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Introduction: The landscape of drug-drug interactions (DDIs) has evolved
significantly over the past 60 years, necessitating a retrospective analysis to
identify research trends and under-explored areas. While methodologies like
bibliometric analysis provide valuable quantitative perspectives on DDI
research, they have not successfully delineated the complex interrelations
between drugs. Understanding these intricate relationships is essential for
deciphering the evolving architecture and progressive transformation of DDI
research structures over time. We utilize network analysis to unearth the
multifaceted relationships between drugs, offering a richer, more nuanced
comprehension of shifts in research focus within the DDI landscape.

Methods: This groundbreaking investigation employs natural language processing,
techniques, specifically Named Entity Recognition (NER) via ScispaCy, and the
information extraction model, SciFive, to extract pharmacokinetic (PK) and
pharmacodynamic (PD) DDI evidence from PubMed articles spanning January
1962 to July 2023. It reveals key trends and patterns through an innovative
network analysis approach. Static network analysis is deployed to discern
structural patterns in DDI research, while evolving network analysis is employed
to monitor changes in the DDI research trend structures over time.

Results: Our compelling results shed light on the scale-free characteristics of
pharmacokinetic, pharmacodynamic, and their combined networks, exhibiting
power law exponent values of 2.5, 2.82, and 2.46, respectively. In these networks, a
select few drugs serve as central hubs, engaging in extensive interactions with a
multitude of other drugs. Interestingly, the networks conform to a densification
power law, illustrating that the number of DDIs grows exponentially as new drugs
are added to the DDI network. Notably, we discovered that drugs connected in PK
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and PD networks predominantly belong to the same categories defined by the
Anatomical Therapeutic Chemical (ATC) classification system, with fewer
interactions observed between drugs from different categories.

Discussion: The finding suggests that PK and PDDDIs between drugs fromdifferent
ATC categories have not been studied as extensively as those between drugs within
the same categories. By unearthing these hidden patterns, our study paves the way
for a deeper understanding of the DDI landscape, providing valuable information
for future DDI research, clinical practice, and drug development focus areas.

KEYWORDS

pharmacokinetic drug-drug interaction, pharmacodynamic drug-drug interaction,
network analysis, natural language Processing, research trend

1 Introduction

Drug-drug interactions (DDIs) occur when the effect of one drug is
altered by the presence of another drug (van Mil, 2016). DDIs can be
broadly classified into two types: 1) pharmacokinetic (PK), which
occurs when one drug modifies the disposition (i.e., absorption,
distribution, metabolism, and/or excretion) of another drug (Nebert
andRussell, 2002;Nigam, 2015), and 2) pharmacodynamic (PD), which
occur when the pharmacological effects (on cells, organs, and systems)
of one drug are altered or additive by the presence of another (Niu et al.,
2019). These interactions can generate a wide range of outcomes, often
causing adverse effects and deteriorating patients’ health. Consequently,
DDIs have been the subject of numerous studies over the past several
decades, with progress in high-throughput screeningmethods, the rapid
growth of biomedical databases, and an increase in clinical studies
contributing to the discovery of novel DDIs and insights into their
underlying PK and PD mechanisms (Becker et al., 2007).

The vast amount of data generated by the numerous studies on
DDIs hasmade it challenging for researchers to analyze research trends
and evolutions, which makes it difficult to gain a comprehensive
understanding of the overall landscape of DDIs, identify under-
explored areas, discern research trends, and pinpoint areas of
focused interest. To address this issue, some studies have used
bibliometric analysis (Wang et al., 2022; Sun et al., 2022; Pirri et al.,
2020; KURUTKAN, 2023), a quantitative method that evaluates and
analyzes various aspects of scientific publications. Bibliometric
indicators such as the number of publications, citations, and
authors can provide a valuable quantitative overview of DDI
research. However, this approach has limitations in its ability to
capture the complex relationships between drugs and the evolving
nature of DDI research, despite its numerical precision and ease of use.

To thoroughly examine the DDI research landscape, we constructed
DDI networks based on evidence extracted from PubMed article
abstracts by natural language processing (NLP) models and analyzed
them using network analysis (NA). NLPmodels facilitate the automation
of information extraction from extensive unstructured text data, enabling
researchers to analyze large datasets more quickly and efficiently (Boyce
et al., 2012). Network analysis, on the other hand, serves as a powerful
model for analyzing complex interactions between drugs, providing a
more comprehensive picture of the structure and allowing researchers to
represent and explore complex data in a more intuitive and accessible
way (Jeong et al., 2017; Chen et al., 2020; Yan et al., 2021).

By utilizing DDI networks, we can gain a complete understanding
of the DDI research landscape and the chronological development of

the field. This approach provides a comprehensive view of the dynamic
landscape of drug-drug interactions and allows for the identification of
shifts in the DDI landscape. Our integration of NLP and NA allows
researchers to identify areas of focused interest and under-explored
areas, recognize emerging areas of concern or novel research
trajectories, and spot gaps in the field that may harbor potential yet
under-studied drug interactions. Ultimately, this approach may inform
decision-making in drug development, clinical practice, and DDI
research prioritization.

2 Materials and methods

2.1 Retrieving DDI evidence from PubMed
abstracts

We applied a three-step procedure to collect evidence on
DDIs from PubMed abstracts published between January
1962 and July 2023: 1) identification of candidate articles
about DDIs using a PubMed query (Figure 1A), 2) screening
of the articles containing sentences with drug entities using a
named entity recognition (NER) model (Figure 1B), and 3)
determination of eligible sentences about DDIs using a
relation extraction (RE) model (Figure 1C).

2.1.1 PubMed query
We designed a query in accordance with Duda et al. (2005) to

retrieve a set of DDI articles with high sensitivity, the broadest search to
include all DDI-relevant articles: “drug interactions” [TIAB] OR “drug
interactions” [MeSH Terms] OR “drug interaction” [TW] NOT food-
drug interactions [MeSH Terms] NOT herb-drug interactions [MeSH
Terms] NOT Review [PT] NOT Systematic Review [PT]. This query
was chosen to ensure that no pertinent documents were missed.

2.1.2 NER model
In order to search for evidence of DDIs in retrieved articles, it is

necessary to first identify drug entities within sentences. To
accomplish this, a NER model, a type of NLP model, that is,
used to identify and extract entities, is required for the efficient
and accurate detection of drug entities.

The SpaCy Python library is an open-source library designed to
support a variety of tasks such as POS Tagging, NER, and Dependency
Parsing (Honnibal and Montani, 2017). ScispaCy (Neumann et al.,
2019) is an extension of spaCy developed for biomedical, scientific, or
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clinical text. It has become the de facto standard for practical NLP due to
its speed, reliability, and near-state-of-the-art performance (SOTA).
Entity linker is a SciSpacy feature that maps entities mentioned in the
text to standard, canonical identifiers in a knowledge base or database.
These databases for biomedical texts could include UMLS (Unified
Medical Language System), RxNorm, and others. The linker conducts a
string overlap-based search (char-3grams) on named entities,
comparing them with the concepts in a knowledge base via an
approximate nearest neighbors search. We implemented RxNorm
entity linker in the ScispaCy, which contains ~100 k concepts
focused on normalized names for clinical drugs. The ScispaCy-large
model was used to perform NER, sentence tokenization, and entity-

linking features for every sentence from abstracts. Given that the
ScispaCy only provides CUI for RxNorm entities, we used the
MRCONSO.RRF file from UMLS Metathesaurus (Bodenreider, 2004)
to map CUI to RxCUI. Tominimize the chance of duplicating clinically
similar RxNorm concepts, we further linked RxNorm concepts to
RxNorm ingredients using the RXNREL.RRF file from UMLS
Metathesaurus. Finally, we extracted sentences containing at least
two drug entities for further analysis of potential DDIs.

2.1.3 RE model
To identify eligible evidence of DDIs from sentences containing at

least two drug entities, a RE model, a type of NLPmodel, that is, used to

FIGURE 1
The process of DDI evidence extraction and dynamic network analysis. (A) A custom query was employed to retrieve articles related to DDIs from
PubMed API. (B) Sentences with at least two drug entities from abstracts were extracted using the ScispaCy NERmodel. (C) The SciFive DDI REmodel was
applied to extract DDIs from DDI sentences. (D) A static network was constructed based on the entire extracted DDI sentences from 1962 to 2023. (E) An
evolving network analysis was conducted to examine the 36-year trend in DDI research.
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identify and extract the relationships between entities in text, was utilized
to find the DDI relationship within the sentences. The SciFive PubMed
Large model is a domain-specific text-to-text transfer transformer (T5)
model (Raffel et al., 2020) that is, pre-trained on PubMed abstracts using
1.2 million steps to optimize the pre-trained weights from the T5 model
in the context of biomedical literature. The DDI extraction 2013 corpus
is comprised of 792 texts taken from the DrugBank database and
233 Medline papers; it has been created for the SemEval
2013 DDIExtraction challenge, whose primary objective is to provide
a common framework for the evaluation of information extraction
techniques applied to the recognition of pharmacological substances and
the detection of DDIs from biomedical texts, and has been used as the
gold standard for evaluating DDI extraction task performance (Segura-
Bedmar et al., 2013). Two expert pharmacists with extensive experience
in pharmacovigilance annotated drug-drug interactions, covering both
pharmacokinetic and pharmacodynamic interactions. The five
classifications consist of four distinct types of interactions and one
type of non-interaction in the corpus, as follows: 1) No interaction: a
sentence does not represent an interaction between two drugs, 2) DDI-
mechanism: a sentence describes a pharmacokinetic mechanism, 3)
DDI-effect: a sentence describes the effect of the DDI or
pharmacodynamic mechanism, 4) DDI-advice: a sentence describes a
recommendation or advice regarding a drug interaction, and 5) DDI-int:
a sentence describes a drug interaction without providing any other
information. The SciFive PMC Large model achieved a level of
performance that was similar to SOTA on DDI relation extraction
using the DDI extraction 2013 corpus (precision: 83.88, recall: 83.45, and
F1 score: 83.63). We applied the pre-trained weights of the SciFive PMC
Large model distributed by the authors (Phan et al., 2021), and further
fine-tuned the model parameters using the DDI extraction 2013 corpus
to determine the reliability of each candidate DDI evidence. If a
candidate DDI sentence contained more than two RxNorm
ingredients, all possible drug-drug combinations were investigated,
implying that a single sentence could contain both a drug pair that
does not interact and a drug pair that does interact.

To validate the performance of the SciFive model, we randomly
selected extracted DDI evidence and manually annotated them with
the help of two reviewers (one with anM.S. in biomedical informatics
and one with a Ph.D. in computer science). Both reviewers had 3 years
of experience in drug-interaction research. The level of agreement
between the two reviewers was measured using Cohen’s Kappa.

2.1.4 Mapping RxNorm ingredients to ATC first
levels

RxNorm ingredients were mapped to first-level Anatomical
Therapeutic Chemical (ATC) classes using the RxNorm API (https://
mor.nlm.nih.gov/RxNav/) for drug classification purposes. The ATC
first level contains 14 major anatomical or pharmacological groups. If a
RxNorm ingredient had multiple ATC first levels, then all ATCs were
counted separately. If a RxNorm ingredient was unmapped to any ATC
first levels, then it was assigned to a “No ATC” group.

2.2 Network construction

2.2.1 Static networks
Based on all extracted DDI sentences from 1962 to 2023, we

constructed three static networks: 1) one for PKs, 2) one for PDs,

and 3) one for the complete set of DDIs, including PK and PD, as
well as those classified as DDI-advice or DDI-int (Figure 1D). In
such networks, each node represents a drug and each edge exists
between two nodes if there was at least one sentence from the
literature with evidence of a DDI between the two drugs.

2.2.2 Evolving networks
To model the dynamic changes in the DDI networks, we created

evolving networks of drugs based on DDIs extracted from each year
(Figure 1E). The network Ti+1 is an augmentation of the prior networkTi,
where i represents the year. For example, the network of 1988 represented
the addition of new drugs and DDIs published in 1988 to the network of
1987. Similarly, the network of 1989 expanded upon the 1988 network,
and this pattern continued in subsequent years. Due to a lack of sufficient
data to create yearly networks for years prior to 1987, we chose 1987 as
the earliest investigated year for the evolving network analysis. In
addition, we have excluded 2023 data from the evolving network
analysis due to lacking data for the entire year.

2.3 Network-level properties

In order to provide a more comprehensive understanding of the
structure of DDI research, we measured various network structural
properties in this study. These properties included the number of nodes
and edges, assortativity based on degree and ATC first level categories,
average local clustering coefficient, power law exponent γ, network
diameter, and the densification power law (DPL). The number of nodes
and edges was specifically measured to gain insights into the size of the
networks. The degree assortativity is the tendency for nodes of high
degree (resp. low degree) in a graph to be connected to high degree
nodes (resp. to low degree ones), while ATC-group assortativity is the
tendency for nodes to be connected to drugs in the same ATC
categories. The average local clustering coefficient measures how
close its neighbors are to form a clique. If the neighborhood is fully
connected, the clustering coefficient is 1, whereas a value close to
0 indicates that the neighborhood has few connections. The diameter of
a network is defined as the smallest distance between the two furthest
nodes in the network. This distance is determined by computing the
shortest path length between every node and all other nodes and
selecting the longest path length as the network’s diameter. A
smaller network diameter suggests that the drugs in the network are
more closely related and may have a higher potential for interactions,
while a larger diametermay indicate that the drugs aremore diverse and
less likely to interact. To determine whether the number of edges grows
faster than the number of nodes in the networks, wemeasured the DPL.
The DPL is a concept from the temporal graph evolution (Leskovec
et al., 2007) domain. This law indicates that the number of edges should
grow according to a power law over the number of nodes over time:

e t( )∝ n t( )a (1)
where e(t) and n(t) denote the number of edges and nodes,
respectively, of the graph at time t, and a is an exponent (a =
1 represents a constant average degree throughout time, whereas a =
2 represents to an extremely dense graph in which each node has
edges to a constant fraction of all nodes on average.) Numerous
studies have shown that many real-world evolving networks exhibit
a densification power law property (Leskovec et al., 2005; Leskovec
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et al., 2007; Qu et al., 2014; Qu et al., 2015). Network analysis was
conducted using the igraph package in R (Csardi and Nepusz, 2006).

2.4 ATC categories-level properties

Our analysis focuses on DDI networks at the level of ATC
classification groups. We aim to determine whether the observed
DDI interactions occur within the same therapeutic class or across
multiple classes. This approach allows us to investigate the potential
for interactions between drugs with similar or different mechanisms
of action andmay provide insights into the overall safety and efficacy
of drug combinations within specific therapeutic categories.

2.4.1 The Krackhardt E/I ratio
The Krackhardt E/I Ratio (Krackhardt and Stern, 1988), also

known as the E-I index, is a measure of homophily that quantifies
the extent to which one node is linked to similar or dissimilar nodes.
The E-I index is computed as:

E − I index � EL − IL
EL + IL

(2)

where EL and IL denote the number of external links and internal
links, respectively. The E-I index ranges from −1 to 1, and if it is
positive, it indicates that there are more external links than internal
links (heterophily). If the value is close to 0, it indicates that links are
distributed equally; and if it is negative, it indicates that there are
more internal links than external links (homophily).

2.4.2 Fisher’s exact test for ATC-ATC pairs
To determine the most interconnected pairs of ATC categories

(those with a higher chance of having DDIs between drugs from the two
categories compared to other categories), all possible ATC category-ATC
category combinations were extracted from the network and generated
in the 2-by-2 contingency table (Table 1). Numbers are assigned to one
of the contingency table cells based on the number of interactions
between ATC categories. For example, a denotes the number of
interactions between the #1 category and #2 category, and b denotes
the number of interactions that the #1 category has with ATC categories
other than the #2 category. A Fisher’s exact test with Bonferroni
correction was relied upon to determine significance. The ATC-ATC
pairs with p-values less than 0.05 after Bonferroni correction and odds
ratios greater than 1 were considered statistically significant.

2.5 Drug-level properties

While ATC-group-level analyses examine classes of drugs, drug-
level analyses focus on individual drugs. This approach provides a

more detailed understanding of specific drug interactions and is
essential for identifying key drugs in the DDI network. By examining
the interactions of individual drugs, we can gain insights into the
mechanisms of action that underlie drug interactions and identify
drugs that are more likely to be involved in multiple interactions.

2.5.1 Centrality measures
In network analysis, several types of centrality measures can be

used to understand the relative importance of drugs within the DDI
network. In this study, we concentrated on three centrality
measures: degree centrality, betweenness centrality, and
eigenvector centrality. The degree centrality is a simple centrality
measure that counts how many neighbors a drug has, finding drugs
that are likely to be the center and can quickly connect with the
wider network. The betweenness centrality measures the number of
times a drug lies on the shortest path between other drugs. This
measure shows which drugs are bridges between drugs in a network,
showing drugs that influence the flow in the DDI network.
Eigenvector centrality measures a drug’s influence based on the
number of links it has to other drugs in the network. A high
eigenvector score means that a drug is connected to many drugs
that themselves have high scores.

2.5.2 Emerging and declining drugs in the DDI
research field

To identify drugs that have recently emerged in DDI research,
we calculated the degree, betweenness, and eigenvector centrality
growth rates for each drug in the yearly networks over the past
5 years (2018–2022). Drugs with a rapid growth rate are likely to be
part of a new trend, attracting increased attention in recent years.
The growth rate (slope) was estimated using linear regression. To
identify the drugs that are receiving less attention in DDI research,
we analyzed the lowest increase or highest decrease rate in centrality
measures.

3 Results

3.1 The DDI sentences extracted from
PubMed

We retrieved 160,114 candidate articles from the PubMed API
through a search query designed for high sensitivity. Next, we

TABLE 1 Two-by-two contingency table for evaluating ATC 1-ATC 2 pairs.

ATC category #2 No ATC category #2

ATC category #1 a b

No c d

ATC category #1

TABLE 2 Structural network properties of the static PK, PD, and complete DDI
networks.

Structural network property PK PD Complete

Nodes 1,620 2,011 2,212

Edges 7,579 15,676 21,262

Assortativity (Degree) −0.151 −0.0754 −0.124

Assortativity (ATC 1st level) 0.087 0.123 0.111

Power law exponent 2.5 2.82 2.36

Avg clustering coefficient 0.23 0.26 0.290

Diameter 9 8 8
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applied ScispaCy for NER and extracted 174,224 sentences
(69,868 articles) that contained at least two drug entities from
the abstracts of the DDI articles. Finally, we used the SciFive
model to extract 2,212 unique drugs and 21,262 unique DDIs
(PK: 7,579, PD: 15,676) from 174,224 sentences. Among the
21,262 unique DDIs, 2,445 exhibited both PK and PD DDIs
(Supplementary Figures S1, S2). To validate the performance of
the SciFive model, we randomly selected 1,296 DDIs (36 for each
year from 1987 to 2022) from the 21,233 DDIs. The level of
agreement between the two reviewers was found to be extremely
high with κ = 0.95; p < 0.001. The SciFive model achieved F1 scores
of 0.892. All DDI sentences are provided in Supplementary Table S1.

3.2 Static network analysis

3.2.1 An analysis of static DDI networks reveals
scale-free structure, ATC category-based
assortativity, and degree-based dissortativity

Table 2 shows the structural properties of the static DDI
networks. All PK, PD, and complete DDI networks were scale-
free (2 < γ < 3), with power law exponents (γ) of 2.56, 2.77, and 2.36.
This indicates that a small number of drugs had many connections
to other drugs, while most drugs had relatively few DDIs.
Additionally, in the three networks, the ATC category-based
assortativities were positive, suggesting that drugs from the same
ATC category were more commonly investigated for DDIs than
those from different ATC categories. Moreover, all three networks
showed negative degree assortativity, meaning that few drugs were
frequently confirmed to have DDIs with a large number of other
drugs, each of which was rarely investigated to have a large number
of DDIs.

3.2.2 The average clustering coefficients reveal a
prevalence of real DDIs among neighbors in static
networks

The average clustering coefficients for the PK, PD, and complete
networks are 0.23, 0.26, and 0.29, respectively. These are
significantly higher than the clustering coefficients [0.005
(0.003–0.008), 0.007 (0.004–0.009), and 0.008 (0.006–0.011)] of
random networks generated by Erdős-Rényi algorithms with the
same number of nodes and edges. We performed 100 random
network simulations.

The larger clustering coefficients of the PK, PD, and complete
DDI networks suggest that about 30% of the potential connections
among a drug’s neighbors in the network are actual DDIs. This
means that, when examining the neighbors of a drug in the network,
there is at least a 30% chance of finding a real DDI between them.

3.2.3 Network diameter: comparing DDI static
networks to the six degrees of separation

The diameter of all three networks, ranging from 8 to 9
(Table 2), slightly exceeds the well-known six degrees of
separation observed in our world (Kleinfeld, 2002). The six
degrees of separation theory is a concept that suggests any two
people on Earth are, on average, separated by nomore than six social
connections, indicating that networks are both extensive and
interconnected. As more drugs and their DDIs are investigated

and added to the network, there may be a possibility of reducing the
diameter from its current range to 6.

3.2.4 ATC drug category E-I homophily index
indicates a higher likelihood of DDIs within the
same ATC drug category in static networks

The E-I homophily index values, which measure the degree to
which a drug forms DDIs with others in the same category, were
smaller than 1 (except for the V in the PD subnetwork) (Table 3).
This suggests a tendency for drugs to establish connections with
those belonging to the same group (homogeneous interactions).

3.2.5 Identifying ATC category pairs with the
highest likelihood of DDIs in static networks

The J-D (Antiinfectives for systemic use—Dermatologicals),
A-N (Alimentary tract and metabolism—Nervous system), and
M-N (Musculo-skeletal system—Nervous system) pairs were
significant and had the highest odds ratios in all three networks
(Table 3). Supplementary Table S2 presents all significant ATC-
ATC pairs in the static PK, PD, and complete DDI networks.

3.3 Evolving network analysis

3.3.1 Evolving power law exponent and
assortativity indicate stable scale-free structure,
ATC category-based assortativity, and degree-
based dissortativity over time

Figure 2 depicts the properties of network evolution. The power law
exponent (γ) of the PK DDI network remained stable between 2 and 3,
while in the PD and complete DDI networks, γ fluctuated until 2001 but
has stabilized between 2 and 3 since then (Figure 2A). The ATC
category-based assortativities increased over time, suggesting a growing
likelihood of DDIs among drugs within the same category (Figure 2B).
The degree assortativities declined over time, indicating an increase in
the dissortativity of the networks (Figure 2C).

3.3.2 Evolving network clustering coefficients
indicate an increasing prevalence of real DDIs
among neighbors

The average clustering coefficient gradually increased (within a
range of [0,1]) in the PK and complete DDI networks, while it
slightly decreased over time in the PD network. However, the
clustering coefficients of the PD network were consistently higher
than those in the PK and complete networks (Figure 2D). When
simulating 100 times with random networks containing the same
number of nodes and edges for each year, the average clustering
coefficients were not only low but also declined as networks
expanded. This finding suggests that DDI networks differ from
random networks and evolve towards an increased likelihood of
DDIs between neighboring drugs (Supplementary Figure S3).

3.3.3 Evolving network diameter narrows the gap
to six degrees of separation

Despite the growth in network size over time (Figures 2E, F), the
diameters, which represent the longest length of the shortest paths
between any two drugs, have experienced a slight decrease, moving
from a range of 8–9 to 7–8 (Figure 2G).
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3.3.4 Evolving node and edge counts indicate
densification power law in DDI networks

We observed growth in the size of the three networks (in terms
of node and edge counts) over the years (Figures 2E, F). The PK, PD,
and complete DDI networks exhibited a densification power law
with high densification exponents (1.84, 1.75, and 1.9, respectively),
signifying that these networks become increasingly dense as they
expand in size, thereby raising the likelihood of actual DDIs between
two drugs (Figure 3).

We observed that the A, C (Cardiovascular system), and N
categories consistently had the largest number of nodes (drugs) and
edges (DDIs) from 1987 to 2022 (Figures 4A, B). In contrast, the P
(Antiparasitic products, insecticides, and repellents) and H
(Systemic hormonal preparations, excluding sex hormones and
insulins) categories exhibited the smallest number of nodes and
edges during the same period. Notably, the number of drugs and
DDIs within the L (Antineoplastic and immunomodulating agents)

category experienced exponential growth since 2007, while the size
of all other ATC categories remained stable, exhibiting a steady
growth rate over the years.

3.3.5 Trends in ATC drug category E-I index scores
and their implications

The E-I index scores remained below 1 throughout the years
(Figure 4C). A significant decrease in the E-I index of the L category
was observed in the PD and complete DDI networks, suggesting an
increased focus on investigating DDIs within the L category, rather
than those involving drugs from L and other categories. The E-I
index score for the J category showed a marked downward trend in
the PK network. In all three networks, the E-I index scores for the C
category experienced the highest growth rate over the years,
indicating that the number of DDIs between drugs from the C
category and other categories has been increasing more rapidly than
the number of DDIs between drugs within the C category itself.

TABLE 3 Network properties at the level of ATC category in the static PK, PD, and complete DDI networks.

PK DDI network PD DDI network Complete DDI network

ATC 1st
level
code

Anatomical or
pharmacological

groups

Node Edge E-I
index

Sig.
paira
(OR)

Node Edge E-I
index

Sig.
Pair
(OR)

Node Edge E-I
index

Sig.
Pair
(OR)

A Alimentary tract and
metabolism

1,515 2,456 0.799 N (5.54) 2,495 4,596 0.797 N
(2.57)

3,118 6,354 0.801 N
(1.63)

B Blood and blood forming
organs

655 922 0.902 V (6.17) 1,369 2,096 0.846 D
(2.23)

1,661 2,788 0.857 D
(1.41)

C Cardiovascular system 1,537 2,362 0.699 B (5.1) 2,579 4,482 0.702 H
(2.11)

3,147 6,185 0.708 N
(1.22)

D Dermatologicals 688 1,007 0.904 J (5.23) 1,498 2,328 0.832 J (3.51) 1,813 3,061 0.851 J
(2.02)

G Genito urinary system and
sex hormones

453 571 0.897 H (6.57) 895 1,543 0.898 A
(1.69)

1,033 1,923 0.9

H Systemic hormonal
preparations, excluding sex
hormones and insulins

63 70 0.941 V (12.3) 118 152 0.96 B (2.1) 159 212 0.942

J Antiinfective for
systemic use

652 1,054 0.676 P (8.4) 763 1,071 0.808 D
(3.51)

1,112 2,025 0.746 S
(1.98)

L Antineoplastic and
immunomodulating agents

806 1,217 0.719 S (5.43) 1,673 3,175 0.393 P
(2.66)

1,940 4,066 0.496 P
(1.66)

M Musculo-skeletal system 332 430 0.928 N (5.39) 721 1,117 0.89 N
(2.33)

873 1,425 0.906 N
(1.7)

N Nervous system 1,665 2,209 0.66 A (5.54) 2,879 4,864 0.657 A
(2.57)

3,450 6,401 0.664 M
(1.7)

P Antiparasitic products,
insecticides, and repellents

58 68 0.875 J (8.4) 176 219 0.904 V
(3.83)

205 263 0.896 V
(2.58)

R Respiratory system 421 583 0.929 N (4.38) 807 1,239 0.887 C
(1.76)

987 1,698 0.896 A
(1.18)

S Sensory organs 875 1,463 0.895 L (5.43) 1,677 2,738 0.833 J (3.34) 1,966 3,812 0.86 P
(1.99)

V Various 133 146 0.972 H (12.3) 358 482 1 P
(3.83)

434 586 0.993 P
(2.57)

No ATC No ATC 349 408 0.95 800 1,140 0.942 990 1,463 0.944

aThe ATC-ATC, pair with the highest odds ratio and adjusted p-value <0.05.
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3.3.6 Evolving trends in the ATC category pairs with
the highest odds ratios

From the 1980s to the early 2000s, the R-P (Respiratory system -
Antiparasitic products, insecticides, and repellents) and P-S
(Antiparasitic products, insecticides, and repellents—Sensory
organs) pairs displayed the highest odds ratio in the PK DDI
network, indicating a higher likelihood of DDIs between drugs
from these categories compared to other categories. During the
same period, P-V (Antiparasitic products, insecticides, and
repellents—Various) and D-J pairs exhibited the highest odds
ratio in the PD and complete networks from 1987 to 2011
(Figure 5). From 2013 to 2018, the D-J pair had the highest odds

ratio in the PD and complete networks, while the H-V pair showed
the highest odds ratio in the PK network from 2014 to 2022.

3.4 Key influential drugs and trends in DDI
networks

3.4.1 Rifampin and Morphine: highly influential
drugs in static DDI networks

We found that rifampin ranked first in all three centralities in
the PKDDI network, while morphine exhibited the highest values in
all three centralities in the PD DDI network. In the complete DDI

FIGURE 2
Changes in the structural properties of the evolving DDI networks (PK, PD, and complete) from 1987 to 2022. (A) The graph demonstrates a stable
scale-free alpha (between 2 and 3) for the PK DDI network, while the PD and complete DDI networks show fluctuations until 2001. (B) The graph displays
a higher likelihood of DDIs among drugs in the same ATC category. (C) The graph indicates a decrease in degree assortativity. (D) The graph indicates an
increase in local clustering coefficients, especially in the PD network. (E,F) The graphs illustrate how the size of the network grows over time. (G)
Despite network growth, the diameters remained stable.
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network, rifampin had the highest degree and eigenvector centrality
values, while morphine showed the highest betweenness.

3.4.2 Cimetidine, morphine, ethanol, and rifampin:
highly influential drugs over time in evolving DDI
networks

Figure 6 displays the drugs with the highest degree, betweenness,
and eigenvector centralities for each year. In the PK DDI network
from 1987 to 2012, cimetidine demonstrated the highest degree and
eigenvector centrality, suggesting that it was extensively investigated
for DDIs with numerous other high-degree drugs. Additionally,
cimetidine exhibited high betweenness, serving as a connecting
point or bridge for various DDIs. Since 2015, rifampin has held
the highest degree, betweenness, and eigenvector centrality,
indicating its involvement in many DDIs and its interactions
with drugs that also have multiple DDIs. By contrast, morphine
maintained the highest degree and eigenvector centrality in the PD
and complete DDI networks from 1987 to 2022. Ethanol exhibited
the highest betweenness in the complete DDI network from 1987 to
2019, while in the most recent 3 years, rifampin emerged with the
highest betweenness in the complete DDI network.

3.4.3 Rifampin and fluoxetine: emerging drugs in
evolving DDI networks

In the PK and complete DDI network, rifampin exhibited the
highest growth rate across degree and betweenness centrality
measures. Meanwhile, fluoxetine showed the highest growth rate
in eigenvector centrality within the PD and complete DDI networks.

3.4.4 Declining attention on drugs in evolving
networks

The eigenvector centrality of cimetidine experienced the greatest
decrease in the PK network, while reserpine exhibited the least
increase in eigenvector centrality in the PD and complete networks
(Table 4). Supplementary Table S3 presents the rate of increase (or
decrease) for each drug’s centrality scores in the PK, PD, and
complete DDI networks.

4 Discussion

In this study, we employ NLP techniques to extract PK and
pharmacodynamic PD DDI evidence from PubMed articles,
subsequently characterizing key trends and patterns through
static and evolving network analyses. Our findings highlight the
scale-free nature of PK and PD networks, with a small number of
drugs serving as central hubs, engaging in numerous interactions
with other drugs. This observation suggests that the research has
focused on specific drugs and their interactions, which could guide
future studies to either further explore these central hubs or
investigate less-studied drugs. We demonstrate that these
networks conform to a densification power law, indicating an
exponential growth of DDIs as new drugs are introduced, and
emphasizing the increasing complexity of the DDI landscape.
Notably, our analysis reveals that drugs within PK and PD
networks predominantly belong to the same ATC categories,
with fewer interactions observed between drugs from different
categories. This insight suggests that DDIs between drugs from
distinct ATC categories might be under-explored in the existing
literature, warranting further investigation. Moreover, we identify
highly influential drugs within static and evolving DDI networks,
providing valuable information for future DDI research, clinical
practice, and potential areas of focus in drug development.

Our network analysis identified that drugs like rifampin and
morphine had high centrality measures, indicating their prominence
in DDI research. Rifampin is an antibiotic agent used for treating
tuberculosis and other bacterial infections. It is frequently
administered in conjunction with other antituberculosis drugs or
other families of drugs and has a significant potential for drug
interactions due to its well-known induction of drug metabolism
through cytochrome P450 (CYP)1A2, CYP2C8, CYP2C9,
CYP2C19, CYP3A4, and some glucuronidation pathways
(Venkatesan, 1992). It is difficult to predict which medications
will be affected by the selective enzyme-induction effect of
rifampin (Venkatesan, 1992). Morphine, on the other hand, is
the first-choice opioid for the management of cancer pain

FIGURE 3
The Densification Power Law. The number of edges is plotted against the number of nodes for the PK, PD, and complete DDI networks on a log-log
scale. All three networks exhibited a densification power law with a rapid rate of interaction growth (high densification exponents).

Frontiers in Pharmacology frontiersin.org09

Jeong et al. 10.3389/fphar.2023.1211491

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1211491


according to the World Health Organization (WHO) guidelines
(Staff and Organization, 1996). The risk of DDIs is high in cancer
patients due to a large number of concomitant drugs

(Kotlinska-Lemieszek et al., 2014). In the static PD and complete
networks, the most researched DDI was morphine–naloxone. This
DDI was intensively studied between the 1980s and the early 2000s.

FIGURE 4
Changes in the size and homophily of the ATC first-level categories. (A) Change in the number of nodes. (B) Changes in the number of edges. (C)
Change in the EI-index was measured from 1987 to 2022. A drug may have multiple ATC first-level categories, or none (“No ATC”). The A, C, and N
categories were the largest, while the L category grew exponentially since 2007. E-I index scores less than 1 indicated intra-category DDIs, with the L
category’s E-I decreasing and the C category’s E-I increasing rapidly.
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Morphine is the classic opioid agonist that provides considerable
analgesia and respiratory depression (Sartain et al., 2003), while
naloxone is an opioid antagonist capable of reversing the powerful
opioid effects of morphine and inducing the opposite effect of
hyperalgesia and reversing respiratory depression (Westbrook
and Greeley, 1990). Morphine and naloxone were the most
notable opioid drugs studied in the past for pain modulation,
opioid tolerance, and opioid dependency, especially since
naloxone is considered an antidote for morphine and other
opioids (Westbrook and Greeley, 1990).

Our investigation also indicated dynamic changes in the DDI
research over time using an evolving network analysis, which the
traditional static network analysis is unable to provide. While the
PK, PD, and complete DDI networks were scale-free, they also
followed the densification power law, wherein the number of

DDIs grows faster than the number of drugs—networks become
denser over time. Despite the network size growth over time, the
average local clustering coefficient of all three networks remains
high, indicating that the DDI networks are developing small-
world network characteristics. This suggests that the drugs
studied in DDI research trends are becoming increasingly
interconnected and that the scientific community is becoming
more adept at examining and comprehending the complex
relationships between drugs. Degree assortativity has
decreased over the years, while ATC-group assortativity has
increased, suggesting that the number of connections between
drugs with a high and low degree has been increasing (decreased
degree assortativity), and the number of connections between
drugs in the same ATC categories has been increasing (increased
ATC assortativity).

FIGURE 5
The significant ATC-ATC pairs with the highest odds ratios in each year from 1987 to 2022. In the 1980s–2000s, R-P and P-S pairs in PK, and P-V and
D-J pairs in PD and complete networks had the highest odds ratios for DDIs. From2013–2018, D-J pairs in PD and complete networks andH-V pairs in PK
showed the highest odds ratios.
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Even though the A, C, and N categories still comprised the
majority of DDI research, the ATC-level analysis revealed that the
number of drugs and DDIs in the L category has increased
dramatically since 2002. This may be because combination
therapy, a treatment modality that combines two or more
therapeutic agents, is a cornerstone of cancer therapy (Bayat
Mokhtari et al., 2017). This also explains the decreasing trend in
the E-I index of the L category, which indicates that the DDIs
between drugs in the same L category have recently been

investigated. It is worth noting that the number of DDI studies
may be influenced by prescription frequency. For example,
According to Bodenreider and Rodriguez (2014), despite the fact
that the dataset was based on emergency room patients for 3 months
in 2011, the A, C, and N categories were the most commonly
prescribed drug categories, so the sheer number of DDIs found
in categories A, C, and N might be inflated due to the fact that these
drugs are more commonly prescribed, leading to more observations
and subsequent publications. However, we have found that high-

FIGURE 6
The drugs with the highest degree, betweenness, and eigenvector in PK DDI, PD DDI, and complete DDI networks in each year ranged from 1987 to
2022. The color in the cell represents the drug index. From 1987–2012, cimetidine exhibited the highest degree and eigenvector in the PK network, while
rifampin has dominated since 2015. Morphinemaintained the highest degree and eigenvectors in the PD and complete networks, with ethanol having the
highest betweenness until 2019 when rifampin surpassed it.

TABLE 4 The drugs with the highest average, as well as growth rate, in the three types of centrality (degree, betweenness, and eigenvector) over the last 5 years.

PK PD Complete

Largest increase Degree Rifampin Cisplatin Rifampin

Betweenness Rifampin Morphine Rifampin

Eigenvector Ketoconazole Fluoxetine Fluoxetine

Lowest increase (or largest decrease) Degree Chlordiazepoxide Trimethaphan Meprobamate

Betweenness Hexobarbital Oxygen Rimantadine

Eigenvector Cimetidine Reserpine Reserpine
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frequency prescribed drugs are not always investigated in DDI
research, and low-frequency prescribed drugs can also be highly
investigated for DDIs. For instance, the L category drugs were
prescribed at a very low rate, but our research showed that the
number of L category related DDI studies was very high in 2011.
Conversely, the H category drugs were frequently prescribed, but
their DDIs were rarely investigated in 2011. These findings suggest
that other factors, such as safety concerns or emerging research
interests, may play a role in driving DDI research beyond drug
prescription frequency alone.

Between 1987 to 2012, cimetidine had the highest degree,
betweenness, and eigenvector centralities in the PK DDI network,
but it was replaced by rifampin. Cimetidine has numerous drug
interactions due to its nonselective inhibition of cytochrome
P450 enzymes (Levine and Bellward, 1995). The introduction of
longer-acting H2 receptor antagonists with fewer side effects and
drug interactions has diminished the usage of cimetidine, and it is no
longer one of the most regularly used H2 receptor antagonists.
Similarly, the therapeutic applications of trimethaphan (a
vasodilator), which showed the lowest eigenvector increase in the
PK network, are extremely limited due to competition from newer
drugs with more selective actions and effects produced (Wilkins
et al., 2007).

Rimantadine demonstrated the greatest decrease in
betweenness in the complete network, which may be due to
the fact it is not recommended for use in the United States
since 2009 because of widespread antiviral resistance to this class
of antivirals among circulating flu A viruses (Bloom et al., 2010).
Colistin–meropenem was the most actively researched DDI in the
PD and complete DDI networks over the past 5 years. Numerous
studies demonstrated that the combination of different
antibiotics with colistin, such as meropenem produced
favorable results (Biancofiore et al., 2007). Recently,
researchers have questioned whether the colistin–meropenem
combination has a synergistic effect (better than monotherapy)
against bacteria (Soudeiha et al., 2017). The controversial
opinions expressed by researchers may have prompted the
recent active investigation of this DDI.

Despite its contributions, our study has several limitations. First,
although we employed the ScispaCy and SciFive models, the results
may include false positives and overlook articles due to false
negatives, as the model is not perfect. While we confirmed the
performance of the NLPmodels through manual evaluations of a set
of randomly selected DDIs, a thorough manual examination of all
DDI sentences would be necessary to improve the quality of the
results. Second, some relevant publications may have been excluded
from this study if they did not fall within the search criteria. For
instance, our conclusions are based on the assumption that all DDI
articles contained at least one sentence with at least two drug entities
in their abstracts. However, there may be DDI articles that lack such
a sentence or contain a sentence with at least two drug entities only
in the full text, and our study would not include these articles.
However, extracting DDIs from full-text articles with acceptable
performance is challenging for NLP models. Despite the existence of
advanced NLP models such as SciFive, knowledge graphs, and large
language models, their performance in extracting DDIs from full-
text articles is unknown. Furthermore, many sentences in full-text
articles describe or introduce DDIs from cited papers, which can

skew the results. Third, we acknowledge that the 5-year investigation
window size we chose to inform readers about recent DDI research
trends was arbitrary. Even though we believed that a 5-year period
could provide recent trends in DDI research because longer
timeframes could capture more historical trends and shorter
timeframes could not reveal trends adequately, the selection of a
5-year investigation window size may not fully represent the recent
DDI research trend. As a result, the recent trends in this paper
should be interpreted using the 5-year investigation window. Lastly,
the quality of DDI evidence extracted from the literature is
dependent on the quality of the original research, which may be
limited or inconsistent. This may lead to variability in the quality
and relevance of DDI evidence extracted from the literature,
potentially resulting in incomplete or biased analyses. Future
studies should focus on enhancing data quality, including the
manual curation of DDI evidence from published literature, to
develop high quality DDI networks. Incorporating the clinical
implications of DDIs into network analysis is also crucial. This
would highlight the clinical significance of these interactions,
providing insights that could be instrumental in optimizing
patient care.
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