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Wuwei Shexiang Pill (WSP) is a Tibetan traditional medicine, which has been
demonstrated to exhibit potent anti-inflammatory and anti-gout effects.
However, the specific pharmacological mechanism is not elucidated clearly. In
the present study, liquid chromatography-mass spectrometry (LC-MS)-based
metabolomics was applied to investigate the alteration of serum metabolites
induced by WSP treatment in MSU-induced gouty rats. Subsequently,
bioinformatics was utilized to analyze the potential metabolic pathway of the
anti-gout effect of WSP. The pharmacodynamic data discovered that WSP could
ameliorate ankle swelling and inflammatory cell infiltration, as well as
downregulate the protein expression of IL-1β, p-NF-κB p65, and NLRP3 in the
synovial membrane and surrounding tissues of gouty ankles. LC-MS-based
metabolomics revealed that there were 30 differential metabolites in the
serum between sham-operated rats and gouty ones, which were mainly
involved in the metabolism of fructose and mannose, primary bile acid
biosynthesis, and cholesterol metabolism. However, compared to the model
group, WSP treatment upregulated 11 metabolic biomarkers and
downregulated 31 biomarkers in the serum. KEGG enrichment analysis found
that 27 metabolic pathways contributed to the therapeutic action of WSP,
including linoleic acid metabolism, phenylalanine metabolism, and
pantothenate and CoA biosynthesis. The comprehensive analysis-combined
network pharmacology and metabolomics further revealed that the regulatory
network of WSP against gout might be attributed to 11 metabolites, 7 metabolic
pathways, 39 targets, and 49 active ingredients of WSP. In conclusion, WSP could
ameliorate the inflammation of the ankle in MSU-induced gouty rats, and its anti-
gout mechanism might be relevant to the modulation of multiple metabolic
pathways, such as linoleic acid metabolism, phenylalanine metabolism, and
pantothenate and CoA biosynthesis. This study provided data support for the
secondary development of Chinese traditional patent medicine.
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1 Introduction

Gout is a common inflammatory arthritis that is caused by
monosodium urate (MSU) crystal deposition in the articular
structure of the joint of a person who suffers from hyperuricemia
(HUA) HUA is a metabolic disorder characterized by increased
production and/or decreased excretion of serum uric acid due to
purine metabolism dysfunction (FitzGerald et al., 2020). Then, long-
term high levels of uric acid in the blood may lead to the
precipitation and deposition of MSU crystals, triggering an innate
immune response and intolerably painful arthritis, which is known
as gout flares. Clinically, gouty arthritis (GA) is characterized by
redness, swelling, and pain in the lower limb joints, especially in the
first metatarsophalangeal joint, which can even affect physical
function (Dalbeth et al., 2021). Although most patients with
HUA will not develop gout in their lifetime, the incidence rate of
gout is rising year by year and showing a trend in a younger age
group (Danve and Neogi, 2020; Rao et al., 2022). Unfortunately, the
development of medical strategies for treating gout is unsatisfactory.
First-line anti-inflammatory and uric acid-lowering drugs have
shown various side effects and safety problems (Jansen et al.,
2004; MacDonald et al., 2014; Wechalekar et al., 2014; Ragab
et al., 2017). A promising small molecule compound MCC950,
which specifically targets NLRP3, was suspended in phase II
clinical trials because of its liver toxicity (Mangan et al., 2018).
Several IL-1 antagonists (Anakinra, Canakinumab, and Rilonacept)
have been progressively applied in the treatment of refractory and
recurrent gouty arthritis, which was recommended by the European
League Against Rheumatism (EULAR) and the American College of
Rheumatology (ACR) (Arnold et al., 2022). However, these drugs
are not yet available in China. Hence, research for safer and more
reliable anti-gout drugs is imperative.

Traditional Chinese medicine (TCM) has received
widespread attention and is used clinically due to its
preferable effectiveness and safety (Wen et al., 2021; Zhou
et al., 2022). Chinese traditional patent medicine Wuwei
Shexiang pill (WSP), composed of Terminalia chebula Retz.,
Aconitum pendulum Busch, Aucklandia lappa Decne., Acorus
calamus L., and artificial musk, has been used to treat various
types of arthritis in Tibetan-populated areas of China for
centuries (Chinese Pharmacopoeia Commission, 2020).
Recently, WSP has also been reported to significantly reduce
serum uric acid levels and inhibit ear swelling in mice (Yamin and
Lvyi, 2017). In our previous study, we confirmed that WSP
exerted an anti-gout effect by inhibiting MAPK, NF-κB, and
NLRP3 signaling pathways in MSU-stimulated THP-1
macrophages (Lang et al., 2022). Although our research has
unveiled the anti-inflammatory effect and mechanism in vitro,
the anti-gout pharmacodynamic activity and the metabolomic
profiles of WSP in vivo have not been reported.

Metabolomics is a systematic approach to analyzing the small
molecules metabolites in biological samples and unveiling the
underlying mechanisms of altered endogenous metabolites in

physiological and pathological states or stimulated by exogenous
substances (Fu et al., 2023). Untargeted metabolomics is used to
analyze changes in biological endogenous metabolites and enrich for
metabolic pathways via high-throughput assays, which is widely
used in the fields of pharmacology, drug toxicology, modernization
of Chinese medicine, and so on (Li et al., 2021; Wang and Sun, 2022;
Wang et al., 2023; Huang et al., 2023). Recently, a large number of
works of literature have documented that metabolomics was a novel
and high-performance strategy to screen the predictive biomarkers
of gout flares and to unveil the molecular mechanism of anti-GA
TCMs (Huang et al., 2019; Lyu et al., 2019; Wang and Sun, 2022; Gu
et al., 2023; Lei et al., 2023). Huang et al. proposed that the
metabolomics signatures of gout sufferings in the serum are
mainly comprised of several metabolic pathways, including
purine metabolism, branched-chain amino acids metabolism, and
the tricarboxylic acid cycle and bile secretion and arachidonic acid
metabolism (Huang et al., 2020). Notably, in consideration of the
sensitivity of LC-MS-based metabolomics, the subtle changes in
metabolites of biospecimen can be detected, which is conducive to
revealing the metabolic pathways of TCMs.

In this study, a rat model of gouty arthritis induced by intra-
articular injection of MSU was adopted to evaluate the anti-gout
effect of WSP. Subsequently, the metabolomic profile on the effect of
WSP in the GA rats was monitored by LC-MS-based metabolomics,
thus revealing the anti-GA metabolomic pathways and the
molecular mechanisms of WSP.

2 Materials and methods

2.1 Regents and drugs

All the materials were obtained from the suppliers as follows:
PBS (Lot#8122153) (Gibco, NY, United States); uric acid
(Lot#BCCC5658) (Sigma-Aldrich, Darmstadt, GER); Etoricoxib
tablets (Lot#U039558) (J20180059) (Merck and Co., Inc., NJ,
United States); WSP (Lot#2205001) (Z51020967) (Jiuzhaigou
Natural Pharmaceutical Group Co., Ltd., Aba, CHN); 2-
Chlorophenylalanine (Lot#20211126), Ammonium formate
(Lot#T2122203) (Aladdin, Shanghai, CHN); Acetonitrile
(Lot#R142221) (Dikma, CA, United States); formic acid
(Lot#20221214) (TCI, Shanghai, China); Anti-IL-1β antibody
(Lot#BB09202951), Anti-p-NF-κB P65 antibody (Lot#
BB05301615), and Anti-NLRP3 antibody (Lot#BA12271673)
(Bioss, Beijing, CHN).

Preparation of MSU suspension: A total measurement of
168.1 mg of uric acid and 818.6 mg of NaCl was dissolved in
100 mL of boiling water, and 1.25 mL of 1 mol/L NaOH was
added, heated, and stirred until fully dissolved. The solution was
left at room temperature for 2–3 days. The MSU crystal was
obtained after filtering and drying and was sterilized at 180°C for
2 h. Subsequently, it was weighed in a clean area and prepared with
sterile PBS as an MSU suspension (12 mg/mL).
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2.2 Animals and treatments

A total of 66 male-specific pathogen-free Sprague-Dawley
rats (6~8 weeks, 280~300 g) were purchased from Hunan Slake
Jingda Experimental Animal Co., Ltd (License number: SCXK
(Xiang) 2019-0004). After 1 week of acclimatization, the rats
were randomly divided into six groups including the control
group (CON), model group (MOD), WSP low-dosage group
(10 mg/kg, WSP-L), WSP medium-dosage group (20 mg/kg,
WSP-M), WSP high-dosage group (40 mg/kg, WSP-H), and
Etoricoxib group (32 mg/kg, ETO), which were orally
administrated vehicle or drugs once a day for 7 days,
respectively. All the animals were housed under the standard
condition with regulated temperature and humidity with an
alternating 12-h light/12-h dark cycle, allowing them to take
food and water freely. After the experiment, the rats were
sacrificed by asphyxiation with CO2 (KW-AL experimental
animal euthanasia device, Nanjing Calvin Biotech. Co., Ltd.,
Nanjing, CHN), which was delivered into the cage for less
than 5 psi per second. The death of the rats was confirmed by
a lack of respiration and consciousness. All the experimental
procedures were approved by the Experimental Animal Ethics
Committee of the Sichuan Academy of Chinese Traditional
Medicine [Grant number: SYLL (2021)-031].

2.3 Acute gouty arthritis model

After 1 h of administration on D 6, the animals were
anesthetized with 1% sodium pentobarbital solution (40 mg/kg) i.
p. When the absence of the righting reflex and stable respiration was
observed, acute gouty arthritis in the rats was established according
to Coderre’s approach (Coderre and Wall, 1987). Briefly, a syringe
was inserted from the dorsum of the animal’s left ankle joint, and
0.1 mL of the prepared MSU suspension (12 mg/mL) was injected
into the articular cavity to create the GA model, while the CON
group was administrated with 0.1 mL sterile PBS. After 1 h of
administration on the last day, rats were anesthetized with 1%
pentobarbital sodium solution (40 mg/kg) i. p., and the blood
was collected through the abdominal aorta, which was allowed to
stand at a room temperature for 30 min. The serum was obtained by
centrifugation at 4°C, 1500× g for 10 min, dispensed into sterile
tubes, and quickly transferred to a −80°C refrigerator after touching
the bottom of the tubes to change to liquid nitrogen for quick
freezing. After the animals were sacrificed using CO2, they were
placed on an ice plate to quickly separate the joint ankle and
surrounding tissue samples and were put into 10%
paraformaldehyde for fixation.

2.4 Measurement of foot swelling

A line was drawn approximately 1 cm above the left ankle joint
of the rats before modeling, and the foot was measured and recorded
along the line using a foot measuring instrument (TECHMAN,
Chengdu, CHN) at 0 h, 2 h, 4 h, 6 h, 8 h, and 24 h. Foot swelling was
calculated as follows:

Foot swelling mL( ) � Foot volume aftermodeling mL( )
− Foot volume at 0 h mL( )

2.5 Histopathology

The ankle joint and surrounding tissues were dehydrated,
embedded in paraffin, and cut into 3 μm thick slices. Slice
samples were stained by hematoxylin-eosin staining, and the
pathological changes of the ankle joint, synovial membrane, and
surrounding tissues were observed under a light microscope (Nikon,
Tokyo, JPN). At least three areas were randomly selected to be
photographed. The pathologists who were blinded to the experiment
uniformly scored each photo, and the scoring criteria which was set
by our research team are shown in Table 1, (Zhu-jun et al., 2021).

2.6 Immunohistochemistry

The ankle joint thick slices were dewaxed, antigen-retrieved,
immersed in 3% H2O2, and incubated for 25 min at room
temperature and protected from light. Then, the tissues were
blocked in 3% BSA for 25 min. Subsequently, primary antibodies
(p-NF-κB p65, NLRP3, and IL-1β, dilution: 1:100) were added to the
tissues overnight at 4°C Secondary antibody was added for
incubation for 50 min at room temperature. DAB solution was
used for color reaction; the positive protein expression was
brown. Hematoxylin was used for the staining of the nucleus,
which showed as blue. The slices were observed under a light
microscope (Nikon, Tokyo, JPN) after dehydration and sealing.
At least three areas were randomly selected to be photographed.
Immunohistochemical images were processed by ImageJ software
(NIH and LOCI, United States) to calculate the positive areas.

2.7 Metabolomics analysis

2.7.1 Metabolic biomarkers collection
The serum samples were taken from the liquid nitrogen and slowly

melted at 4°C and vortexed. After centrifugation for 10 min (12,000 rpm,
4°C), the supernatant was carefully dried, and then 150 µL of a 2-
chlorophenylalanine solution prepared with 80% methanol (v:v = 4:1)
was added to resolubilize the samples. The supernatant was filtered using
a 0.22 μm microporous membrane and then added to the assay vial,
pending further analysis (Demurtas et al., 2021).

2.7.2 QC samples
To correct for bias and systematic errors, 10 μL of each group sample

were mixed as QC samples, which were tested once for every 10 samples.

2.7.3 Liquid chromatography conditions
The LC analysis was performed on an ACQUITY UPLC System

(Waters, Milford, MA, United States). Chromatography was carried
out with an ACQUITY UPLC ® HSS T3 (150 × 2.1 mm, 1.8 µm)
(Waters, Milford, MA, United States). The flow rate and injection
volume were set at 0.25 mL/min and 2 μL, respectively, and the
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column temperature was set at 40°C. Gradient elution procedures
are shown in Table 2 (Zelena et al., 2009).

2.7.4 Mass spectrum conditions
Mass spectrometric detection of metabolites was performed on

Q Exactive (Thermo Fisher Scientific, United States) with an ESI ion
source. Acquisition parameters were set as follows: spray voltage was
3.50 kV and −2.50 kV for positive mode and negative mode, sheath
gas pressure was 30 arb, and auxiliary gas pressure was 10 arb. The
primary scan was performed at 325°C in the range of m/z
100–1000 in the capillary tube. Then, secondary cleavage was
performed using HCD at a collision energy of 30 eV and a
secondary resolution of 17,500 (Want et al., 2013).

2.7.5 Data processing
The raw data acquired from mass spectrometry was conversed

into *mzXML files by the Proteowizard software package (v3.0.8789)
(Smith et al., 2006). The R XCMS software package was used for
peak detection, peak filtering, and peak alignment processing to
obtain the substances quantified list with parameters set to bw = 2,
ppm = 15, peakwidth = c (5, 30), mzwid = 0.015, mzdiff = 0.01, and
method = “centWave” (Navarro-Reig et al., 2015). Public databases
such as HMDB (Wishart et al., 2022), massbank (Horai et al., 2010),
and LipidMaps (Sud et al., 2007) were used to perform calibration
tests on metabolites. QC samples were corrected for data according
to the method reported previously (Gagnebin et al., 2017), and QC
samples with RSD >30% will be discarded for quality control.

2.7.6 Pathway analysis
The MetaboAnalyst software package was used to perform

functional pathway enrichment and topological analysis for
screening metabolic biomarkers. The KEGG Mapper tool was
used to visualize the pathways (Xia and Wishart, 2011).

2.8 The comprehensive analysis combined
with network pharmacology

Based on our previous network pharmacology analysis study, we
combined the metabolomics results with a network pharmacology
approach for further comprehensive analysis and a metabolites-
pathways-targets-ingredient network was constructed using Cytoscape
3.7.2 software to determine the underlying mechanism of WSP.

2.9 Statistics analysis

All data were expressed as the mean ± standard deviation. One-
way analysis of variance (ANOVA) was used for multifactorial
comparisons using GraphPad Prism 9 (GraphPad Software, Inc.,
CA, United States). Immunohistochemical images were processed
by ImageJ software (NIH and LOCI, United States) to calculate the
positive areas. Pathology scoring grades were performed with the
Mann-Whitney U test using SPSS (IBM, NY, United States). The
p-value <0.05 was considered statistically significant.

TABLE 1 Pathology scoring criteria.

Grade Description

0 The surface of the cartilage is flat and intact, with a clear hierarchy of synovial tissue and no inflammatory cell infiltration in the synovium and its
surrounding tissue

1 The surface of the cartilage is discontinuous, the synovial tissue is edematous, and the capillaries are dilated, congested, and infiltrated with a few
inflammatory cells

2 The surface of the cartilage is damaged and the synovial tissue is edematous, congested, and infiltrated with a large number of inflammatory cells

3 The cartilage is severely damaged and the membrane tissue structure is disturbed, edematous, congested, and infiltrated with a large number of
inflammatory cells

TABLE 2 Gradient elution procedures.

Time (min) Mobile phase

Positive mode Negative mode

0.1% formic acid in water (%) 0.1% formic
acid in

acetonitrile
(%)

5 mM ammonium formate (%) Acetonitrile (%)

0–1 98 2 98 2

1–9 98–50 2–50 98–50 2–50

9–12 50–2 50–98 50–2 50–98

12–13.5 2 98 2 98

13.5–14 2–98 98–2 2–98 98–2

14–20 98 2 98 2
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3 Results

3.1 WSP inhibits foot swelling in MSU-
induced acute gouty arthritis in rats

As shown in Figure 1A, B and Table 3, all groups except the
CON group showed significant ankle swelling after receiving MSU
crystal injection. Compared with the CON group, the foot swelling
of the model rats gradually increased with time, demonstrating
statistical significance (p < 0.01), and the MSU-induced ankle
swelling could be maintained until 24 h. The inhibition of foot
swelling was observed at 2 h in the ETO group, with significant
inhibitions at every subsequent time point. Compared with the
MOD group, the WSP-H group primarily showed a prominent
therapeutic effect from 2 h to 6 h after MSU injection, while the
WSP-M group exhibited remarkable inhibition of foot swelling from

6 h to 24 h. However, there was no conspicuous effect observed in
the ankle swelling of WSP-L rats.

3.2 WSP attenuated ankle joint changes in
gouty rats

As shown in Figure 1C, HE pathological section analysis indicated the
pathomorphological features of the synovial membrane and its
surrounding tissues of the joint. The cartilage surface of the CON
group appeared smooth and intact; the structure of synoviocytes was
clear, and therewas no apparent infiltration of inflammatory cells found in
the synovial and surrounding tissues. In contrast, in the joint samples from
the MOD group, the synovial cell layer was seen to have structural
discontinuity (green arrows), and the synovial tissue structure was
damaged and infiltrated by a large number of inflammatory cells

FIGURE 1
Foot swelling and pathological assay. (A,B) Foot swelling in each group at each time point. (C)Histopathology staining with HE (left 20×, right 200×).
Black arrows indicate the infiltrated inflammatory cells and green arrows indicate the structurally discontinuous synovial cell layer.
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(black arrows). Furthermore, the Mann-Whitney U test analysis showed
that the average score of the ankle in gouty rats wasmuch higher than that
in the pseudosurgical rats, as illustrated in Table 4. On the contrary, WSP
administration could alleviate the pathological lesions of the rats to
significant degrees, which is displayed in Figure 1C and Table 4. In the
WSP-Hgroup, the articular cartilage surfacewas smooth andflat, and only
a small amount of inflammatory cell infiltration was seen in the synovial
and surrounding tissues. The above results suggested that MSU could
cause serious damage to the joint synovial tissue.However,WSP treatment
exhibited a protective effect on the gouty ankle induced byMSU, which is
characterized by the improvement of the pathological changes and the
reduction of the infiltrated inflammatory cells.

3.3 WSP downregulated the expression of
GA-related proteins in the synovium and
surrounding tissues of the rats after MSU
injection

In gout flares, the initiation of NLRP3 inflammasome was
considered a key step (Dalbeth et al., 2021). NLRP3 inflammasome
is closely related to NF-κB signaling, which regulates the gene
expression of all components of inflammasome assembly and
activation (Joosten et al., 2010). Activated NLRP3 inflammasome

signaling ultimately leads to the production and release of IL-1β,
triggering a local inflammatory response. As shown in Figure 2, the
protein expression of IL-1β, p-NF-κB P65, and NLRP3 in the synovium
and surrounding tissues of the MOD group after MSU injection was
significantly increased compared with the CON group, while the
expression of all three proteins was downregulated by WSP treatment.

3.4 Effects of WSP on the metabolic
pathways of MSU-induced acute gouty
arthritis model rats

3.4.1 BPC, TIC, and QC
The base peak chromatogram (BPC) depicts the continuous

spectrum formed by the maximum ion intensity at different time
points during the continuous scan of the mass spectrometry. In both
positive and negative modes, all samples showed good peak shapes,
intensity, and obvious peak separation, and the general trend of the
base peaks in each group was similar, indicating good
reproducibility and reliable results (Supplementary File S1).
Meanwhile, there were visible differences in the number,
intensity, and type of peaks in each group, suggesting differences
in the types and amounts of metabolites in the samples. Total ion
chromatogram (TIC) records the total ion signal generated by the

TABLE 3 The effect of each group on foot swelling in GA model rats (�x± S, n = 8–11).

Group n Dose (mg/kg×d) Foot swelling (mL)

0 h 2 h 4 h 6 h 8 h 24 h

CON 9 - 0.00 ± 0.26 0.23 ± 0.21 0.21 ± 0.26 0.11 ± 0.26 0.15 ± 0.22 0.05 ± 0.21

MOD 11 - 0.00 ± 0.19 0.58 ± 0.29## 0.72 ± 0.22## 1.03 ± 0.27## 1.29 ± 0.36## 1.43 ± 0.42##

WSP-L 8 10 × 7 0.00 ± 0.20 0.36 ± 0.33 0.51 ± 0.25 0.88 ± 0.44 1.08 ± 0.71 1.37 ± 0.67

WSP-M 9 20 × 7 0.00 ± 0.12 0.54 ± 0.20 0.62 ± 0.25 0.68 ± 0.35b 0.81 ± 0.34c 0.94 ± 0.26c

WSP-H 9 40 × 7 0.00 ± 0.21 0.33 ± 0.17b 0.42 ± 0.37b 0.56 ± 0.42c 0.96 ± 0.59 1.24 ± 0.44

ETO 9 32 × 7 0.00 ± 0.10 0.30 ± 0.22b 0.30 ± 0.15c 0.55 ± 0.30c 0.72 ± 0.29c 0.87 ± 0.27c

ap < 0.05,## p < 0.01

vs CON.
bp < 0.05.
cp < 0.01 vs MOD.

TABLE 4 Effect of WSP on the histopathological scoring of the ankle in gouty rats (�x± S, n = 8–11).

Group Dose (mg/kg ×d) n Grades (samples) Weighted average score

0 1 2 3

CON - 9 6 3 0 0 0.3

MOD - 11 0 0 8 3 2.3a

WSP-L 10 × 7 9 0 3 6 0 1.7b

WSP-M 20 × 7 8 0 4 4 0 1.5c

WSP-H 40 × 7 9 0 2 7 0 1.8b

ETO 32 × 7 9 0 5 4 0 1.4c

ap < 0.01 vs CON.
bp < 0.05.
cp < 0.01 vs MOD (Mann-Whitney U test).
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metabolites, which reflects the overall information of the sample as
well as BPC (shown in Supplementary File S1), and the distribution
of QC samples (red dots) almost completely overlaps, indicating that
the systematic error of this experiment is small, the experiment is
reproducible, and the results are reliable (Supplementary File S1).

3.4.2 Multivariate statistical analysis
Metabolomics data are characterized by high latitude and

multivariate, and in order to investigate the potential
multidimensional data, we need to further process the obtained
information, namely, principal component analysis (PCA), partial
least squares discriminant analysis (PLS-DA), and orthogonal-
partial least squares discriminant analysis (OPLS-DA) (Thevenot
et al., 2015). PCA visually reflects the overall distribution
characteristics of all samples and trends. As shown in Figure 3,
each group had a good separation status and less overlap compared
with the MOD group, especially in the negative mode. The R2X
parameter of PCA was the main interpretability parameter of the
model, and it was better when R2X > 0.5, as shown in Supplementary
File S2, and R2X > 0.5 for each group in both positive and negative
modes, suggesting that the model was accurate. The analysis results
and parameters of PLS-DA and OPLS-DA are shown in
Supplementary File S2 and Supplementary File S3.

3.4.3 Identification and analysis of metabolic
biomarkers

Compound structures could be inferred by primaryMS, and further
secondary MS is required to obtain precise information to improve the

accuracy of the results. We performed metabolic biomarkers
confirmation in HMDB, massbank, LipidMaps, mzcloud, and other
databases based on MS/MS fragmentation patterns. Metabolic
biomarkers were screened using VIP >1 as a condition and then
were obtained using a t-test, p < 0.05 (Kieffer et al., 2016).

After MS/MS screening, a total of 30 metabolic biomarkers were
identified after modeling by MSU compared with the CON group,
including dodecanoic acid, taurohyocholate, mesaconate, 2-
hydroxycinnamic acid, trans-ferulic acid, nicotinic acid, etc. A
total of 15 biomarkers were upregulated and 15 were
downregulated in the MSU-induced gouty rats (Shown in Table 5).

Furthermore, a total of 42 metabolic biomarkers were screened
in GA rats treated with WSP, including 2-hydroxycinnamic acid,
hydroxykynurenine, nicotinic acid, 2-methoxyestradiol, and N6-
Acetyl-L-lysine. As displayed in Table 6, a total of 11 metabolites
in the serum were upregulated and 31 were downregulated by the
administration of WSP.

Subsequently, the above results were collected for the
agglomerative hierarchical clustering analysis, and the
dramatically altered biomarkers were plotted in the form of heat
maps. The metabolic biomarkers which might share the same
metabolic function or metabolic pathways were clustered to
visualize the changes and classification. The results are shown in
Figures 4A, B.

3.4.4 Metabolic pathway enrichment analysis
We further enriched and investigated the information by

using the MetPA database to elucidate the metabolic pathways

FIGURE 2
Immunohistochemistry. (A) IHC staining of IL-1β (200×). (B) IHC staining of p-NF-κB P65 (200×). (C) IHC staining of NLRP3 (200×). (D) Statistics of
the ratio of positive area.

Frontiers in Pharmacology frontiersin.org07

Lang et al. 10.3389/fphar.2023.1213602

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1213602


in the model rats that might be affected by the administration of
WSP through KEGG metabolic pathway enrichment analysis.
As shown in Figures 4C, D, 27 metabolic pathways were
enriched in the MOD group compared with the CON group,
mainly involving fructose and mannose metabolism, primary
bile acid biosynthesis, cholesterol metabolism, and other
pathways. As shown in Figures 4C, D a total of 39 metabolic
pathways were enriched in the GA rats with WSP
administration mainly in linoleic acid metabolism,
phenylalanine metabolism, lysosomal, ferroptosis,
pantothenate and CoA biosynthesis, PPAR signaling
pathway, etc. [the top six pathways ranked by -log10P)].
Based on the results of metabolic biomarkers screening and
the enrichment of metabolic pathways, we mapped a metabolic
network in which WSP might affect GA (Figure 5).

3.5 Comprehensive analysis

In our previous study, we obtained information on the
effective pathway of WSP in treating gout via KEGG
enrichment (details shown in Supplementary File S4). To
further elaborate the regulatory network of WSP, the
comprehensive analysis combined metabolomics and network
pharmacology was applied to construct a metabolites-pathways-
targets-ingredient network (Shown in Figure 6), which involved
11 metabolites, 7 pathways, 39 targets, and 49 ingredients of
WSP. The results showed that WSP mainly intervened in
arachidonic acid metabolism, ABC transporters, and PPAR
signaling pathway.

4 Discussion

WSP has been used in China, especially among Tibetan people, for
the treatment of inflammation and inflammation-related diseases, such
as tonsillitis, pharyngitis, and rheumatoid arthritis. Our preliminary study
found that WSP might exert an anti-gout effect through multiple targets
and pathways (Lang et al., 2022). However, the specific mechanism is
unclear. In this study, we explored the effect of WSP on MSU-induced
gouty arthritis in rats and used LC-MS untargeted metabolomics
approach to reveal its possible mechanism for the first time.

Early anti-inflammatory treatment to control pain and the
progression of arthritis is the current consensus treatment in
acute gout flares (FitzGerald et al., 2020). An acute gouty
inflammatory response is triggered by the precipitation of MSU
crystals due to elevated uric acid levels in the blood, which is mainly
a self-limiting inflammatory response mediated by autoimmune
cells. Clinically, gout is characterized by joint swelling and heat pain,
with a short time from flare to peak (usually shorter than 12 h), and
severe pain can even affect activities and walking (Taylor et al.,
2015). Thus, early anti-inflammatory treatment can result in greater
benefits for gout patients. In view of pathogenesis, the cellular
mechanism of gout is complex and it involves Toll-like receptor
signaling initiation, NF-κB signaling activation, oxidative stress, and
NLRP3 signaling pathway (Liu-Bryan et al., 2005; Bauernfeind et al.,
2009; Dominic et al., 2022). Stimulation of pathogen-associated
molecular patterns or damage associated molecular patterns triggers
the migration of monocytes-macrophages and exerts the body’s
autoimmune defense. MSU crystals can stimulate innate immune
pathways and are closely associated with the initiation of
NLRP3 inflammasome (Martinon et al., 2006). Activation of

FIGURE 3
The statistical results of PCA analysis.
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NLRP3 inflammasome is a necessary signal of gouty inflammation.
Upon activation of upstream signaling, cytoplasmic pattern
recognition receptors (PRRs) such as NLRP3 perform a series of
reactions including recruitment, aggregation, and assembly. Pro-
caspase-1 protein is recruited by ASC, forming
NLRP3 inflammasome (Schroder et al., 2010). Then, it will
mediate the maturation and release process of IL-1β, causing a
severe inflammatory response. Hence, we used an in vivo model to
validate the anti-gout effect of WSP. In this model, the foot swelling,
pathological, and immunohistochemical performance after MSU
injection were assayed to observe the effect of WSP on gout.
Furthermore, metabolomics was used to detect metabolic

biomarkers expression in model animals and after administration
of WSP, to provide further evidence of metabolic regulation of the
anti-gout effect.

In MSU-stimulated acute arthritis of the ankle joint, the foot
swelling of the MOD group increased significantly at all time points
from 2 h post-modeling compared to the CON group, and the foot
swelling basically peaked at 8 h and lasted for 24 h. It is suggested
that MSU triggered a severe inflammatory response from 2 h and
was in the ascending phase of inflammation for 24 h. This result was
consistent with previous reports (Goo et al., 2021; Zhou et al., 2022).

Acute gouty arthritis caused severe joint pain and swelling and
might lead to changes in levels of serum metabolic biomarkers.

TABLE 5 Metabolic biomarkers between the MOD group and CON group.

Metabolic biomarkers m/z Retention time s) Formula -log10 P) VIP Trend in MOD

Dodecanoic acid 200.97 71 C12H24O2 3.45 2.39 ↑

Taurohyocholate 516.30 527.1 C26H45NO7S 2.69 2.20 ↓

Mesaconate 129.02 81 C5H6O4 3.10 2.18 ↑

2-Hydroxycinnamic acid 165.05 209.1 C9H8O3 2.22 2.15 ↑

trans-Ferulic acid 195.14 625.1 C10H10O4 2.36 2.10 ↑

Nicotinic acid 124.04 104.5 C6H5NO2 2.44 2.08 ↑

L-Methionine S-oxide 166.05 149 C5H11NO3S 2.36 2.06 ↑

4-Guanidinobutanal 130.09 813.1 C5H11N3O 2.26 2.03 ↑

9,10-Epoxyoctadecenoic acid 296.23 778.3 C18H32O3 2.12 2.02 ↑

D-Xylose 149.01 821.9 C5H10O5 2.63 2.02 ↓

Aflatoxin B1 312.36 770.7 C17H12O6 1.88 2.02 ↑

26-Hydroxyecdysone 480.28 527 C27H44O7 2.08 2.01 ↓

Mannitol 182.98 33 C6H14O6 2.09 1.99 ↑

3-Dehydroecdysone 462.27 589.9 C27H42O6 1.94 1.96 ↓

3-Methyloxindole 148.08 498.9 C9H9NO 1.94 1.94 ↓

D-Fructose 179.06 927.6 C6H12O6 2.37 1.93 ↓

Ursodeoxycholic acid 373.27 838.6 C24H40O4 1.96 1.86 ↑

25-Hydroxycholesterol 401.09 471.8 C27H46O2 2.00 1.85 ↑

4-Chlorobenzoate 138.99 980.2 C7H5ClO2 1.55 1.84 ↓

L-Olivosyl-oleandolide 516.30 761.3 C26H44O10 1.71 1.83 ↓

Caryophyllene alpha-oxide 203.18 816.1 C15H24O 1.68 1.80 ↓

Catechol 111.02 754.2 C6H6O2 1.71 1.79 ↓

3-Epiecdysone 464.28 669 C27H44O6 1.53 1.76 ↓

Triacetate lactone 127.04 34.6 C6H6O3 1.54 1.75 ↓

Eucalyptol 153.96 69.7 C10H18O 1.56 1.74 ↑

Bilirubin 585.27 794.2 C33H36N4O6 1.45 1.70 ↑

Nonadecanoic acid 297.24 802.5 C19H38O2 1.49 1.62 ↓

FAPy-adenine 154.07 246.4 C5H7N5O 1.36 1.61 ↓

Glycocholic acid 464.30 534.1 C26H43NO6 1.36 1.48 ↑

β-D-Fructose 6-phosphate 259.02 82.2 C6H13O9P 1.32 1.45 ↓
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TABLE 6 Metabolic biomarkers between the WSP group and MOD group.

Metabolic biomarkers m/z Retention time s) Formula -log10 P) VIP Trend in WSP

2-Hydroxycinnamic acid 165.05 209.1 C9H8O3 2.82 2.27 ↓

Hydroxykynurenine 225.03 613.6 C10H12N2O4 2.03 2.20 ↓

Nicotinic acid 124.04 104.5 C6H5NO2 2.44 2.15 ↓

2-Methoxyestradiol 283.17 825.9 C19H26O3 2.58 2.13 ↓

N6-Acetyl-L-lysine 189.12 146.6 C8H16N2O3 2.17 2.10 ↓

Caryophyllene alpha-oxide 203.18 816.1 C15H24O 1.73 2.06 ↑

9,10-Epoxyoctadecenoic acid 296.23 778.3 C18H32O3 1.96 2.03 ↓

L-2-Hydroxyglutaric acid 146.96 667.7 C5H8O5 2.35 2.01 ↓

12-Hydroxydodecanoic acid 215.01 928.9 C12H24O3 2.2 2.00 ↓

Ribose 1,5-bisphosphate 309.17 736.9 C5H12O11P2 2.09 1.97 ↓

Palmitoleic acid 237.22 890 C16H30O2 1.98 1.96 ↓

Ursodeoxycholic acid 373.27 838.6 C24H40O4 1.77 1.95 ↓

L-Cysteine 120.98 52.6 C3H7NO2S 1.88 1.95 ↓

D-Erythritol 4-phosphate 202.03 468.7 C4H11O7P 2.1 1.94 ↑

L-2,4-diaminobutyric acid 118.07 281.9 C4H10N2O2 1.9 1.93 ↓

(S)-2-Methylmalate 148.03 317.5 C5H8O5 1.8 1.93 ↓

Benzaldehyde 107.05 283 C7H6O 1.82 1.92 ↓

Bilirubin 585.27 794.2 C33H36N4O6 1.77 1.91 ↓

Phenylacetaldehyde 120.06 410.9 C8H8O 1.74 1.89 ↓

4-Quinolinecarboxylic acid 171.91 35.4 C10H7NO2 1.46 1.81 ↓

α-dimorphecolic acid 279.23 794.2 C18H32O3 1.55 1.81 ↓

9,10-DHOME 313.24 703.5 C18H34O4 1.7 1.79 ↓

D-Phenylalanine 165.02 921.4 C9H11NO2 1.75 1.79 ↑

Neocnidilide 177.13 530.2 C12H18O2 1.36 1.79 ↓

γ-Glutamylcysteine 248.96 93.7 C8H14N2O5S 1.77 1.78 ↓

Sodium deoxycholate 414.32 848.2 C24H39O4Na 1.49 1.77 ↑

L-Fucose 164.07 928.7 C6H12O5 1.63 1.76 ↑

Pterin 163.04 931 C6H5N5O 1.5 1.75 ↑

5-Methyl-2′-deoxycytidine 240.10 254.5 C10H15N3O4 1.57 1.75 ↓

5-Hydroxyindoleacetic acid 173.98 117 C10H9NO3 1.49 1.71 ↑

β-Tyrosine 164.07 953.9 C9H11NO3 1.4 1.71 ↓

6-Hydroxyhexan-6-olide 130.07 315.9 C6H10O3 1.39 1.70 ↑

Mannose 6-phosphate 260.02 146.3 C6H13O9P 1.57 1.70 ↓

6-Keto-prostaglandin F1a 371.26 660.4 C20H34O6 1.43 1.70 ↓

4-Guanidinobutanal 130.09 813.1 C5H11N3O 1.39 1.69 ↓

L-Valine 118.09 126.1 C5H11NO2 1.39 1.68 ↑

(2Z,4S,5R)-2-Amino-4,5,6-trihydroxyhex-2-enoate 178.09 295.7 C6H11NO5 1.43 1.67 ↓

6-Hydroxynicotinic acid 138.02 536.2 C6H5NO3 1.53 1.66 ↓

(Continued on following page)
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However, the study of specific mechanisms of TCM and its
preparations has become fairly complicated due to its complex
components and multi-target therapeutic characteristics. Recently,
network pharmacology has been used in the discovery of active
compounds and the interpretation of the overall mechanisms in the
TCM or TCM preparations, by collecting and analyzing data from
bioinformation databases associated with herbs, disease targets, and
pathways. Nevertheless, network pharmacology has several
limitations if it is used alone, such as prediction-based false-
positive results, varying relative abundance of compounds in
TCM, and debatable ADME-based screening (Jiashuo et al.,
2022). Thus, an integrated strategy combining network
pharmacology with other approaches is increasingly being used.
For instance, network pharmacology methodology is combined with

multi-omics studies such as proteomics (Cheng et al., 2022; Sun
et al., 2022), metabolomics (Pan et al., 2020; Zhou et al., 2020b; Li
et al., 2021), transcriptomics (Xiao et al., 2021; Zhou et al., 2022a),
and lipidomics (Chen et al., 2022). Furthermore, gut microbiomics
(Goo et al., 2021; Yao et al., 2022) and meta-analysis (Yi et al., 2020)
were adopted for overall analysis combined with network
pharmacology methodology. Taking into account the multi-
faceted aspects and complexities of TCM or TCM preparations at
hand, the integration strategy combining multi-omics with network
pharmacology is beneficial for the accuracy of prediction results. In
this study, LC-MS-based untargeted metabolomics assays identified
30 potential biomarkers in the pathology of acute gouty arthritis,
15 of them were upregulated and 15 were downregulated. A total of
42 serum metabolic biomarkers were identified in model rats after

TABLE 6 (Continued) Metabolic biomarkers between the WSP group and MOD group.

Metabolic biomarkers m/z Retention time s) Formula -log10 P) VIP Trend in WSP

γ-Linolenic acid 277.22 864.5 C18H30O2 1.49 1.63 ↓

Dodecanoic acid 200.97 71 C12H24O2 1.36 1.63 ↓

15-Deoxy-d-12,14-PGJ2 315.20 757.2 C20H28O3 1.31 1.59 ↑

D-Xylose 149.01 821.9 C5H10O5 1.33 1.55 ↑

FIGURE 4
Metabolic biomarkers clustering heatmap (A) MOD vs CON. (B) WSP vs MOD. The results of metabolic pathways enrichment analysis (C) MOD vs
CON. (D) WSP vs MOD.
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treatment with WSP, 11 of them were upregulated and 31 were
downregulated. The above results were enriched in metabolic
pathways, mainly involving linoleic acid metabolism,
phenylalanine metabolism, lysosomal, ferroptosis, pantothenate
and CoA biosynthesis, PPAR signaling pathway, etc.

Linoleic acid is an essential nutrient for the human body, but
disorders of linoleic acid metabolism can lead to disease. Linoleic
acid is a synthetic precursor of arachidonic acid, which is
metabolized to produce γ-linolenic acid. γ-linolenic acid can
participate in the arachidonic acid (AA) metabolic pathway to
generate AA, which exhibits pro-inflammatory and pro-
thrombotic potential. Eicosanoids are locally acting bioactive
signaling lipids, which are considered pro-inflammatory
mediators for inflammation, immunity, and allergies, and
eicosanoids are derived from arachidonic, γ-linolenic acid, and
polyunsaturated fatty acids (Dennis and Norris, 2015).
Cyclooxygenase (COX) is one of the metabolic mediators of the
eicosanoids synthesis pathways, which controls a wide range of
inflammatory processes (Smith et al., 2000). For instance, AA can be
converted into prostaglandins enzyme-catalyzed by COX. During
gouty inflammation, the first-line treatment strategy is COX
inhibitors, such as unselective COX inhibitors (ibuprofen and
aspirin) and COX-2-targeted agents (Etoricoxib) (Wu et al., 2022;
Burkett et al., 2023). The above inflammatory metabolites and
mediators are worthy of attention in the management of gout.
Our metabolomic results showed that γ-linolenic acid, α-
dimorphecolic acid, and 9,10-Epoxyoctadecenoic acid and 9,10-
DHOME, as well as all the downstream of the linoleic acid
metabolic pathway, were downregulated by WSP treatment,
suggesting that WSP might inhibit the linoleic acid metabolic

pathway and further affect AA metabolism to exert the anti-
inflammatory effect. Interestingly, this conjecture was again
confirmed in the integrative analysis combined with network
pharmacology, which revealed a nonnegligible role of AA
metabolism in WSP modulatory networks. Thus, key indicators
of the linoleic acid metabolic pathway, such as lipoxygenase and
cytochrome P4501A2, could be subsequently validated by qRT-PCR,
Western blot, and ELISA technology (Wang et al., 2022). In
consideration of the inhibition of WSP on the MAPK/NF-κB
signaling pathway (Lang et al., 2022), we hypothesized that WSP
inhibited the combination of NF-κB and target DNA, thereby
suppressing COX expression and further reducing the production
of related metabolites catalyzed by COX1/2, such as PGs. In the
present study, we elucidated the role of WSP in the NF-κB signaling
pathway from a metabolomics perspective for the first time.

Phenylalanine metabolism is one of the important metabolic
pathways of amino acids, which has also been reported to be closely
associated with hyperuricemia and gout (Jiang et al., 2017; Zhou
et al., 2022). Phenylpyruvate and 2-hydroxycinnamic acid are
products of the phenylalanine metabolic pathway, and
phenylpyruvate can further generate phenylacetaldehyde, which
generates phenylacetal-CoA, which is involved in the biosynthesis
of pantothenic acid and CoA via Acetyl-CoA (Wu et al., 2018). In
our study, D-phenylalanine expression was upregulated after
administration of WSP, while the expression of the downstream
phenylacetaldehyde and 2-hydroxycinnamic acid was
downregulated. We speculated that WSP might be able to correct
the abnormal phenylalanine metabolic pathway which led to the
reduction of downstream phenylacetaldehyde and 2-
hydroxycinnamic acid. An abnormal serum level of phenylalanine

FIGURE 5
Schematic diagram of themetabolic networks regulated byWSP. Green arrow indicates decreasedmetabolites in the serum and red arrow indicates
metabolites in the serum.
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in patients with gout has been reported in several previous studies
(Zhang et al., 2018; Huang et al., 2020; Shen et al., 2021), suggesting that
it might be one of the metabolic biomarkers of gout, which was
consistent with our findings. Furthermore, the levels of several
amino acids such as valine, phenylalanine, tyrosine, and cysteine
were significantly altered in this study. Notably, a previous study on
serum metabolic biomarkers in gout patients also showed that the
disorder of the amino acid metabolic pathways could be involved in the
pathogenic mechanism of gout (Shen et al., 2021). Moreover, the
phenylalanine metabolic process would continue to affect the
downstream biosynthetic pathways of pantothenic acid and CoA,
which was consistent with the KEGG enrichment results.
Pantothenic acid is the precursor of CoA, which is the cofactor of

various metabolic reactions and its synthesis is regulated by acetoacetyl-
CoA synthetase (AACS) (Shan et al., 2021). CoA plays an essential role
in energy metabolism and participates in the metabolism of glucose,
protein, and lipids via the TCA cycle (Hrubsa et al., 2022; Wang et al.,
2023). The TCA cycle is the center of energy metabolism, which is
closely related to mitochondrial function. As we know, MSU could
trigger mitochondrial dysfunction and cause an increase in
mitochondrial ROS, thus inducing caspase-1-independent IL-1β
secretion (Abderrazak et al., 2015). In this condition, an increment
of mitochondrial fatty acid oxidation could induce the increased
generation of acetyl CoA, followed by the augmented NADH and
FADH2 levels in the TCA cycle, which amplified more ROS formation,
reinforcing a vicious cycle for the activation of inflammasome

FIGURE 6
Metabolites-pathways-targets-ingredient network. Markers of the ingredients checklist are shown in Supplementary File S5, and the bigger nodes
represented greater degrees. HZ: Terminalia chebula Retz.; TBC: Aconitum pendulum Busch; MX: Aucklandia lappaDecne.; ZCP: Acorus calamus L.; SX:
Artificial musk.
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(deMello et al., 2018; Cojocaru et al., 2023). In general, pantothenic acid
and CoA play an essential role in cellular metabolism. Therefore, we
hypothesized that WSP indirectly affected mitochondrial function and
the TCA cycle by regulating upstream phenylalanine metabolism and
biosynthetic pathways of pantothenic acid and CoA, thus modulating
the alteration of metabolic pathways. Indeed, some limitations of this
study should be noted. Firstly, the effects of WSP in rodent models of
gout did not reflect the changes it may cause in patients with gout.
Therefore, it is essential to conduct clinical trials to reveal the alteration
of serum metabolite composition after WSP intervention in gouty
patients. Besides, integrated with network pharmacology analysis, we
predicted the active anti-gout ingredients in WSP that might affect
metabolic pathways associated with gout flares. Additional in vitro
experiments should be performed to further validate the anti-gout
potential and specific mechanisms of the predicted active compounds,
thus clarifying the material basis of WSP.

5 Conclusion

In the acute gouty arthritis model of rats, WSP treatment
inhibited significant foot swelling, attenuated pathological lesions,
and downregulated the related protein expression of
NLRP3 inflammasome signaling in synovial tissue of the ankle.
Further metabolomics combined with network pharmacology
analysis suggested that the therapeutic effect of WSP involved
11 biomarkers and 7 metabolic pathways. We speculated that
WSP might regulate linoleic acid metabolism, phenylalanine
metabolism, and pantothenate and CoA biosynthesis, then
further affect the arachidonic acid metabolic pathway and
mitochondrial function, thus inhibiting gouty inflammation. The
above results suggested that WSP could be a prospective candidate
as a novel anti-gout agent for the secondary development of Chinese
traditional patent medicine.
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