table 2. MD
studies, discussed in the next section, were performed to verify
the stability of these top 10 chemicals in the binding pocket
over time.

3.5 Molecular dynamics simulation

In the present study, we performed a 200 ns molecular dynamics
simulation for each hit ligand. The corresponding interaction
patterns were considered after the completion of the molecular
dynamics simulation run. The RMSD of the ligand was calculated
along with hydrogen bonding plots and solvent accessible surface
areas (SASA) for each system using the trajectory file (Figures
4A–F). We carefully studied the trajectory of ifenprodil bound
complex. We observed that compared to other fragment the
benzyl fragment was showing slightly more fluctuation, but these
deviations were below 3 Å. It was found that 7 ligands provided
stable RMSD plots with respect to protein. The ligands, namely, 2, 3,
4, 6, 8, 9, 10, displayed highly stable poses with little deviation in the

TABLE 2 The table summarizes the Glide score, ADMETvalues and GMX MMPBSA score of various top shortlisted hit molecules after docking based evaluation.
GMX MMPBSA score was calculated using last 50 ns trajectory of the MD simulation file.

Sr No. ZINC database
code

Code
used

Glide
score

logP F30% BBB*
Penetration

H-HT** T
1/
2***

Golden
triangle

GMX MMPBSA
(kcal/mol)

1 ZINC19211094 1 −14.46 2.432 0.003 0.92 0.939 0.148 Accepted −24.6641

2 ZINC32960625 2 −13.29 4.482 0.037 0.046 0.555 0.361 Accepted −28.5832

3 ZINC13729211 3 −13.1 2.688 0.14 0.631 0.869 0.31 Accepted −42.4383

4 ZINC07430424 4 −12.88 3.336 0.82 0.118 0.099 0.896 Accepted −36.2913

5 ZINC08614951 5 −12.67 4.012 0.007 0.106 0.41 0.413 Accepted −38.9079

6 ZINC91665734 6 −12.58 1.046 0.957 0.423 0.774 0.683 Accepted −32.7661

7 ZINC20877855 7 −12.57 4.333 0.02 0.098 0.324 0.555 Accepted −32.9327

8 ZINC60927204 8 −12.56 2.212 0.157 0.16 0.446 0.92 Accepted −36.8264

9 ZINC12447511 9 −12.55 3.163 0.036 0.748 0.975 0.484 Accepted −40.7174

10 ZINC18889258 10 −12.52 5.18 0.061 0.01 0.09 0.133 Accepted −40.8428

11 Ifenprodil Control −10.29 3.549 0.881 0.947 0.208 0.552 Accepted −30.7786

* BBB, Blood Brain Barrier; ** H-HT, High Hepatotoxicity; *** T1/2, Half Excretion Time.
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binding pocket of the protein. Most fluctuations were below 3.
While the ligands, namely, 1, 5, 7, indicated an unstable RMSD
with a constant deviations. Although for ligand 5 these deviations
were observed to be within an acceptable range of less than 3.
Observing the hydrogen bonding diagrams, it was found that the
compound, namely, 2, 3, 5, 8, 9, 10, was constantly forming

hydrogen bonds. The highest number of hydrogen bonds was
observed in compound 10, followed by 9, 8, 5, and 3. For
compounds 1 and 7, the observed hydrogen bonds were
minimal, indicating their poor pose stability during MD
simulation. The SASA plots showed that the SASA values for
most of the compounds were comparable to those of the control
molecule ifenprodil, except for compound 7, which was slightly on
the high end. By carefully analyzing the RMSD diagrams, hydrogen
bond diagrams and SASA values, it can be concluded that
5 molecules, namely, compounds 3, 5, 8, 9, and 10, are very
stable due to hydrogen bonding interactions as well as
especially hydrophobic interactions in the binding pocket with
the residues, namely, Phe114 and Phe176. It was observed above
mentioned 5 molecules mostly had Pi-Pi stacking interactions with
the Phe114, Phe176 of chain B, while another interaction being
hydrogen bond formation with Glu236 of chain B. Another key
interaction was cation-Pi interaction with Arg115 of chain A.
These interactions were mostly observed by the groups, namely,
benimidazole, pyrrolo-pyridine and the benzoxazin-3-one group
in the ligands.

3.6 Solvent based binding energy
calculations

Using the 50 ns time frame of the trajectory of various protein-
ligand complexes, we calculated the MM-PBSA score for the
complexes. We observed that the molecules, namely, 3, 4, 5, 8, 9,
10 showed comparatively higher solvent-based binding affinities
than the ifenprodil molecule. The observed affinity
was −30.7786 kcal/mol for the control molecule. Notably,
molecule 3 had the highest binding affinity −42.4383 kcal/mol.
Molecules 9 and 10 had a very close binding affinity
of −40.7174 kcal/mol and −40.8428 kcal/mol. From this it can be
concluded that, namely, 3 to 10 all had relatively higher binding
affinities than the control molecule ifenprodil. Binding affinities are
summarized in Table 2.

4 Conclusion

In the current research, we used computational studies to
find brand new NMDAR inhibitors. Using pharmacophore-
based screening, we narrowed the search range to 11.32% by
shortlisting molecules whose pharmacophore properties
matched those of previously reported inhibitors. We were
able to achieve very good precision and recall values for our
models compared to the previously published pharmacological
models, which shows that these models have a high chance of
being used for shortlisting inhibitors. These final hits were
further analyzed by docking-based studies to assess their
binding affinity to the NMDAR. To our knowledge, the
integration of these two methods for virtual screening of
large databases against the NMDAR protein has not been
previously reported. Finally, we shortlisted 10 molecules with
a higher binding affinity than the control molecule Ifenprodil.
In addition, we identified 5 molecules with stable RMSD plots,
more hydrogen bonding, and higher binding affinities in a

FIGURE 3
The image indicates the 2D plots of various shortlisted top
inhibitor molecules after docking based evaluation.
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solvation-based scoring scheme than ifenprodil. The shortlisted
molecules can be evaluated for their antiproliferative effects on
NMDARs. By analyzing the interaction pattern of the selected

top molecules in the extended MD run, they can be further
optimized to increase potency. Furthermore, through MD
studies we were able to identify 3 groups, namely, the

FIGURE 4
(A–F) The image 5A and 5B indicates the ligand RMSD and Hydrogen Bonds of compounds 1-5 and control molecule ifenprodil. Image 5C and 5D
indicates the ligand RMSD and Hydrogen Bonds of compounds 6-10. Image 5E-5F indicates the SASA plots of ligand 1-10 and ifenprodil (control).
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benimidazole, pyrrolo-pyridine and the benzoxazin-3-one
group, which turned out to be highly stable within the
binding pocket of NMDAR. Also, it was observed that
compounds which were showing higher temporal stability
were mostly involved in Pi-Pi stacking interactions with the
Phe114, Phe176 of chain B along with hydrogen bond
interaction with Glu236 of chain B. Other crucial interaction
we observed was cation-Pi interaction of ligands with
Arg115 of chain A. The above mentioned groups as well as
molecular interaction features could be further explored to
develop new inhibitors with therapeutic potential against
NMDARs. In addition, recent work can be used as a
benchmark for the application of computational biology in
the treatment of AD.
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