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Endometrial cancer (EC) is a prevalent epithelial malignancy in the uterine corpus’s
endometrium andmyometrium. Regulating apoptosis of endometrial cancer cells
has been a promising approach for treating EC. Recent in-vitro and in-vivo studies
show that numerous extracts and monomers from natural products have pro-
apoptotic properties in EC. Therefore, we have reviewed the current studies
regarding natural products in modulating the apoptosis of EC cells and
summarized their potential mechanisms. The potential signaling pathways
include the mitochondria-dependent apoptotic pathway, endoplasmic
reticulum stress (ERS) mediated apoptotic pathway, the mitogen-activated
protein kinase (MAPK) mediated apoptotic pathway, NF-κB-mediated apoptotic
pathway, PI3K/AKT/mTOR mediated apoptotic pathway, the p21-mediated
apoptotic pathway, and other reported pathways. This review focuses on the
importance of natural products in treating EC and provides a foundation for
developing natural products-based anti-EC agents.
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1 Introduction

Endometrial cancer (EC) refers to a prevalent epithelial malignancy occurring in the
endometrium and myometrium of the uterine corpus. It is the most common gynecological
malignancy in developed countries and the second most common in developing countries
(Sung et al., 2021; Akazawa and Hashimoto, 2022). The morbidity of EC is estimated to
increase by more than 50% worldwide by 2040 (Moore and Brewer, 2017; Zhang S. et al.,
2019; Brooks et al., 2019). EC typically occurs in postmenopausal women, while a rising
incidence is observed in the premenopausal population due to the increasing onset of obesity
globally (Moore and Brewer, 2017). Conventional treatments for EC include surgical
resection, radiotherapy, chemotherapy, and hormonotherapy, depending on the cancer
stage (An et al., 2021). Though these treatment regimens benefit the patients, the outcomes
and prognosis of those at the advanced and recurrent stage or with metastasis remain poor
(Lu and Broaddus, 2020).

On the other hand, these options are often accompanied by adverse consequences. For
example, a hysterectomy is recommended for patients with higher-grade EC or myometrium
invasion, while these patients have to lose their childbearing ability (Lu and Broaddus, 2020).
For patients receiving chemotherapy, the issue of drug resistance would not be ignored,
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which could compromise the therapeutic effects of the agents
leading to treatment failure (Hashem et al., 2022). Various side
effects during the treatments pose multiple challenges to the
patients; they would suffer from a functional loss in different
behavioral and life domains and psychosocial distress (Concin
et al., 2021). Hence, it presents an urgent need to explore new
treatment alternatives for EC to improve patient outcomes and
prognosis.

The specific pathogenesis of EC remains to be fully elucidated.
Several physical, clinical, and genetic variables, including age, race,
proximity to the metabolic syndrome, unopposed estrogen
exposure, and genetic predispositions, are thought to have a role
in the unique etiology of EC (Cai et al., 2019; Passarello et al., 2019).
EC can be typically categorized into type-I and type-II due to their
molecular and histopathology features, based on a classification
system produced by Bokhman in 1983. Type-I accounts for most EC
cases (70%–80%). In the endometrium, periodic hyperplasia is
delicately controlled by programmed cell growth and death. The
long-term effects of estrogen without progestin antagonism, which
cause endometrial hyperplasia and atypical hyperplasia, followed by
carcinogenesis, may cause type-I EC. Endometrial hyperplasia is a
significant problem, and also the associated risk factors include
hyperinsulinemia, obesity, high estradiol levels, and advanced age.
Endometrial hyperplasia without atypical has a low (5%) risk of
progression to endometrial cancer over 20 years. However, atypical
glandular hyperplasia has a 27.5% risk of progression over 20 years
and up to 43% of such patients (Hutt et al., 2019). Atypical
hyperplasia, related to abnormal growth and proliferation of
endometrial cells, is a precursor lesion for type-I EC (Armstrong
et al., 2012; Braun et al., 2016; Urick and Bell, 2019), while its
molecular basis is still unclear (Terzic et al., 2021). Apoptosis is a
multistep programmed cell death process critical in clearing
senescent and aberrant cells. Studies have demonstrated that
inhibited cellular apoptosis is closely associated with the
pathogenesis of EC. Dysfunction or inhibition of cellular
apoptosis in the endometrium causes uncontrolled cell
proliferation, aberration, and carcinogenesis (Fisher, 1994; Zhang
et al., 2020). Given this situation, regulating apoptosis of EC cells
would be a promising target for developing effective anti-EC agents.

In recent years, natural products (NPs) have become a research
hotspot in cancer treatment (Huang et al., 2019; Atanasov et al.,
2021; Kim et al., 2021; Anjum et al., 2022; Liu et al., 2022; Huang
et al., 2023; Yuan et al., 2023). NPs refer to components, isolated
metabolites, and extracts from natural plants and be of multiple
bioactivities, such as regulating oxidative stress, inflammatory
response, and cellular apoptosis. These agents also reveal
therapeutic effects on various cancers (Shanmugam et al., 2016)
with low toxicity and few side effects (Torquato et al., 2017). The
detailed mechanisms underlying the anti-cancer properties of NPs
need to be further explored to facilitate the development of NP-
based anti-cancer agents. Both in-vitro and in-vivo studies
demonstrate that many NPs could effectively suppress EC cells’
growth, proliferation, and differentiation via regulating apoptosis
(Liu et al., 2012), indicating the apoptosis-regulatory properties of
NPs would be a promising direction for further exploration.

Therefore, we have performed a comprehensive search in
Google Scholar, PubMed, China National Knowledge
Infrastructure (CNKI), Wanfang Database, and VIP database,

from the inception to 31 December 2022, for studies regarding
NPs for the treatment of EC via inducing apoptosis, and have
reviewed the relevant pathways including mitochondria-
dependent apoptotic pathway, endoplasmic reticulum stress
(ERS) mediated apoptotic pathway, mitogen-activated protein
kinase (MAPK) mediated apoptotic pathway, NF-κB mediated
apoptotic pathway, PI3K/Akt mediated apoptotic pathway, p21-
mediated apoptotic pathway and others. We hope our work could
provide inspiration and valuable references for future studies.

2 Overview of apoptosis

Cellular apoptosis is a genetically-regulated programmed cell
death process that plays an essential role in cellular metabolism
(Hengartner, 2000). Inadequate apoptosis could cause pathological
changes like carcinogenesis, autoimmune diseases, and diabetes
(Nair et al., 2014). It was first reported by Kerr et al., in 1972,
describing it as characteristic morphological changes and a series of
enzyme-dependent biochemical processes (Kerr et al., 1972).
Apoptosis can be divided into the exogenous death receptor and
endogenous mitochondrial apoptosis pathways (Ricci and El-Deiry,
2007; Zhang et al., 2022).

The intrinsic pathway refers to apoptotic cascades triggered by
intracellular signals, such as DNA damage, aberrant cell metabolism,
calcium overload, chemotherapeutic drugs, radiation, high levels of
reactive oxygen species, and detachment from the extracellular matrix
(Chaudhry and Asselin, 2009). In a typical situation, there is a
dynamic balance between the expression of pro-apoptotic protein
and anti-apoptotic protein, which regulates physiological apoptosis.
Decreased expression of anti-apoptotic protein BCL-2 family
members or increased expression of pro-apoptotic proteins in
response to the various stimulus signals described previously leads
to an unbalance in the BCL/BAX ratio, which in turn initiates the
endogenous pathway. The intrinsic pathway is mainly mediated by
the B Cell lymphoma-2 (BCL-2) gene family (Ashkenazi, 2008; Nair
et al., 2014). Interactions between the BCL-2 protein family determine
mitochondrial outer membrane permeability (Green, 2022). The pro-
apoptotic BCL-2 effectors, such as BAX, BAK, BIM, BID, and PUMA,
promote apoptosis by causing mitochondrial outer membrane
permeabilization (MOMP), whereas anti-apoptotic BCL-2 effectors
inhibit this process, such as BCL-2, BCL-XL, BCL-W, BCL-2-A1 and
MCL1 (Carneiro and El-Deiry, 2020; Wolf et al., 2022). When BAX/
BAK is inserted into the mitochondrial membrane, cytochrome c
(Cyt-c) is released into the cytosol from the outer mitochondrial
membrane. Cytochrome c’s release is critical in cell apoptosis
(Santucci et al., 2019). Cytosolic cytochrome c combines with
apoptotic protease activating factor-1 (Apaf–1) and recruit pro-
caspase-9 to form the apoptosome, a multiprotein complex (Li
et al., 2017). Apoptosome is a multiprotein platform of caspase-9
activation to execute apoptosis (Malladi et al., 2009; Bratton and
Salvesen, 2010; Dorstyn et al., 2018; Avrutsky and Troy, 2021). Once
activated, caspase-9 could cleave and activate downstream pro-
caspase-3 and -7 in the apoptosome, which in turn triggers the
activation of further caspase-9 (Qin et al., 1999, 1; McComb et al.,
2019, 7). If caspase-9 successfully processes some caspase-3 or
caspase-7 in this situation, XIAP can bind to and suppress these
active effector caspases (Bratton and Salvesen, 2010).
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The extrinsic pathway is mainly triggered by extracellular
stimuli (Jan and Chaudhry, 2019; Kashyap et al., 2021). The
extracellular ligands such as tumor necrosis factor (TNF), Fas
ligand (Fas-L), death receptor3 ligand (DR3L), and TNF-related
apoptosis-inducing ligand (TRAIL) recognize and bind to their
cognate death receptors (such as TNFR, Fas, DR3, DR4 or DR5)
(Mandal et al., 2020). Procaspase-8 binds to the exposed DED of
death receptor-related FADD through a pocket in its DED1 to form
a death-inducing signaling complex (DISC) (Jiang M. et al., 2021)
and subsequently activate pro-caspase-8. It can cleave and activate
the downstream targeted molecules, including executor caspase-3
and caspase-7 and turn on the exogenous apoptotic cell death
response (Jiang M. et al., 2021). Activated caspase-8 is a crucial
protein of cross-talk signal way and could cleave Bid into tBid. Bid is
generally thought to be inactive as an apoptosis inducer. tBid could
induce mitochondrial outer membrane permeabilization (MOMP)
in cells and induce the release of cytochrome c (CytC) and Smac/
DIABLO from the mitochondria. Eventually, tBid can initiate the
mitochondrial apoptosis pathway and makes significant in the
endogenous apoptotic pathway by activating caspase-9 (Kantari
and Walczak, 2011).

3 Endometrial carcinogenesis

Carcinogenesis in the endometrium is a complex and multistep
process. The specific mechanisms remain elusive while several
physical, pathological, and genetic factors are considered to be
involved, such as age, race, concomitance with metabolic
syndrome, unopposed estrogen exposure, and genetic
predispositions (Cai et al., 2019; Passarello et al., 2019).
Dysregulation of cellular apoptosis in the endometrium causes
uncontrolled cell proliferation, aberration, and carcinogenesis
(Fisher, 1994; Mirakhor Samani et al., 2018; Zhang et al., 2020).

EC can be typically categorized into type-I and type-II due to
their molecular and histopathological features (Rodríguez-Palacios
et al., 2022; Karia et al., 2023), based on a classification system
produced by Bokhman in 1983. The type-I EC, endometrioid
tumors, accounts for most EC cases (70%–80%). The type-I EC
is derived from a precancerous condition called endometrial
hyperplasia, whereas the type-II is hormone-independent
pathogenesis without known precursor lesions (Huvila et al.,
2013). Hyperplasia is a significant problem, and the associated
risk factors include hyperinsulinemia, obesity, high estradiol
levels, and increasing age (Singh et al., 2020). Endometrial
hyperplasia without atypical has a low (5%) risk of progression
to endometrial cancer over 20 years. However, atypical glandular
hyperplasia has a 27.5% risk of progression over 20 years and up to
43% of such patients (Hutt et al., 2019). Atypical hyperplasia may
further evolve into complex atypical hyperplasia (CAH). CAH is a
precursor lesion for endometrioid-type endometrial cancer and is
related to abnormal growth and proliferation of endometrial cells
(Armstrong et al., 2012; Braun et al., 2016; Urick and Bell, 2019).

Clinical studies have found that the normal apoptotic
mechanisms of many malignant cells are inhibited, preventing
the body from early clearance of cells that may be at risk of
cancer. Endometrial periodic hyperplasia is under delicate control
by programmed cell growth and death. Apoptosis typically occurs

between the human endometrium’s late secretory and menstrual
stages (Otsuki, 2001). Compared to the proliferating phase, the
expression of BCL-2 and the activation of caspase-3, -8, and -9 are
higher in secretory to menstruating stages (Otsuki, 2001). It is
reported that EC patients are resistant to apoptosis due to the
unbalance of the anti- and pro-apoptotic molecules. Increasing
evidence has suggested that anti-apoptotic mediators, such as
BCL-2, Mcl-2, and IAP (Ai et al., 2006), are downregulated in
EC patients, whereas the pro-apoptotic proteins, such as tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL), p53
(Kohlberger et al., 1996; Geisler et al., 1999; Edmondson et al.,
2017) upregulated modulator.

Cellular apoptosis is crucial in endometrial hyperplasia, atypical
hyperplasia, complex atypical hyperplasia, and eventually
endometrial cancer. Given this situation, regulating apoptosis of
EC cells would be a promising target for developing effective anti-EC
agents and could provide a possible direction for developing anti-EC
drugs. In almost all cases, detailed information of NPs and their
potential effects with mechanisms on modulating apoptosis in EC is
illustrated in Table 1, and the chemical structures of isolated
metabolites are summarized in Table 2.

4 Effects and mechanisms of NPs on
apoptosis in EC

4.1 Mitochondria-dependent apoptotic
pathway

Mitochondria is the core organelle for energy synthesis and
supply, thereby maintaining cellular function and managing cell life
and death (Abate et al., 2020; Wang and Roh, 2020). Mitochondrial
malfunction often triggers stress-mediated apoptosis. Since
resistance to apoptosis is decisive for degenerative diseases and is
a hallmark of cancer, the basis of cellular health is the correct
functioning of mitochondria. Internal apoptotic signals, such as p53-
PUMA or death receptor signal pathways, could alter the
mitochondrial membrane permeability (MMP), releasing Cyto-c
and other apoptosis-related factors into the cytosol to form the
apoptosome. The apoptosome recruits and activates caspase-9,
which in turn activates the effector caspases (caspase-3, -6, -7,
etc.). Subsequently, the down-stream cascades by cleaving poly
ADP-ribose polymerase (PARP) and actin substrates. Current
studies demonstrate that some NPs effectively treat EC by
modulating the mitochondria-dependent apoptotic pathway. All
the relevant NPs that activate apoptosis via the mitochondria-
dependent pathway are listed in Figure 1.

4.1.1 Extracts from NPs
In early 2009, Li et al. studied the anti-EC effects of the Tian-

Long compound (TL compound) in vitro. They found that TL
compound (0.05%–0.5%) could significantly suppress the
proliferation of Ishikawa cells by activating the mitochondrial-
dependent apoptotic pathway. The potential mechanisms could
be the upregulation of caspase-9 and caspase-3 and the
downregulation of BCL-2 (Li et al., 2009). Liu et al. reported that
a Steam Distilled Extract of Ginger (SDGE, 0.025–12.50 μg/ml)
could induce apoptosis in Ishikawa and ECC-1 cells. The possible

Frontiers in Pharmacology frontiersin.org03

Zhou et al. 10.3389/fphar.2023.1209412

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1209412


TABLE 1 Potential effects and mechanisms of natural products on modulating apoptosis in EC.

Potential
pathways

Detailed mechanisms Extracts/monomers (dose/
concentration)

Cell/Animal model Related targets Refs

Mitochondria-
dependent pathway

Up-regulating caspase-9, -3;
Down-regulating bcl-2

Tian-Long compound (0.05%–0.5%) Ishikawa cell Caspase-9, -3, bcl-2 Li et al. (2009)

Increasing p53 phosphorylation;
Decreasing bcl-2

SDGE (0.025–12.50 μg/ml) Ishikawa, ECC-1 cells p53, bcl-2 Liu et al. (2012)

Up-regulating bad, bak, bax; Up-
regulating bcl-2, bcl-xL, caspase-

9, -3, -8

SOE (50–150 μg/ml) RL95-2 cell bad, bak, bax, bcl-2, bcl-
xL, caspase-9, -3, -8

Chang et al.
(2014)

Up-regulating caspase-3, bax;
Down-regulating bcl-2

Zedoary Turmeric Oil
(120–960 mg/L)

HEC-1B caspase-3, bax, bcl-2 Li et al. (2021)

Increasing DR5, bim, PUMA;
Decreasing survivin

Flavokawain B (1.1–8.8 μM) SK-LMS-1, ECC-1,
T-HESC cells

DR5, bim, p53, survivin Eskander et al.
(2012)

Incuding Ca2+ influx; Down-
regulating bcl-2; Up-regulating

bax, caspase-3, -9

Hyperin (0–500 μM) RL95-2 cell Bcl-2, bax, caspase-3, -9 Li et al. (2012)

Decreasing bcl-2, bcl-xL;
Increasing caspase-3, -9, PARP

Cucurbitacin D (0.5–4 μM) Ishikawa, HHUA, HEC59 Bcl-2, bax, caspase-3, -9,
PARP

Ishii et al. (2013)

Decreasing bcl-2; Increasing p53,
caspase-9, -3

Triptolide (10–320 nM) HEC-1 B Cell Bcl-2, p53, caspase-9, -3 Wang et al.
(2014)

Increasing ROS, caspase-9, -8, -3,
cyto-c

α-terthienylmethanol (0–2 μM) HEC-1A, Ishikawa cells ROS, caspase-9, -8, -3,
cyto-c

Lee et al. (2015)

Decreasing bcl-2; Increasing
caspase-3, PARP

Ginsenoside Rh2 (20, 40 μM) Ishikawa, HEC-1A Bcl-2, caspase-3, PARP Kim et al.
(2017b)

Up-regulating caspase-3, bax;
Down-regulating bcl-2;
Increasing ROS, PARP,

p-ERK1/2

Hinokitiol (1–50 μM) Ishikawa, HEC-1A, KLE
cells

Caspase-3, bax, bcl-2,
PARP, ERK

Chen et al.
(2021)

Increasing cyto-c, caspase-3, -9,
bax, bim; Decreasing bcl-xL

XIAP, survivin

Curcusone C (0.1nM-100 μM) HEC-1A, hESCs Cyto-c, caspase-3, -9,
bax, bim, bcl-xL XIAP,

survivin

An et al. (2021)

ERS mediated stress Activating GPR78; Increasing
CHOP

Realgar quantum dots (0–30 μg/ml) JEC cells GPR78, CHOP Li et al. (2009)

Increasing Ca2+ influx, caspase-
3, -7, CHOP, PARP

Cannabinoids (0.01–25 μM) Ishikawa, Hec50co Caspase-3, -7, CHOP,
PARP

Fonseca et al.
(2018)

Increasing PERK, p-eIF2a, ATF4;
Activating Hippo signaling

pathway

Wogonoside (50μM, 80 mg/kg) Ishikawa PERK, p-eIF2a, ATF4,
Hippo

Chen et al.
(2019)

BALB/c-nu mice

Up-regulating caspase-3, PARP,
JNK, p38; Down-regulating ERK;

Activating Akt

ProEGCG (20, 40, 60 μM) AN3 CA, RL95–2 cells Caspase-3, JNK, p38,
ERK,Akt

Man et al. (2020)

MAPK mediated
pathway

Activating ERK, JNK Ellipticine (1–10 μM) RL95-2 cell ERK, JNK, caspase-7, -8,
-9, -3, bid, XIAP, AIF,

cyt-c

Kim et al. (2011)

Up-regulating caspase-7, -8,
-9. −3; Down-regulating Bid,

XIAP

Increasing bax, ERK1/2;
Decreasing bcl-2

Icaritin (0–10 μM) HeC-1A ERK, bax, bcl-2 Tong et al.
(2011)

Decreasing p-ERK; Increasing
caspase-3

Annonacin (0.2–100 μg/ml) ECCs cells ERK, caspase-3 Chung et al.
(2017)

Up-regulating caspase-3, bax,
bik; Down regulating bcl-2, ESR1

Hesperidin (5–50 μM) ECC-1 cells Caspase-3, bax, bik, blc-
2, ESR1

Cincin et al.
(2018)

Up-regulating caspase-3, bax,
p38, ERK, JNK, ROS; Down-

regulating bcl-2, Akt

Emodin (1.25, 2.5, 5 μM) KLE cells Caspase-3, bax, bcl-2,
p38, ERK, JNK, Akt

Jiang et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) Potential effects and mechanisms of natural products on modulating apoptosis in EC.

Potential
pathways

Detailed mechanisms Extracts/monomers (dose/
concentration)

Cell/Animal model Related targets Refs

Inhibiting ERK1/
2 phosphorylation, c-Jun

Curcumin (10–80 μM) Ishikawa ERK, c-Jun Zhang et al.
(2019b)

NF-κB mediated
pathway

Decreasing NF-κBp50; Up-
regulating IκBα, caspase-3

Scutellaria baicalensis; Fritillaria
cirrhosa (1.5–500 μg/ml)

EM-E6/E7/TERT,
Ishikawa, HEC-1B Cells

NF-κBp50, IκBα,
caspase-3

Kavandi et al.
(2015)

Inhibiting NF-κB; Down-
regulating caspase-3

Curcumin (0–150 μM) Ishikawa, HEC-1 NF-κB, caspase-3 Xu et al. (2018)

Inhibiting VEGF/PI3K/Akt
pathway

Panaxnotoginsengsaponins
(50–200 μg/ml)

Ishikawa, HEC-1A cells VEGF, Akt Tan et al. (2016)

P13K/Akt/mTOR
pathway

Decreasing p-AKT; Up-
regulating caspase-3; Regulating

Akt/mTOR pathway

Resveratrol (0.1, 100 μg);
(25–200 μmol)

HeLa, Hec-1A, KLE,
RL95-2, Ishikawa and

EN1078D cells

p-AKT, caspase-3,
mTOR, p38-AMPK

(Sexton et al.,
2006) (Xu et al.,

2020)

Decreasing p-AKT, p-ERK1/2;
Increasing caspase-3

Pseudolaric acid B (0.5–10 μmol/l) Ishikawa cells AKT, ERK, caspase-3 Wang et al.
(2017)

Modulating miR-106b/PTEN/
AKT/mTOR pathway; Up-

regulating caspase-3, bax; Down-
regulating bcl-2

Shikonin ((10–20μM; 0.3–0.7 μg/ml) Ishikawa, HEC-1A, KLE,
RL95-2 cells

miR-106b, PTEN, AKT,
mTOR, caspase-3, bax,

bcl-2

Yin, 2016; Huang
and Hu (2018)

Increasing bax, Decreasing bcl-2,
p-mTOR, p-Akt, p-P13K

Kaempferol (0–20 μM) MFE-280 Bax, bcl-2, P13K, Akt,
mTOR

Lei et al. (2019)

Up-regulating bax; Down-
regulating bcl-2, P13K, Akt,

mTOR

Amygdalin (8–128 mg/L) EECs, RL95-2, HEC-1B Bax, bcl-2, P13K, Akt,
mTOR

Ye et al. (2020)

Decreasing P13K, Akt, mTOR
Up-regulating bax, bak, bad,
cyto-c, caspase-3, -9; Down-

regulating bcl-xL

Asparanin A (6–18 μM) Ishikawa cells P13K, Akt, mTOR, bax,
bak, bad, cyto-c, caspase-

3, -9, bcl-xL

Zhang et al.
(2020)

Female BALB/c-nu mice

Up-regulating bax, caspase-3, -9,
PARP, PETN; Down-regulating

P13K, Akt

Osthole (25–200 μM) EC-KLE, Ishikawa cells P13K, Akt, PETN, bax,
caspase-3, -9, PARP

Liang et al.
(2021)

p21-mediated
pathway

Regulating p53-independent
pathway

Psammaplin A (1–10 μg/ml) Ishikawa cells p21WAF1, p53 Ahn et al. (2008)

Down-regulating cyclin A, cyclin
D3, bcl-2 and bcl-xL; Up-

regulating p21WAF1, caspase-9

Bufalin (1 ng/ml) Ishikawa, HHUS, HEC-
1B, NHEEC cells

Cyclin A, cyclin D3, bcl-2
and bcl-xL, p21WAF1,

caspase-9

Takai et al.
(2008)

Up-regulating p21; Down-
regulating CDK4, MMP2,

MMP9

Cinnamaldehyde (3.75, 7.5,
15 μg/ml)

Ishikawa cells p21, CDK4, MMP2,
MMP9

Dong and Li
(2021)

Other Not concluded Rice bran fraction (100, 200,
300 μg/ml)

Sawano cell Not concluded Fan et al. (2000)

Up-regulating BAG3, caspase-
4, -5

PCAE (0–4 mg/ml) Ishikawa cells BAG3, caspase-4, -5 Tsai et al. (2015)

Increasing ROS, bax; Decreasing
bcl-2; Inhibiting pSTAT1,
pSTAT2, pJAK1, pJAK2

Tanshinone l (0–40 μM) HEC-1-A cells Bax, bcl-2, STAT, JAK Li et al. (2018)

Up-regulating caspase-3, -7,
PARP

Isoliquiritigenin (5–100 μM) HEC-1-A, Ishikawa Caspase-3, -7, PARP Wu et al. (2016a)

Inhibiting STAT3; Decreasing
bcl-2, survivin

Silibinin (100, 150, 200 μM) Ishikawa, RL-952 STAT3, bcl-2, survivin Shi et al. (2019)

Increasing miR-424 caspase-3,
-9; Decreasing CPEB2

Osthole (50, 100, 200 μM) Ishikawa, KLE miR-424, CPEB2,
caspase-3, -9

Lu et al. (2020)

Increasing caspase-3 Gallic Acid (5–100 μg/ml) Ishikawa cells Caspase-3 Bulbul et al.
(2021)

(Continued on following page)
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mechanisms are closely related to up-regulating
p53 phosphorylation and down-regulating BCL-2 (Liu et al.,
2012, 5). Later in 2014, Chang et al. investigated the pro-
apoptotic effects of Siegesbeckia orientalis Ethanol Extract (SOE,
50–150 μg/ml) on Human Endometrial RL-95 Cancer Cells and
found that SOE was of significant anti-proliferative and apoptotic
effects in RL95-2 cells via activating both intrinsic and extrinsic
signaling pathways. A study on its specific mechanisms revealed that
SOE could upregulate the expression of Bad, Bak, and Bax, caspase-
3, -9, and -8, whereas downregulate that of BCL-2 and BCL-xL
(Chang et al., 2014). In 2021, Li et al. reported that Zedoary
Turmeric Oil (120–960 mg/L) could significantly inhibit the
proliferation of HEC-1-B cells and induce apoptosis by up-
regulating the expressions of Bax and caspase-3 and down-
regulating the expression of BCL-2 (Li et al., 2021).

4.1.2 Monomers from NPs
In 2012, Zhou et al. reported that Flavokawain B (FKB,

1.1–8.8 μM) could significantly inhibit the growth of SK-LMS-
1 and ECC-1 cell lines compared to non-malignant human
endometrium fibroblast-like cells. The potential mechanisms
might be associated with G2/M arrest and induction of
mitochondrial-dependent apoptosis via upregulation of the pro-
apoptotic proteins DR5, Puma, and Bim and downregulation of
survivin, an inhibitor of apoptosis protein (IAP) (Eskander et al.,
2012) and a promising therapeutic target as a new therapy for cancer
treatment (Martínez-García et al., 2019). In 2012, Li et al. studied the
anti-proliferative activity of Hyperin on RL952 cells. The results
showed that Hyperin (0–200 μM) could suppress the viability of
RL952 cells by inducing apoptosis, which would attribute to the
regulation of Ca2+ influx, downregulation of BCL-2, and up-
expression of bax, caspase-3,-8, and -9 (Li et al., 2012). In 2013,
Cucurbitacin D (0.5–4 μM), extracted from Extrasynthese, proved
the effect of induction of apoptosis via decreasing BCL-2, BCL-xL,
and increasing caspase-3, caspase −9, PARP (Ishii et al., 2013).
Triptolide (TP, 10–320 nM), a validated component purified from
Tripterygium wilfordii Hook. f. showed to promote apoptosis via a
p53-independent mitochondrial pathway. The possible mechanisms
are closely related to the reactivation of the p53 to induce apoptosis
via downregulation of the expression of BCL-2, and upregulation of
caspase-9,-3 in HEC-1B Cells. In 2015, an in vitro study by Lee et al.
suggested that α-terthienylmethanol (0–2 μM), isolated from Eclipta
prostrata, and could induce apoptosis in HEC-1A and Ishikawa cells
via increasing expression of Pro-caspase-3, 8, 9, and Cyto-c in a

time-dependent manner and increasing ROS generation. The author
also suggested that the apoptosis would be likely mediated by both
the intrinsic and extrinsic pathways in ECCs (Lee et al., 2015). Later
in 2017, Kim et al. found that the Ginsenoside Rh2 (20, 40 μM) could
induce apoptosis in Ishikawa and HEC-1A cells via activation of
caspase-3, PARP, and inhibition of BCL-2 (Kim J. H. et al., 2017). In
2021, Chen et al. observed that Hinokitiol (1–50 μM) could induce
ROS-Mediated Apoptosis and p53-Driven Cell-Cycle Arrest in
Endometrial Cancer Cell Lines (Ishikawa, HEC-1A, KLE)
through up-regulating ROS,bax,caspase-3, PARP, p-ERK1/2,
whereas down-regulating BCL-2 (Chen et al., 2021). In 2021, an
in vivo study by Junxia et al. demonstrated that the Curcusone C
(0.1 nM–100 μM) treatment caused significant anti-proliferative
and apoptotic effects in Ishikawa and HEC-1A cells by inducing
the release of Cytochrome c and increasing caspase-3,-9, Bax and
bim, whereas decreasing X-linked inhibitor of apoptosis protein
(XIAP), survivin, and BCL-xL (An et al., 2021).

4.2 Endoplasmic reticulum stress mediated
pathway

The endoplasmic reticulum (ER) is the central subcellular region
for protein synthesis, folding, and transport. It also plays a vital role
in intracellular Ca2+ homeostasis and various metabolic processes
(Clarke et al., 2014; Wang et al., 2019). Cellular stress conditions can
activate endoplasmic reticulum stress (ERS) to restore endoplasmic
reticulum homeostasis and normal cellular function. In response to
ER stress stimuli, such as the accumulation of unfolded/misfolded
proteins in the ER above a critical threshold, the unfolded protein
response (UPR) is initiated through three signaling cascades
involving the protein kinase RNA-like ER kinase (PERK),
inositol-requiring enzyme-1 (IRE1), and activating transcription
factor-6 (ATF6) (Ron and Walter, 2007; Wang and Kaufman,
2016; Marciniak, 2019). However, if it fails, UPR triggers cell
death (Wu F.-L. et al., 2016). ER stress and UPR have been
shown to play critical roles in cancer pathogenesis, progression,
and therapeutic response (Oakes et al., 2015). Increasing attention
has been paid to ER stress’s essential role in endometrial
carcinogenesis and the drug-resistance during chemotherapy.
Several studies have demonstrated that NPs would be promising
anti-cancer effects on EC via targeting ERS-mediated apoptosis. The
potential effectiveness and mechanism of NPs on ERS-mediated
apoptosis are summarized in Figure 2.

TABLE 1 (Continued) Potential effects and mechanisms of natural products on modulating apoptosis in EC.

Potential
pathways

Detailed mechanisms Extracts/monomers (dose/
concentration)

Cell/Animal model Related targets Refs

Down-regulating XIAP, bcl-xL,
pAKT via hnRNPA1

Esculetin (0–120 μM) HEC-1B, Ishikawa cells hnRNPA1, XIAP, bcl-xL,
pAKT

Jiang et al.
(2021b)

Up-regulating caspase-3 Silymarin (6 μg/ml) Ishikawa cells caspase-3 Chen et al.
(2019)

DR5, death receptor 5; PUMA, p53 Upregulated Modulator of Apoptosis; SDGE, steam distilled extract of ginger; SOE, siegesbeckia orientalis ethanol extract; CHOP, C/EBP, homologous

protein; GPR78, G-protein coupled receptor 78; ERK, extracellular-signal-regulated kinase; JNK, c-Jun N-terminal kinase; ProEGCG, prodrug of (−)-epigallocatechin-3-gallate; AMPK, AMP-

activated protein kinase; XIAP, X-linked inhibitor of apoptosis protein; AIF, apoptosis inducing factor; ESR1, estrogen receptor I; Cyto-c, cytochrome-c; β-HIVS, β-Hydroxyisovalerylshikonin;

PARP, poly-ADP, ribose polymerase; BAG3, BCL-associated athanogene 3; VEGF, vascular endothelial growth factor; PCAE, pogostemon cablin aqueous extract.
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TABLE 2 Detailed information and chemical structures of natural products.

Monomers Origin Systematic name Chemical structures

Flavokawain B Piper methysticum (2E)-1-(2-Hydroxy-4,6-dimethoxyphenyl)-3-phenyl-2-propen-1-one

Hyperin Rhododendron dauricum L. 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl β-D-
galactopyranoside

Cucurbitacin D Pyrus communis
subsp. communis

(2S,4R,9β,16α,23E)-2,16,20,25-Tetrahydroxy-9,10,14-trimethyl-4,9-cyclo-
9,10-secocholesta-5,23-diene-1,11,22-trione

Triptolide Tripterygium wilfordii Hook.f. (3bS,4aS,5aS,6R,6aR,7aS,7bS,8aS,8bS)-6-Hydroxy-6a-isopropyl-8b-methyl-
3b,4,4a,6,6a,7a,7b,8b,9,10-decahydrotrisoxireno [6,7:8a,9:4b,5]phenanthro
[1,2-c]furan-1(3H)-one

alpha-
Terthienylmethanol

Eclipta prostrata (L.) L. 2,2’:5′,2″-Terthiophen-5-ylmethanol

Ginsenoside Rh2 Panax ginseng C.A.Mey. (3β,12β)-12,20-Dihydroxydammar-24-en-3-yl β-D-glucopyranoside

Hinokitiol Chamaecyparis obtusa var.
formosana (Hayata) Hayata

2-Hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one

Curcusone C Jatropha curcas L. (2S,6aS)-2-Hydroxy-7-isopropenyl-2,5-dimethyl-10-methylene-
2,3,6a,7,8,9,10,10a-octahydrobenzo [e]azulene-1,4-dione

(Continued on following page)
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TABLE 2 (Continued) Detailed information and chemical structures of natural products.

Monomers Origin Systematic name Chemical structures

Wogonoside Scutellaria baicalensis Georgi 5-Hydroxy-8-methoxy-4-oxo-2-phenyl-4H-chromen-7-yl β-D-
glucopyranosiduronic acid

Ellipticine Ochrosia elliptica Labill. 5,11-Dimethyl-6H-pyrido [4,3-b]carbazole

Icaritin Epimedium brevicornu Maxim. 3,5,7-Trihydroxy-2-(4-methoxyphenyl)-8-(3-methyl-2-buten-1-yl)-4H-
chromen-4-one

Annonacin Annona muricata L. (5S)-5-Methyl-3-[(2R,8R,13R)-2,8,13-trihydroxy-13-{(2R,5R)-5-[(1R)-1-
hydroxytridecyl]tetrahydro-2-furanyl}tridecyl]-2(5H)-furanone

Hesperidin Citrus × aurantium L. (2S)-5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-
chromen-7-yl 6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside

Emodin Rheum palmatum L. 1,3,8-Trihydroxy-6-methyl-9,10-anthraquinone

Curcumin Curcuma longa L. (1Z,6Z)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione

Scutellaria baicalensis Scutellaria baicalensis Georgi 3-(9,9-Dimethyl-10(9H)-acridinyl)-N,N-dimethyl-1-propanamine

(Continued on following page)
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TABLE 2 (Continued) Detailed information and chemical structures of natural products.

Monomers Origin Systematic name Chemical structures

Resveratrol Red wine 5-[(E)-2-(4-Hydroxyphenyl)vinyl]-1,3-benzenediol

Pseudolaric acid B Larix kaempferi (Lamb.) Carrière (2E,4E)-5-[(1R,7S,8S,9R)-7-Acetoxy-4-(methoxycarbonyl)-9-methyl-11-
oxo-10-oxatricyclo [6.3.2.01,7]tridec-3-en-9-yl]-2-methyl-2,4-pentadienoic
acid

Shikonin Lithospermum erythrorhizon
Siebold & Zucc.

5,8-Dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-penten-1-yl]-1,4-
naphthoquinone

Kaempferol Kaempferia galanga L. 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

Amygdalin Prunus amygdalus Batsch (2R)-{[6-O-(β-D-Glucopyranosyl)-β-D-glucopyranosyl]oxy}(phenyl)
acetonitrile

Asparanin A Asparagus officinalis L. (3β,5β,25S)-Spirostan-3-yl 2-O-β-D-glucopyranosyl-β-D-glucopyranoside

Osthole Cnidium monnieri (L.) Cusson 7-Methoxy-8-(3-methyl-2-buten-1-yl)-2H-chromen-2-one

Isoliquiritigenin Glycyrrhiza glabra L. (2E)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one

(Continued on following page)
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4.2.1 Extracts from NPs
In 2015, Wang et al. found that Realgar quantum dots (RQDs,

0–80 μg/ml) can induce apoptosis in vitro by increasing the
expression level of GRP78 (BIP) and GADD153 (CHOP). Their
studies demonstrated that RQDs could activate ER stress and

mitochondrial pathways (Wang et al., 2015). Later in 2018,
Fonseca et al. reported that Cannabinoids (0.01–25 μM) could
induce apoptosis in vitro by activating TRPV1 and increasing
caspase-3,-7, Ca2+ influx, CHOP, and cleaved PARP (Fonseca
et al., 2018).

TABLE 2 (Continued) Detailed information and chemical structures of natural products.

Monomers Origin Systematic name Chemical structures

Esculetin Fraxinus chinensis
subsp. rhynchophylla (Hance)
A.E.Murray

6,7-Dihydroxy-2H-chromen-2-one

Silymarin Silybum marianum (L.) Gaertn. 3,5,7-trihydroxy-2-[3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-
2,3-dihydro-1,4-benzodioxin-6-yl]-2,3-dihydrochromen-4-one

FIGURE 1
Natural products modulate apoptosis of ECCs through mitochondria-dependent pathway.
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4.2.2 Monomers from NPs
In 2019, Chen et al. found that Wogonoside (50 μM, 80 mg/kg),

a bioactive flavonoid component derived from Scutellaria baicalensis

Georgi, can induce apoptosis and inhibit cell proliferation
depending on the ER stress-Hippo signaling axis in vitro and in
vivo (in Ishikawa and BALB/c-nu mice) via increasing the

FIGURE 2
Natural products modulate apoptosis of ECCs through ERS-mediated pathway.

FIGURE 3
Natural products modulate apoptosis of ECCs through MAPK mediated pathway.
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expression of protein kinase-like endoplasmic reticulum kinase
(PERK), binding protein (Bip), p-eIF2a, and transcription factor
4 (TCF4) (Chen et al., 2019).

4.3 MAPK-mediated apoptotic pathway

Mitogen-activated protein kinase (MAPK) pathway is an
important signal transduction pathway in eukaryotic organisms.
MAPK signaling pathways are involved in cell growth, migration,
proliferation, differentiation, and apoptosis (Kim and Choi, 2010).
Each MAPK signaling cascade consists of at least three layers of
protein kinases: MAP3K, MAPKK, and MAPK. These cascades can
be divided into extracellular signal-regulated kinase (ERK)1/2, c-Jun
N-terminal kinase (JNK), P38 MAPK (P38), ERK3/4, and ERK7/8
(Chuderland and Seger, 2005; Dhillon et al., 2007). Among them, the
JNK and p38 MAPK pathways are mainly related to cell stress and
apoptosis, while ERK/MAPK signaling pathway is the most
intensively studied MAPK signaling pathway, which is closely
associated with cell proliferation and differentiation (Chuderland
and Seger, 2005). However, the abnormal regulation of the MAPK
signaling pathway plays a significant role in carcinogenesis. It is
abundantly reported that NPs could be a promising way to treat EC
to induce apoptosis through the MAPK pathway. The potential
effectiveness and mechanism of NPs on MAPK-mediated apoptosis
are summarized in Figure 3.

4.3.1 Extracts from NPs
In another study by Man GCW et al., in 2020, the apoptotic

effects of a prodrug of (−)-epigallocatechin-3-gallate (ProEGCG, 20,
40, 60 μM) showed a highly anti-proliferative activity on tumor cells
in both EC xenografts cultured in vivo and RL95–2 and AN3 CA EC
cells in vitro via promoting apoptosis, which was associated with
activation of Akt, Up-regulating caspase-3, PARP, JNK, p38 whereas
down-regulating ERK (Man et al., 2020).

4.3.2 Monomers from NPs
Ellipticine (5,11-dimethyl-6H-pyrido [4,3-b]carbazole) is a

bioactive component of Ochrosia elliptical, which has been
demonstrated to be of pro-apoptotic effect on EC-RL95-2 cells
(0.1–20 μM), and the potential mechanisms are related to the
activation of ERK, JNA, as well as the increase of ROS
generation. Ellipticine can also regulate the XIAP transcription
and mediate the caspase cascade reaction to induce cellular
apoptosis (Kim et al., 2011). In 2011, Tong et al. reported that
Icaritin (0–10 μM), a compound from Epimedium Genus, possessed
significant anti-proliferative and apoptosis-inducing activities in
Hec1A cells, the potential mechanisms are correlated to
increasing bax, ERK1/2 whereas decreasing BCL-2 (Tong et al.,
2011). Another investigation in 2017 by Chung et al. studied the
anti-proliferative effects of Annonacin (0.2–100 μg/ml) on both EC
cell lines (ECC-1 and HEC-1A) and primary cells (EC6-ept and
EC14-ept) and found that Annonacin has significant anti-
proliferative activity via inhibition of ERK signaling pathway
through down-regulating p-ERK whereas increasing caspase-3
(Chung et al., 2017). Hesperidin (Hsd) is the most active
flavanone glycoside in citrus flavonoids. Studies in 2018 found
that Hsd (5–50 μM) could downregulate MAPK, PI3K, STAT,

and mTOR signal transduction pathways for regulating apoptotic
and autophagic responses. The underlying mechanism may be
related to up-regulating caspase-3, bax, and bik, whereas
downregulate BCL-2 and ESR1 (Cincin et al., 2018). In 2018,
Jiang et al. found that Emodin (1.25, 2.5, 5 μM), a significant
component of rhubarb, can induce apoptosis in vivo (Xenograft
Tumor Models) and in vitro in a time- and dose-dependent manner
via inhibiting the PI3K/Akt pathways while activating MAPK
signaling, and after Emodin treatment, caspase-3, bax, p38, ERK,
JNK, and ROS were significantly upregulated whereas BCL-2 and
Akt were downregulated (Jiang et al., 2019). Curcumin (10–80 μM),
reported to have antioxidant, anti-inflammatory, liver protection,
analgesia and antiarthritis, lipid modification, immune regulation,
and anti-diabetic properties, could induce apoptosis via Inhibiting
the Phosphorylation of ERK/c-Jun pathway via reducing mRNA
expression of ERK2 and JUN genes (Zhang Z. et al., 2019).

4.4 NF-κB mediated apoptotic pathway

NF-κB is a transcription factor that usually exists as a dimer.
p65/relA and p50 are the most common dimeric forms of NF-κB,
and its dimers have two states: inactivation and activation. In the
“resting” state of cell c, NF-κB is inactive and binds to the inhibitor
IκBα on the cell membrane, preventing it from entering the nucleus
to activate genes. When external signals stimulate the cell, IκBα is
degraded, NF-κB is released, and its nuclear localization sequence
(NLS) is exposed. NF-κB rapidly enters the nucleus from the cell
membrane and binds to specific sequences on nuclear DNA to
initiate or enhance transcription of related genes, which can control
protein transcription and participate in physiological processes such
as cell proliferation and apoptosis, stress response, and cytokine
release. Recently, the NF-κB pathway has been considered a
promising therapeutic target for EC therapy. Studies have shown
NPs can induce apoptosis in ECCs and prevent endometrial
hyperplasia. The potential mechanisms of NPs on NF-κB
mediated apoptosis are summarized in Figure 4.

In 2015, it was reported by Kavandi et al. found that the anti-
proliferative properties of the herbs Scutellaria baicalensis (SB) and
Fritillaria cirrhosa (FC,1.5–500 μg/ml) on EM-E6/E7/TERT,
Ishikawa, and HEC-1B Cells closely related to NF-κB pathway
via regulation of decreasing NF-κB p50 whereas up-regulating
IκBα and caspase-3 (Kavandi et al., 2015). Afterward, Xu et al.,
in 2018 recorded that Curcumin (0–150 μM) extracted from the
rhizome of the plant Curcuma longa could induce apoptosis through
negative regulation of the NF-κB pathway in vitro in vivo, and the
molecular mechanisms might be related to inhibiting NF-κB and
down-regulating caspase-3 (Xu et al., 2018).

4.5 PI3K/AKT/mTOR pathway

PI3K, or phosphatidylinositol 3-kinase, is a family of lipid
kinases that control different processes in mammalian cells,
including cell proliferation, survival, differentiation, activation of
effector functions, and metabolism (Ali et al., 2015). The PI3K
family consists of three classes of PI3Ks (I-III) (Narita et al., 2002).
Class I can be further divided into class IA and class IB enzymes, and
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Class IA PI3K enzymes include a catalytic (p110) and a regulatory
subunit (p85 or p101) (Hennessy et al., 2005; Sujobert and Sujobert,
2005; Fruman, 2008, 110; Piddock et al., 2017). Akt, also known as
protein kinase B (PKB), is a serine/threonine-specific protein kinase
(Yip, 2015). Signaling pathways determined by PI3K, AKT, and the
mammalian target of rapamycin (mTOR) are critical for many
features of cancer, such as cell growth, survival, metabolism,
apoptosis, and angiogenesis (Ediriweera et al., 2019; Fattahi
et al., 2020; Miricescu et al., 2020; Mirza-Aghazadeh-Attari et al.,
2020). The PI3K/Akt/mTOR intracellular signaling cascade begins
with activating RTKs and cytokine receptors, which generate
phosphorylated tyrosine residues that provide anchor sites for
recruiting PI3K to membrane translocation. Class IA PI3Ks can
be activated by receptor tyrosine kinases (RTKs), G protein-coupled
receptors (GPCRs) located on the cell surface membrane (Darici
et al., 2020). Upon activation, The P110 catalytic subunit of PI3Ks
could convert phosphorylate PI(4,5)P2 to PI(3,4,5)P3 (Denley et al.,
2009), a second messenger. And then, PIP3 induces the activation of
phosphoinositide-dependent kinase-1 (PDK1) and downstream
targets of AKT (Pothongsrisit and Pongrakhananon, 2021). The
levels of PI(3,4,5)P3 and PI(4,5)P2 could be regulated by PTEN
(Chalhoub and Baker, 2009; Blanco et al., 2020). The PI3K/AKT/
mTOR signaling pathway is the essential cell signaling pathway in
animals, involved in regulating physiological processes such as cell
growth, survival, proliferation, metabolism, and apoptosis.
Alterations in the PI3K/AKT/mTOR pathway are now thought
to be strongly associated with the carcinogenesis and progression of
endometrial cancer (Slomovitz and Coleman, 2012; Chen et al.,
2014). The pathway most frequently damaged in endometrial
cancer is the PI3K/AKT/mTOR pathway (Crosbie et al., 2022).
In recent years, it has been abundantly reported that NPs could
exert pro-apoptosis via the PI3K/AKT/mTOR pathway (Mirza-
Aghazadeh-Attari et al., 2020). The potential mechanisms of NPs

on PI3K/AKT/mTOR mediated apoptosis are summarized in
Figure 5.

4.5.1 Extracts from NPs
In 2016, Tan et al. reported that the intervention of

Panaxnotoginsengsaponins (PNS, 50–200 μg/ml) could induce
apoptosis in Ishikawa and HEC-1A cells via inhibiting the
expression of VEGF, which may be related to inhibiting PI3K/
AKT/mTOR signaling pathway (Tan et al., 2016).

4.5.2 Monomers from NPs
Resveratrol (3, 4, 5-trihydroxy-trans-stilbène), a natural

phytoalexin present in grape skins, has considerable anti-
proliferation effects and can induce apoptotic cell death in
various types of cancers cell in vitro. In 2006, Émilie Sexton et al.
reported that high-dose of resveratrol (0,10, and 100 μM) could
inhibit cell growth and trigger apoptotic cell death in vitro via
decreasing p-Akt, whereas up-regulating caspase-3 (Sexton et al.,
2006). Another study in 2020 by Xu et al. also suggested that the
anti-proliferative and pro-apoptotic effect of resveratrol might
attribute to the regulation of the Akt/mTOR signaling pathway
(Xu et al., 2020). Pseudolaric acid B (PAB) is the major bioactive
component of Pseudolarix kaempferi Gorden. Studies in 2017 by
Wang et al. have found that PAB (0.5–10 μmol/l) could inhibit
Ishikawa cell proliferation and induces apoptosis in vitro. Its related
molecular mechanisms may involve Akt-GSK-3β and ERK1/
2 signaling pathways via decreasing p-Akt and p-ERK1/2 whereas
increasing caspase-3 and p-GSK3β (Wang et al., 2017). Shikonin, an
active biological component derived from the roots of the herb
Lithospermu erythrorhizon, has considerable antitumor effects,
including antioxidation, anti-inflammation, and anti-apoptosis.
Studies reported in 2016 by Yin et al. and in 2017 by Huang
et al. suggested that Shikonin could promote apoptosis in vitro

FIGURE 4
Natural products modulate apoptosis of ECCs through NF-κB mediated pathway.
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by modulating the miR-106b/PTEN/Akt/mTOR pathway (Yin,
2016; Huang and Hu, 2018). In 2019, a study by Xia et al.
suggested that Kaempferol (0–20 μM) can promote apoptosis via
increasing bax whereas decreasing p-PI3K p-mTOR, p-Akt, and
BCL-2 (Lei et al., 2019). Besides, from the results of Ye et al.,
Amygdalin (8–128 mg/L) could also induce apoptosis in vitro via
regulation of the proteins related to the PI3K-Akt signal (Ye et al.,
2020). Another study in 2020 by Zhang et al. first reported that
Asparanin A (AA, 6–18 μM) could promote apoptosis in vitro and in
vivo by activating the mitochondrial pathway and inhibiting PI3K/
Akt signaling pathway (Zhang et al., 2020). Recently, a study by
Liang et al., in 2021 showed that Osthole (25–200 μM) could
suppress the growth in vitro and in vivo, which was associated
with up-regulating bax, caspase-3, -9, PARP, PETN, whereas down-
regulating PI3K and Akt (Liang et al., 2021).

4.6 P21-mediated pathway

P21, also called P21WAF1/CIP1 or P21/CDKN 1a, is a small
protein with 165 amino acids related to cell cycle progression
(Karimian et al., 2016). In 1993, a finding found that P21, or
wild-type p53-activated fragment 1 (WAF1), is directly regulated
by P53 and can suppress tumor cell growth in culture (El-Deiry et al.,
1993). However, P21 is a downstream mediator of the
P53 transcription factor and can interact directly with P53 (Kim
E. M. et al., 2017). Thus, P21 may be an essential p53 growth
suppression pathway component. Some findings indicate that the
p53/p21 complex regulates cell apoptosis by targeting Bcl-2 proteins
(Kim et al., 2022). P21 protein, a cyclin-dependent kinase inhibitor
(CKI), can bind to and inhibit the activity of CDK1, CDK2, and
CDK4/6 enzyme complexes (Marchetti et al., 1996), thereby acting
as a cell cycle regulator at the G1 and S phases (Kikuchi et al., 2022).

When DNA is damaged, the increased expression of p53 could
activate the transcription of gene p21 by binding to its response
element within its promoter. P21WAF1 can decrease kinase activity
and may be a key regulator of G0/G1 accumulation and G1 cell cycle
arrest. Consequently, cell apoptosis was induced by p21. Several
studies have shown that NPs can regulate the cell cycle of ECCs by
mediating P21, thereby promoting the induction of apoptosis in EC.
The potential effectiveness and mechanism of NPs on P21-mediated
apoptosis are summarized in Figure 6.

In 2008, after the human endometrial Ishikawa cancer cell line
was prepared, Mee et al. investigated the effect of the Psammaplin A
(0.1–10 μg/ml), a natural histone deacetylase inhibitor, induces on
the Ishikawa cells. They found that Psammaplin A (5 μg/ml) can
notably inhibit the proliferation and induced cell cycle arrest or
apoptosis in vitro. The molecular mechanisms might be related to
the increased expression of p21WAF1 through a p53-independent
pathway (Ahn et al., 2008). In the same year, Takai et al. first
demonstrated that Bufalin (1 ng/ml) could inhibit proliferation and
induce apoptosis in vitro. The mechanism may be related to an
increase in cleaved caspase-9 expression caused by up-regulating the
levels of p21WAF1 protein and down-regulating cyclin A, cyclin D3,
BCL-2, and BCL-xL (Takai et al., 2008). Recently, Dong et al.
investigated the effect of Cinnamaldehyde (3.75, 7.5, 15 μg/ml)
on Ishikawa cells. The results showed that Cinnamaldehyde has
notable pro-apoptotic effects via up-regulating p21WAF1, whereas
down-regulating CDK4, MMP2, and MMP9 (Dong and Li, 2021).

4.7 Other reported pathways

In addition to the apoptotic pathways mentioned above, there
are NPs reported to exert pro-apoptotic effects on EC through other
mechanisms.

FIGURE 5
Natural products modulate apoptosis of ECCs through PI3K/AKT/mTOR pathway.
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4.7.1 Extracts from NPs
In 2000, the Rice bran fraction (100, 200, 300 μg/ml) was reported

to be a lipoprotein fraction that could induce apoptosis of the Sawano
cells (Fan et al., 2000). In 2015, Tsai et al. studied the influence of
Pogostemon cablin Aqueous Extract (PCAE, 0–4 mg/ml) on the
induction of apoptosis. The results showed that PCAE induced
apparent apoptosis in Ishikawa cells. In addition, further
investigation revealed that the mechanism might be related to up-
regulating BAG3,caspase-4, and caspase-5 (Tsai et al., 2015). In 2018, it
was also reported that Tanshinone l (0–40 μM) could induce apoptosis
and can increase ROS, bax. In contrast, downregulate BCL-2 and
inhibit the phosphorylation of pSTAT1, pSTAT-2, pJAK1, and pJAk,
inhibiting JAK/STAT pathway signal pathway and mitochondrial-
mediated apoptosis in HEC-1-A cells (Li et al., 2018).

4.7.2 Monomers from NPs
In 2016, Wu et al. studied the inhibitory effect of Isoliquiritigenin

(ISL, 5–100 μM), a licorice flavonoid, which was shown to could
induce apoptosis and cell growth inhibition in vitro and in vivo via up-
regulating caspase-3, caspase −7 and PARP (Wu C.-H. et al., 2016).
Later in 2019, Shi et al. found that the Silibinin (SB, 100, 150, 200 μM),
extracted from milk thistle seeds, can significantly inhibit the
proliferation and promote apoptosis in a dose- and time-
dependent manner via blocking pathways of STAT3 activation and
SREBP1-mediated lipid accumulation, which is closely related to
inhibiting STAT3, whereas decreasing BCL-2 and survivin (Shi
et al., 2019). Lu et al., in 2019 recorded that Osthole (50, 100,
200 μM) could induce apoptosis in the Ishikawa and KLE cells,
and after Osthole treatment,caspase-3, -9,miR-424 were
significantly upregulated, and the CPEB2 were downregulated (Lu
et al., 2020). A report in 2021 by Bulbul et al. studied the effect of
Gallic Acid (3,4,5-tri hydroxybenzoic acid; GA; 5–100 μg/ml) and
found it could induce apoptosis in Ishikawa cells by mitochondrial

pathway via up-regulating caspase-3 (Bulbul et al., 2021). In 2021,
Jiang reported that Esculetin (0–120 μM) could result in apoptosis and
an arrest in proliferation in the HEC-1B, Ishikawa cells, and can target
hnRNPA1, thereby downregulate the expression level BCL-XL, XIAP,
and pAkt protein (Jiang R. et al., 2021). Recently, Hua et al. suggested
that Silymarin (6 μg/ml) could induce apoptosis in Ishikawa cells via
up-regulating caspase-3 (Chen et al., 2019).

5 Perspectives and conclusion

NPs are a wide range of bioactive components isolated from
natural organisms, including plants, animals, insects, marine
organisms (Manoharan and Perumal, 2022), and microorganisms.
NPs are attractive sources for developing new medicinal and
therapeutic agents (Thomford et al., 2018; Thompson and Lutsiv,
2023; Rao et al., 2019). For a long time, NPs have been regarded as a
rich source of the active ingredients in new drugs. Moreover, the
structural complexity and functional diversity of NPs are
irreplaceable advantages compared to chemical drugs. These
bioactive elements exert remarkable therapeutic effects on various
diseases. NPs possess anti-cancer, anti-inflammatory, antioxidant,
anti-bacterial, analgesic, anti-diabetic, and enzyme-inhibitory
activities (Hassan et al., 2022). In recent years, the anti-cancer
effects of NPs have drawn increasing attention (Hassan et al.,
2022; Islam, 2022; Nuzzo et al., 2022), and we focus on their
apoptosis-regulatory effect. Existing studies suggest that NPs can
promote EC cell apoptosis throughmultiple pathways and thus exert
anti-EC effects. Although existing research has reached a depth,
some issues have not been well addressed and cannot be ignored to
advance the development of NP-based anti-EC drugs.

First, the material basis of NPs for preventing and treating
diseases is their active ingredients. Limited sources or meager

FIGURE 6
Natural products modulate apoptosis of ECCs through P21-mediated pathway.
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amounts of bioactive molecules rawmaterial is considered one of the
most important obstacles to developing NPs into drugs. Many
unexplored natural resources, especially uncultured marine
organisms, will expand the sources of NPs because they can
provide complex molecules with biologically active
pharmacophores (Bilal and Iqbal, 2020). To better develop NPs,
two different aspects may be involved: isolating additional structures
directly from NPs, and modifying or improving these structures by
chemical or biochemical methods (Li and Lou, 2018). These
pathways may be helpful to facilitate the production of candidate
molecules with lower costs, better efficacy, and less toxic side effects.
Furthermore, the difficulty of extracting bioactive molecules is
considered one of the significant obstacles to developing NPs
into chemotherapeutic agents. Conventional extraction techniques
frequently include preparatory fractionation of the parent material
or crude extract, which limits their practical adoption on a large
scale. Traditional extraction techniques also have other drawbacks,
such as long extraction times, solvent purity issues, excessive solvent
consumption and evaporation, shortened extraction yields, and
thermal degradation of thermally degraded compounds. These
limitations limit the development of NPs. Numerous modern
extraction methods have been created and used, taking into
account the structural and compositional characteristics of target
sources, such as enzyme-assisted extraction (EAE), supercritical-
fluid extraction (SFE), and microwave-assisted extraction (MAE),
etc. (Bilal and Iqbal, 2020). Second, most studies have only focused
on a single certain NP, and the combination of multiple NPs may
help improve the efficacy and further explore the role of these NPs in
the overall regulation of apoptosis, as well as their drug
interrelationships. Third, the above studies were almost carried
out via in vitro and in vivo approaches. Not all papers conducted
in vivo experiments, so further investigation is suggested. Besides,
the experimental data above almost explored a single pathway
targeting the pro-apoptotic effects of NPs, and only a few NPs
targeting cross-talk are available in studies. This may lead to the
failure of drugs if this mechanism is interrupted or altered due to
various cancer-related phenomena. This may also be a limitation
and cause drug resistance to cancer. Clinical trials are also necessary
to demonstrate whether the in vitro and in vivo animal data are
reproduced in humans and to allow the application of NPs in cancer
prevention and treatment. Most articles have analyzed their
mechanism of action at the cellular and/or molecular level
(Ekiert and Szopa, 2022). Fourth, NPs that are well tolerated and
have less toxicity will help patients to achieve better treatment
outcomes and improve their quality of life. The toxicity and
pharmacokinetic selectivity of NPs should be further explored to
validate their safety, which is a key step in the development of new
drugs and can provide a strong basis for their translation to the
clinic. Despite efforts to improve the therapeutic outcome for EC
over the past decades, chemoresistance and side effects remain
significant problems. The following clinical research stage must
include a rational combination of agents that activate apoptotic
signaling pathways and block pro-survival mechanisms while
minimizing off-target toxicities. Furthermore, NPs that can treat
various symptoms related to chemotherapeutics, such as nausea and
vomiting, should be investigated. Exploration of the combination
NPs with classical chemotherapeutic agents may be a possible way to
enhance the susceptibility of cancer cells. Moreover, a study (Li et al.,

2022) suggests that acupoint stimulation involves synergy with
chemotherapy and can alleviate chemotherapeutic agents side
effects.

NPs with anti-EC effects were classified and systematically
organized by their inducing-apoptosis mechanisms and the sources
in the review. The cell line, animal model, dose, efficacy, andmechanism
of the NPs in each paper were covered clearly. The main related signal
pathways are the mitochondrial-dependent apoptotic pathway,
endoplasmic reticulum stress (ERS) mediated apoptotic pathway,
mitogen-activated protein kinase (MAPK) mediated apoptotic
pathway, NF-κB mediated apoptotic pathways, PI3K-Akt mediated
apoptotic pathway, P21-mediated apoptotic pathway, and other
reported pathways. In conclusion, we summarized the experiment-
based molecular mechanisms and regulatory networks of NPs for EC.
Hopefully, this review focuses on the importance of natural medicines in
treating EC and provides a foundation for developing potential anti-EC
drugs from natural therapies. There are more and more studies about
NPs, and the depth of the research is increasing (Kirchmair, 2020;
Naeem et al., 2022). NPs and their biological activities are currently a
subject of great interest in the pharmaceutical (Ekiert and Szopa, 2020).
Hopefully, the information presented in this review might be significant
for further preclinical and clinical investigation.
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