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Background: Colorectal cancer liver metastasis is a major risk factor of poor
outcomes, necessitating proactive interventions and treatments. Cancer-associated
fibroblasts (CAFs) play essential roles in metastasis, with a focus on metabolic
reprogramming. However, knowledge about associations between Cancer-
associated fibroblasts metabolic phenotypes and immune cell is limited. This study
uses single-cell and bulk transcriptomics data to decode roles of metabolism-related
subtype of Cancer-associated fibroblasts and immune cells in liver metastasis,
developing a CAF-related prognostic model for colorectal cancer liver metastases.

Methods: In this study, Cancer-associated fibroblastsmetabolism-related phenotypes
were screened using comprehensive datasets from The Cancer Genome Atlas and
gene expression omnibus (GEO). Cox regression and Lasso regression were applied to
identify prognostic genes related to Cancer-associated fibroblasts, and a model was
constructed based on the Cancer-associated fibroblasts subtype gene score.
Subsequently, functional, immunological, and clinical analyses were performed.

Results: The study demonstrated the metabotropic heterogeneity of Cancer-
associated fibroblasts cells. Cancer-associated fibroblasts cells with varying
metabolic states were found to exhibit significant differences in
communications with different immune cells. Prognostic features based on
Cancer-associated fibroblasts signature scores were found to be useful in
determining the prognostic status of colorectal cancer patients with liver
metastases. High immune activity and an enrichment of tumor-related
pathways were observed in samples with high Cancer-associated fibroblasts
signature scores. Furthermore, Cancer-associated fibroblasts signature score
could be practical in guiding the selection of chemotherapeutic agents with
higher sensitivity.

Conclusion: Our study identified a prognostic signature linked to metabotropic
subtype of Cancer-associated fibroblasts. This signature has promising clinical
implications in precision therapy for colorectal cancer liver metastases.
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Introduction

Liver is the most common site for metastasis of colorectal cancer
(CRC), with approximately 50% of CRC patients developing liver
metastases (LM) (Hu et al., 2021). Of these patients, 20%–30% have
developed liver metastases at the time of initial diagnosis, and there
is currently no effective treatment for colorectal cancer with liver
metastases. One hallmark of cancer cells is metabolic
reprogramming, which involves various metabolic changes that
support faster proliferation. Glucose, nucleic acids, and lipids
metabolism are all involved in this process (Faubert et al., 2020;
Zhang et al., 2021).

The tumor microenvironment (TME) refers to the complex
network of cellular and molecular components that surround
and interact with tumor cells. It encompasses the intricate
interplay between immune cells, such as T cells, B cells,
natural killer cells, and macrophages, with tumor and stromal
cells. Additionally, the extracellular matrix within the TME
provides structural support and influences cellular behavior
through dynamic crosstalk with the surrounding cells. The
TME also contributes to the metastasis (Lee et al., 2020).
Cancer-associated fibroblasts (CAFs) are crucial constituents
in the microenvironment of solid tumors (Sahai et al., 2020).
Compared to normal fibroblasts (NFs), CAFs exhibit lower
contractility and higher ECM remodeling capacity, which
secreting more pro-inflammatory mediators, matrix proteins,
and immune regulators (Ishii et al., 2016; Lee et al., 2020; Sahai
et al., 2020). Additionally, CAFs support tumorigenesis,
progression, and metastasis in various ways through their
interaction with cancer cells and immune cells.

Cellular metabolic reprogramming is a critical hallmark of
malignancy and is most commonly observed in the tumor
microenvironment, especially during metastasis. Metabolic
reprogramming allows cancer cells to acquire cell-autonomous
properties associated with enhanced invasiveness, which facilitate
their escape (Faubert et al., 2020). Metabolic reprogramming has
been reported to occur not only in tumor cells but also in the TME.
Recent evidence has revealed the impact of metabolic interactions
between CAFs and tumor cells on tumor metastasis (Faubert et al.,
2020). The vast heterogeneity in the functions and sources of CAFs
results in the existence of multiple subpopulations, each exhibiting
partial functionality. Single-cell RNA sequencing (scRNA-seq), an
emerging technology, enables the characterization of the intricate
complexity and heterogeneity of distinct CAF subsets across
various tumor types (Bartoschek et al., 2018; Friedman et al.,
2020). Previous studies of the metastatic process have
highlighted the concept of three major CAF subsets that can be
dissected by their myofibroblast, inflammatory and/or
immunomodulatory, and antigen-presenting activities (Banales
et al., 2020; Xing et al., 2021). Nevertheless, the intricate
interplay between CAFs and immune cells, as well as the effects
of metabolic reprogramming during metastasis, are not yet fully
understood, and further study is required to explore more specific
CAF subtypes and their functions.

In this study, we identified distinct fibroblast subpopulations
based onmetabolic analysis at the single-cell level. We identified hub
genes that are significantly linked to metabotropic subtypes of
cancer associated fibroblasts. Finally, a CAF-related prognostic

signature model was created using GEO datasets and
demonstrated its roles in predicting outcomes and
immunotherapy responses of patients with CRC and colorectal
cancer liver metastasis.

Methods

Data source

Single-cell mRNA-sequencing data (Che et al., 2021) were
collected from 6 CRC patients, patients numbered COL15, COL
17, and COL18 were patients who received chemotherapy and the
others who were not. Bulk RNA-seq datasets GSE41258,
GSE39582, GSE103479, GSE38832, GSE192667 and
GSE15921 as well as TCGA bulk RNA-seq data with
corresponding detailed clinical information were included in
our analysis. This study adhered to the guidelines set by the
TCGA and GEO databases.

scRNA-seq data processing and analysis

scRNA-Seq data were processed by following Seurat pipelines
in R (Hao et al., 2021). Briefly, genes expressed in less than 3 cells,
as well as cells expressed less than 250 or more than 3000 genes
were filtered out. Cells with high mitochondria and rRNA gene
proportions were also excluded. Then, log-normalization was
conducted to normalize the data from the 6 samples. The
highly variable genes were identified using the
FindVariableFeatures function, followed by scaling of all genes.
PCA dimensionality reduction was performed to identify anchors.
The cells were clustered with a resolution of 0.2. After initial
sample integration, cell clustering and annotation, we generated a
gene expression and phenotype matrix of 1897 CAF cells from all
111,292 cells.

Metabolism score calculation and CAF
subtyping

Metabolic activities of CAFs were evaluated by SCmetabolism
packages (Wu et al., 2022). Each CAF cell was scored using the
VISION algorithm, and finally the activity scores of the cell in
different metabolic pathways were obtained. Second round
clustering and subtyping of CAFs cells based on SCmetabolism
scores were conducted to identify the heterogeneity of CAFs by
Seurat pipelines.

Cell communications analyses

Cell-cell communications based on ligand-receptor
interactions were inferred by CellphoneDB (Efremova et al.,
2020). To gain more critical cell-cell interactions in the colon
cancer tumor microenvironment, we selected receptor-ligand pairs
associated with hub genes for further analysis, aiming to explore
potential interactions between immune cells. Significantly
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differential expressed ligand-receptor pairs (p < 0.05) were
visualized.

Trajectory analysis

Single-cell trajectories and determination of the continuous
process of CAFs were analyzed by Monocle 2.0 package (v 2.10.0)
(Jin et al., 2021). Pseudo-temporal analysis was applied to classify
cells in pseudo-chronological order using the top
1000 differentially expressed genes in fibroblasts. Subsequently,
a branch expression analysis model (BEAM analysis) was used to
analyze branch fate-related genes.

Survival analysis using CAFs-related features
in bulk RNA-seq datasets

CAFs-associated gene signatures were generated by identifying
the marker genes of all CAFs clusters. The activities of these genes in
each sample of all CRC datasets were calculated using GSVA. Log-
rank test and Cox proportional hazards regression were performed
to explore the relationship between CAFs characteristics and patient
prognosis, including overall survival (OS) and recurrence-free
survival (RFS) rates. Cutoffs for different cell characteristics in
different public datasets were determined by the survminer
package and used for plotting Kaplan-Meier curves.

Mutation analysis

Mutation data of CRC were obtained from the TCGA, and
analyzed using the TCGAbiolinks package (Colaprico et al., 2016).
Mutation landscape and lollipop plots were generated using
maftools (Mayakonda et al., 2018).

Construction and validation of CAF-related
prognostic signatures

We predicted the prognostic characteristics of CRC patients
by identifying CAF marker genes from scRNA-seq clusters.
Using GSE192667 as training dataset, all CAF marker gene
were investigated by univariate Cox regression models for the
prognostic evaluation of OS time. Genes with significant
prognostic effect (p < 0.05) were determined as candidate
prognostic genes. The LASSO regression analysis was then
used to identify the feature genes and optimize the model to
prevent overfitting. Based on the coefficients generated from the
LASSO analysis, a risk score was assigned to each colon cancer
patient. Finally, we divided all colon cancer patients into high-
and low-risk groups based on their risk score by the median. The
association between the risk score and OS was assessed using
Kaplan-Meier analysis. Heatmaps were generated to visualize
the associations between CAF risk scores and candidate genes.
The time-dependent prediction accuracy of our model in the
training, internal, and external test datasets was evaluated
using AUC.

Functional analyses of CAF subtypes

After obtaining differentially expressed genes between CAF
subtypes, Metascape (https://Metascape.org) was used for gene
set enrichment analysis. To estimate the infiltrating immune cells
in the tumor microenvironment, CIBERSORT package was used to
infer the relative abundance of immune cells in each sample
(Yoshihara et al., 2013). Gene sets of tumor-associated canonical
pathways were obtained from previous study (Sanchez-Vega et al.,
2018). Activities of these gene sets were generated by single cell gene
set enrichment analysis (ssGSEA) for cell state assessment of each
tumor sample.

Immunohistochemistry (IHC) staining

Tumor and adjacent tissue samples were fixed in formalin and
embedded in paraffin. For IHC staining, sliced samples were
deparaffinized and rehydrated. After that, antigen retrieval was
performed, and normal goat serum was used for 10 min at room
temperature to block non-specific binding site. Each slide was
treated with mouse monoclonal anti-human NNMT antibody
(1E7, diluted 1:1400) and incubated in 37°C for 40 min. Then,
slides were incubated with biotinylated goat anti-mouse antibody
for 30 min, and chromogenic reaction was carried out using a
diaminobenzidine (DAB) Substrate Kit. Finally, Digital slide
scanning system (KF-PRO-005) was used to capture images of
IHC. The staining scores of NNMT protein expression were
evaluated by two independent pathologists based on their clinical
information. The protein expression levels were classified as 0 (no
staining), 1+ (weak staining), 2+ (moderate staining), or 3+ (intense
staining), and the staining score was calculated by integrating the
percentage of positive cells and the respective intensity scores. The
staining score ranged from a minimum value of 0 to a maximum
value of 300.

Chemotherapy sensitivity and
immunotherapy response prediction

Chemosensitivities of high and low CAF score groups were
evaluated by oncoPredict (Maeser et al., 2021). Briefly, a ridge
regression model with 10-fold cross-validation was built to infer
half-maximal inhibitory concentrations (IC50) Value.
Pharmacogenomics database Genomics of Cancer Drug
Sensitivity (GDSC; https://www.cancerrxgene.org) (Yang et al.,
2013) was used to assess the response of CRC patients to
chemotherapy. In addition, the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm (Jiang et al., 2018) was implemented to
predict immune checkpoint blockade treatment response between
the two groups.

Statistical analyses were conducted using R software (v 4.1.0)
and data visualizations were generated using appropriate R
packages. Non-parametric tests such as the Wilcoxon rank-sum
test were used for comparing two groups of continuous variables
that did not follow normal distributions, while the Kruskal–Wallis
test was used for testing three or more groups. Cox regression was
employed to calculate hazard ratios (HR), and Kaplan-Meier
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analysis was used for prognostic evaluation. Statistical significance
was set at a two-sided p-value of <0.05. Spearman’s correlations were
determined for correlation analysis (p < 0.05, **p < 0.01).

Results

Metabolic subtypes of fibroblast in CRC
using scRNA-seq data

Six samples obtained from the SMC cohort (GSE178318) were
included in our study, which underwent quality control based on cell
characteristics and mitochondrial and ribosomal gene expression.
Subsequently, dimensionality reduction was performed to classify all
cells. T-Distributed Random Neighborhood Embedding (t-SNE) was
used to divide the cells into 9 major clusters and 32 more detailed minor
clusters (Figure 1A). To further explore the metabolic signature of tumor
fibroblasts, we calculated their metabolic signature pathways scores using
SCmetabolism and clustered these CAFs based on these scores. Two
fibroblast subclusters were identified (Figure 1C), and the important
differentially expressed pathways for each cluster were visualized by
heatmap for 11 metabolic pathways, including carbohydrate
metabolism, energy metabolism, lipid metabolism and other nutrients
metabolism (Figure 1D). According to the expression activities of
metabolic pathways, two fibroblast subclusters were determined as
hypermetabolism CAFs (hyperCAFs) and hypometabolism CAFs
(hypoCAFs).

In primary CRC, total CAFs were significantly more abundant
than in liver metastases (Figure 1B). Proportions of both CAFs
subtypes also were greater in primary tumors than in metastases
(Figure 1E). CAF in CRC patients showed significant heterogeneity in
different sample, COL12 having a more even proportion in CAFs cells
than others (Supplementary Figure S1). However, the proportion of
hypoCAFs in other patients was significantly lower than hyperCAFs.

We identified differential expressed genes between clusters
(Figure 1F). Hypometabolic CAFs shows higher expression of
genes involved in myogenesis and pericyte-associated markers,
such as MALAT1. While hypermetabolic CAFs highly expressed
THY1, COL1A2, and some metabolism-related genes, such as
PLA2G2A and NNMT. We focused on nicotinamide
N-methyltransferase (NNMT), which is a cytosolic enzyme that
has been identified as a significant metabolic regulator of cancer-
associated fibroblasts (Eckert et al., 2019). Our findings were
supported by immunohistochemical staining, which revealed that
NNMT is predominantly expressed in fibroblasts (Figure 1G). The
expression of other metabolism-related genes, including CRABP2,
PLA2G2A, OGN, were all highly expressed in hyperCAFs subtypes
(Supplementary Figure S2).

Functional heterogeneity, trajectory, cell-
cell communication and transcription
factors analysis of CAFs in CRC

To describe and explain the functional heterogeneity of the two
CAF subpopulations, several sets of genes characterizing the related
functions of CAFs were used. Heatmap showed that different
metabolic CAF subpopulations were characterized by significant

differences in the expression of collagen genes, angiogenesis genes,
smooth muscle-related contractile genes, and members of the RAS
superfamily (Figure 2A).

Trajectory analysis of CAFs was performed based on the
Monocle 2 algorithm to infer the maturation process of CAFs
(Figure 2B, Supplementary Figure S3). In particular, we dissected
gene patterns involved in CRC cell state transitions. Cell-to-cell
communication analysis revealed large-scale interactions between
the two CAF subpopulations and other cell types. Hypometabolism
CAFs had cellular interactions among hypometabolism CAFs,
tumor cells, and endothelial cells (Figure 2C), While
hypermetabolism CAFs had the strongest interaction on tumor
cells and mast cells (Figure 2C).

We compared different CAF subtypes between CRC and
metastasis with genes related to tumor proliferation, metastasis,
and progression pathways, to explore whether significant
interactions were observed among different cell subsets. The
results showed that CAFs, tumor cells, and B cells can participate
in a series of functional interactions involving CXCL12 receptor-
mediated APP, COPA, and MIF signaling (Figure 2D).

Activity of each transcription factor (TF) and its regulated genes
were also inferred in both CAF subtypes. By comparing regulator
specificity scores (RSS), we examined key regulators for each cell type
and visualized the top 5 regulators (Figures 2E,F). E2F1, RUNX3, and
ZNF224 were identified as the top regulators for hypometabolism
CAFs, while CREB3L1, NFIB, ARNT, and GTF3A were identified as
the top regulators for hypermetabolism CAFs.

Functional and prognostic role of CAF
metabolic subtypes signature genes in
metastatic CRC

Based on differentially expressed genes (DEG) (Supplementary
Table S1) between two CAF subtypes, we performed the functional
enrichment analysis using the online gene ontology (GO)
enrichment analysis tool Matascape. Highly expressed genes of
hypometabolism CAFs were enriched in the regulation of RNA
splicing andmuscle structure development GO terms, while genes of
hypermetabolism CAFs were enriched in the transport of small
molecules, cGMP-PKG signaling pathway, and some metabolism-
related pathways such as fatty acid degradation (Figures 3A–D).

To investigate the association between CAF subtypes signatures
and overall survival (OS) and recurrence-free survival (RFS) of CRC
patients, we computed metabolic subtype scores for CAF subtypes
by GSVA. Prognostic analysis was performed on all differentially
expressed genes (DEGs) across nine publicly available cohorts that
were classified into three types according to the metastasis status
(i.e., primary tumor cohort, tumor cohort with metastases, and
tumor cohort with liver metastases). We conducted a meta-analysis
to obtain stable prognostic results for CAF subtypes, and compared
our metabolic subtypes with Pan-CAF signatures derived from
previous studies (Galbo et al., 2021). Our analysis revealed
significant differences between subgroups in hypometabolism
CAF scores compared to hypermetabolism CAF scores, in
relation to RFS and OS. As a result, we defined hypometabolism
CAF-type cells as a class of cells that are specific to colorectal cancer
patients with LM.
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FIGURE 1
Single-cell transcriptome analysis and functions of CAF-related genes. (A)Nine cell subsets are shown. (B) Boxplot showing the difference between
primary and metastatic lesions. (C) UMAP plot showing the metabolic grouping of CAF cells. (D) Heat map showing differences in 11 metabolic pathways
between different metabolic groups. (E) Boxplots showing the differences between primary CRC and liver metastases in hypoCAFs and hyperCAFs. (F)
Volcano plot highlighting the signature genes of different clusters. (G) Immunohistochemistry showing NNMT gene expression in fibroblasts.
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FIGURE 2
Analysis of cellular communication in the TME of CAF cell populations in other different metabolic states. (A) Correlations between CAF clustering
characteristics and cytokines including chemokines, interleukins, and other cytokines. (B) Heat map showing that CAF cells can exhibit two expression
patterns after differentiation. (C) Shows the number of ligand-receptor pairs between CAF and other subclusters. (D) Shows a comparison of specific
ligand-receptors between CAF clusters and other subclusters in primary and liver metastases. (E) Regulator-specific scores for regulon activity of
CAF isoforms.
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FIGURE 3
Enrichment analysis of CAF cell subgroups and prognosis (A,B) Enrichment analysis and corresponding networks of differentially expressed
associated genes in CAF subgroups. (C,D) Prognosis of CAF cluster (GSVA score). The cut-offs were calculated by the survival R packages. RFS analysis
(data from 9 CRC cohorts); B OS analysis (data from 8 CRC cohorts).
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Construction and validation of metabolism-
CAF score based on metabolism subtypes of
CAFs

To explore the prognostic genes associated with hypoCAF, we
selected 20 genes based on the univariate Cox regression analysis
in the GSE159216 dataset (Figure 4A). These 20 genes underwent
Lasso-Cox regression analysis with 10-fold cross-validation to
generate the optimal model, which highlighted 13 genes with the
smallest partial likelihood deviation and optimal regression
efficiency, including TINAGL1, ADIRF, ELP6, CSRP2,
PPP1R15A, PABPN1, PHLDA1, ID3, KNOP1, DSTN,
PPP1R10, CCDC107, and UBALD2. The risk score was
calculated using the formula, and applied to GSE159216,
TCGA, and GSE72970 datasets. Results indicated that
colorectal cancer patients with high risk score had a higher
mortality rate (Figures 4C–E). Heatmap results showed
significant differences in the 13 genes expression between two
risk score groups.

According to KM curves, patients in the high risk score
group had lower survival rates than those in the low risk score

group (Figures 5A–C). We also performed time-dependent
ROC analysis, with the AUC values of our model in the
training set for 1-year, 3-year, and 5-year overall survival
being 0.85, 0.78, and 0.80, respectively (Figure Figure5A). In
TCGA, the AUC for our 1-, 3-, and 5-year survival models were
0.66, 0.67, and 0.64, respectively, while in the GSE72970 dataset,
the AUC values for 1-, 3-, and 5-year survival models were 0.74,
0.75, and 0.74, respectively. Cox regression analysis in three
cohorts showed CAF score model would be an independent
prognostic marker for CRC with LM (Figure 5G). We developed
a nomogram based on CAF score to predict overall survival in
CRC patients at 1, 3, and 5 years (Figure 5H). The calibration
curves for each time point showed excellent predictive
performance.

Biological features ofMetabolism-CAF score

We analyzed the correlation between the hypoCAFs
signature score and several pathways, the score was
negatively correlated with most of the metabolic-related

FIGURE 4
Construction and evaluation of prognostic risk model. (A) In the GSE159216 dataset, 20 genes were selected for analysis by univariate Cox
regression. (B) The ten-fold cross-validation and LASSO coefficient distribution used to screen the optimal parameter (lambda) was determined by the
optimal lambda. (C) Differences in overall survival between high-risk and low-risk groups in the GSE159216 training cohort. (D) Difference in overall
survival between high-risk and low-risk groups in the TCGA validation cohort. (E) Differences in overall survival between high-risk and low-risk
groups in the GSE72970 validation cohort.
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pathways. It was also negatively correlated with some cancer-
related pathways such as cell cycle, gene duplication,
homologous recombination, and p53 signaling (Figure 6A).

After deconvolution analysis, samples with low CAF scores
exhibited high levels of activated memory CD4 T cells and
memory B cells, while samples with high CAF scores showed
high expression levels of regulatory T cells and resting memory
CD4 T cells. To evaluate immune competence, we examined the
expression of immune checkpoints (CD274, CTLA4, HAVCR2,
IDO1, LAG3) and immune competence factors (CD8A,
CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and
TNF) (Figure 6B). The CAF score demonstrated a negative
correlation with 14 out of 75 immunomodulators and
24 immune cells (Figure 6B). Finally, we compared the
immune score (Figure 6D), ESTIMATE (Figure 6E), and
stroma score (Figure 6F) between samples with high and low
CAF scores, and observed that high CAF score samples
exhibited elevated matrix and ESTIMATE scores.

Immunotherapy prediction of metabolism-
CAF score

To explore the role of CAF score in immunotherapy, we
investigated the correlation between risk score and TMB. Our
findings revealed that TMB expression was significantly higher in
the low-risk subgroup than in the high-risk subgroup
(Supplementary Figure S4). Moreover, to gain further insights
into the nature of immunity in different risk subgroups, we
analyzed genetic mutations. The top 20 genes with the highest
mutation rates were identified in both the high-risk and low-risk
subgroups (Supplementary Figure S4).

For ICB response prediction, we determined the correlations of
CAF scores with TIDE, dysfunction, exclusion, and MSI Expr
signature (Figures 7A–D). The results showed that CAF scores
were positively associated with TIDE, dysfunction and exclusion,
and negatively associated with MSI Expr sig. It was found that
CRC patients with lower hypoCAFs scores had a higher possibility

FIGURE 5
Creation of CAF-related prognosis and nomogram. (A–C) Kaplan-Meier prognostic analysis of signatures across training, testing, and entire
datasets. (D–F) Time-dependent ROC signature curves in the training, testing GSE159216, TCGA and GSE72970 datasets. (G)Univariate Cox regression in
the GSE159216, TCGA and GSE72970 cohorts.
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of responding to immunotherapy and may had better prognosis after
immunotherapy, indicating that patients with lower CAFs scores were
more likely to benefit from immune checkpoint therapy (Wilcoxon
test, p = 0.0001, Figures 7E–H).

The expressions of five immune checkpoint molecules (PD1, PD-L1,
CTLA4, LAG3 and HAVCR2) were compared between groups with high
and low CAF score, the results showed that four immune checkpoint
molecules (PD1, PD-L1, LAG3, and HAVCR2) were significantly

FIGURE 6
Immune analysis of the CAF-related scoring model. (A) Correlations between CAF score feature scores and metabolic pathways, immune-related
pathways based on GSVA of GO and KEGG terms. (B) Multi-omics analysis of 75 immunomodulators between high and low CAF score samples. (C)
Expression and Pearson correlations of immunity, ESTIMATE, stroma score, tumor purity, TIC, checkpoints and immune competence for each sample are
illustrated in a heatmap.
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upregulated in the high-risk group (Figure 7G). Furthermore, CAF score
was strongly associated with the desert and inflamed immunophenotype
(Kruskal–Wallis, p = 0.0029, Figure 7I). Our study also found that CAF
score was positively correlated with PD-L1 expression in tumor cells and
PD-1 expression in immune cells (Figure 7J).

GDSC investigation of metabolism-CAF
score

Chemotherapy is the main treatment options for colorectal cancer
liver metastases, therefor, whether CAF scores can accurately predict
chemotherapy outcomes in colorectal cancer patients was investigated.
GDSC is used to predict response to conventional chemotherapy in
patients with colorectal cancer liver metastasis. A ridge regression model
was built to predict IC50 of different drugs. We found that the IC50 of
cisplatin, gemcitabine and other chemotherapeutics in the high CAF
score group were significantly lower than those in the low CAF score
group, suggesting that CAF score was positively correlated with
chemotherapeutic drug sensitivity of colon cancer liver metastasis. In
addition, we used the database to predict small molecule drugs

(Figure 8B). The drugs vemurafenib, PLX-4720, dasatinib, and PI-103
were found to be negatively associated with the CAF score, with lower
estimated AUC values in samples with high CAF score. These findings
suggest that the predicted small-molecule drugs may be more effective in
patients with high CAF score.

Discussion

Growing evidence suggests that CAFs are key players in CRC
metastasis. Meanwhile, metabolic reprogramming has profound effects
on CAFs, thereby regulating cancer progression andmetastasis, including
glucose, glutamine and fatty acid metabolism (Zhu et al., 2022). A
previous scRNA-seq study showed that CAFs identified in PDAC
patients have a highly activated metabolic state. The new CAF
subtype, called metabolic CAF (meCAF), uses glycolysis as the
primary metabolic mode. Although PDAC patients with abundant
meCAF have a higher risk of metastases, they have better
immunotherapy responses when treated with programmed cell death
protein 1 (PD-1) blockade (Wang et al., 2021). Downregulation of
metabolism genes in CAFs of PDAC liver metastasis, but not those in

FIGURE 7
CAF score in predicting immunotherapy effect. (A–D) Correlations between CAF score and TIDE, dysfunction, exclusion, and MSI expression
signatures. (E) Kaplan-Meier curve versus IMvigor210 survival analysis. (F) Wilcoxon test of anti-PD-L1 reactive CAF score variation. (G) Expression of
5 immune checkpoint molecules (PDCD1, CD274, CTLA4, LAG3, and HA VCR2) in high and low CAF score groups (H) Stacked histogram showing anti-
PD-L1 between high and low CAF score difference in reactivity. (I) CAF score was tested at three scorch levels using the Kruskal–Wallis test. (J)
Kruskal–Wallis test of the CAF score of PD-L1 expression on immune cells.
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lung metastasis, appeared to be regulated by DNA methyltransferase,
CAFs metabolismmodification may promote PDAC with organ-specific
metastatic (Pan et al., 2021). However, the combined effects of fibroblasts
with different metabolic status in colorectal cancer liver metastasis are
unclear. Studying the role ofmetabotropic CAF-related gene signatures in
the occurrence and development of colorectal cancer livermetastasesmay
contribute to decode the mechanisms of liver metastases and guide
appropriate treatment strategies for patients. Cancer-associated
fibroblasts are important members of the TME, and previous studies
have shown that CAFs with different molecular characteristics were
classified into myCAF, pan-dCAF, pan-iCAF, pan-nCAF and pan-pCAF
(Galbo et al., 2021). In our study, we identified prognostic CAF
populations through single-cell transcriptomes, and these subtypes
exhibited distinct activation of metabolism-related pathways, such as
glucose metabolism, gluconeogenesis, cysteine and methionine
metabolism, etc. In addition, we found that different CAF cells also
exhibit extensive interactions with T cells, NK cells, and tumor cells
through growth factors and cytokines, thereby promoting tumor
progression (Jiang et al., 2021). Cellular communication has shown
that the CXCL12-CXCR4/CXCR7 chemokine axis is expressed in
hyperCAFs and is significantly expressed in metastases. CXCL12 not

only binds toCXCR4, but also toCXCR3 andDPP4 on tumor cells in our
study, which is consistent with previous reports (Jiang et al., 2021). Li et al.
(Li et al., 2022) pointed out that inflammatory CAFs secrete IL6 and
CXCL12 to chemoattract and regulate the function of T cells, which is
similar to inflammatory CAFs found in other solid tumors. Costa et al.
(Costa et al., 2018) identified differentially expressed secretory molecules,
such as CCL11, CXCL12, CXCL13, and CXCL14, in CAF-S1 and CAF-
S4 cells in breast cancer. CXCL12 can be produced by hyperCAF, the
binding of CXCL12 to tumor cells can inhibit tumor cell apoptosis and
change the characteristics of tumor cell adhesion (Augsten et al., 2014;
Zhao et al., 2017). HyperCAFs also express the CXCL14, elevated
CXCL14 levels in CAFs of clinical specimens are also associated with
higher risks for disease recurrence and worse overall survival time in
colorectal cancer (Zeng et al., 2013).

Many studies have reported the role of RUNX3 in inhibiting cancer
cell migration and tumor growth (Kim et al., 2020). A study reveals that
CAF-derived exosomal miR-17-5p promotes an aggressive phenotype in
colorectal cancer by initiating a RUNX3/MYC/TGF-β1 positive feedback
loop (Zhang et al., 2020). In another study, circMEttL3, which is
transcriptionally activated by RUNX3, suppressed CRC development
and metastasis by acting as a miR-107 sponge to regulate PER3 signaling

FIGURE 8
Prediction of drug and immune responses. (A) Heatmap showing IC50 estimates for high and low CAF scores. (B) Predicted and estimated AUC
values for small molecule drugs in CTRP 2.0 and PRISM databases. (C) Immune responses to PD1 and CTLA4 in patients with high and low CAF scores.
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(Zhang et al., 2022). Furthermore, RUNX3 has been shown to promote
TRAIL-inducedCRCapoptosis (Kim et al., 2019). CREB3L1 is a hypoxia-
inducible cytokine (Mellor et al., 2013). Studies have shown that α-SMA-
positive CAFs were activated through CREB3L1-mediated IL-1α
production, the presence of CAF inhibits thyroid cancer growth and
metastasis after CREB3L1 knockdown (Pan et al., 2022).

Cellular communication analysis and hub genes in CAF-related
modules suggest the importance of MAST cells in the immune
microenvironment remodeled by CAF (Johansson et al., 2010;
Derakhshani et al., 2019). Mast cells can generate trypsin, TNF, IL-1,
IL-6, and other factors to boost anti-tumor inflammatory responses,
stimulate tumor cell apoptosis, and suppress cancer cell invasion (Ribatti
and Crivellato, 2011). In prostate cancer, estrogen-induced CAF-derived
CXCL12 binds to CXCR4 and enhances mast cell proliferation,
migration, and inflammatory cytokine secretion, thus exhibiting
oncogenic effects (Ellem et al., 2014). CAF plays a role in
immunosuppression through various mechanisms, including
collaborating with mast cells to promote the early malignant
transformation of benign epithelial cells, and blocking DC maturation
and antigen presentation (Cheng et al., 2016; Pereira et al., 2019).

To identify prognostic genes associated with CAFs and improve
the clinical utility of the model, we utilized LASSOCox regression and
multivariate Cox regression analyses to identify key CAF-related
genes with independent prognostic significance. The resulting risk
score prognostic model for sexual symptoms was constructed based
on 13 CAF-related genes that exhibited independent prognosis. Then,
the model is validated in different GEO cohorts. ROC curve suggested
that risk scores derived from genetic signatures were more effective in
predicting overall survival at 1-, 3-, and 5-year survival. After
performing functional analysis, we observed that several cancer-
related pathways and activated cellular crosstalk pathways were
enriched in samples with high CAF score. We also investigated the
expression levels of immunosuppressive gene markers and found an
association between CAF score and immune checkpoint molecules
(CXCL9, CTLA4, CD274, TNF, TBX2). Finally, we analyzed
chemotherapeutic drug resistance and sensitivity data to predict
potential correlation of CAF score and therapeutic effects of
chemotherapeutic drugs. These results suggest that the CAF
signature is a potential clinical model for the determination of
whether a CRC patient are more likely to respond to ICIs or
chemotherapeutics.

Moreover, our study identified CD274, HAVCR2, and TBX2 as
potential targets for immunotherapy of CRC liver metastasis, as
they were found to be increased in samples with high CAF scores.
Previous study has reported blocking these immune checkpoints
may represent a promising strategy for HCC treatment (Lian et al.,
2020). Our results suggest that patients with high CAF scores may
have higher sensitivity to some small-molecule drugs. For instance,
in a recent clinical trial, the addition of vemurafenib improved the
progression-free survival in patients with BRAF-mutant metastatic
colorectal cancer treated with irinotecan and cetuximab (Kopetz
et al., 2021). While our model showed good predictive
performance for the sensitivity of colorectal cancer to cisplatin,
it may not be as effective in predicting sensitivity to classical
chemotherapeutic agents like oxaliplatin, fluorouracil, and
irinotecan. Nonetheless, our findings can guide the selection of
chemotherapy drugs for some colorectal cancer patients. In
summary, our risk score model provides better prediction of the

sensitivity of colorectal cancer patients to immunotherapy and has
potential as a reference for selecting appropriate immunotherapy
regimens for these patients.

However, there are limitations to our study. First, the data used
in this study were obtained from online databases like TCGA and
GEO, and further validation study with a larger sample size is
required. Second, the findings of this study need to be
prospectively validated in a cohort of colorectal cancer liver
metastasis patients who receive immunotherapy.

In conclusion, our study indicates that metabolically active CAFs
have a stronger communication and interaction with immune and
tumor cells compared to metabolically suppressed CAFs. Moreover,
hypoCAF score has better prognostic efficacy than hyperCAF score in
terms of overall survival and recurrence-free survival of patients with
metastatic colorectal cancer. We have developed a metabolic-CAF
score model based on hypoCAF score and verified its ability to
predict the prognosis of patients with metastatic colorectal cancer.
The CAF score can predict the sensitivity of colorectal cancer liver
metastasis chemotherapy drugs and is correlated to the prediction of
immunotherapy outcomes. Our study provides new ideas and research
methods for understanding the metabolic characteristics of CAFs and
their role in patients with metastatic colorectal cancer. This study
improves the treatment of colorectal cancer metastasis, and further
exploration of the mechanism of CAFs can provide a theoretical basis
and potential drug targets for CRC patients with metastasis.
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