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Background: Inflammation-related NLRP3/Caspase-1/GSDMD-mediated
pyroptosis is involved in the progression of ulcerative colitis (UC). β-sitosterol
(SIT) was reported to have anti-inflammatory effects on experimental colitis, while
the regulation of SIT on pyroptosis is unclear. Therefore, the present study aimed
to define the protective and healing effects of SIT on dextran sulfate sodium (DSS)-
induced experimental UC rats and human epithelial colorectal adenocarcinoma
cells (Caco-2) and explore the underlying mechanisms that are responsible for its
effects on NLRP3/Caspase-1/GSDMD-mediated pyroptosis in UC.

Methods: UCmodel rats were established by oral 4% DSS. Following colitis injury,
the animals received SIT (doses of 50, 100, and 200mg/kg) treatment for 2 weeks.
For in vitro study, we exposed Caco-2–50mg/mL DSS with or without SIT
(concentrations of 8 and 16 μg/mL). Disease activity index (DAI) and
histopathological injury were assessed in vivo. Activation proteins of nuclear
factor kappa B (NF-κB) signaling axis, and tight junction-related proteins of
zonula occludens-1 (ZO-1) and occludin were detected in colon tissues. TNF-
α, IL-1β, and IL-18 in serum and cell supernatant weremeasured by enzyme-linked
immunosorbent assay (ELISA). Changes in NLRP3/Caspase-1/GSDMD-mediated
pyroptosis signaling pathway activation were analyzed both in tissues and cells.

Results: Our findings suggested that SIT treatment attenuated the severity of 4%
DSS-induced UC by protecting rats from weight and colon length loss, and
macroscopic damage. SIT also reduced proinflammatory factors production
(TNF-α, IL-1β, and IL-18) in serum and cell supernatant. Mechanistically, SIT
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downregulated the expression levels of pyroptosis-related proteins including
Caspase-1, cleaved-Caspase-1, NLRP3, GSDMD, and GSDMD-N in colon tissues
and Caco-2 cells. Further analysis indicated that SIT maintained the colonic barrier
integrity by enhancing the protein expression of ZO-1 and occludin.

Conclusion: We confirmed that SIT exerts protective and therapeutic effects on
DSS-induced colitis injury by suppressing NLRP3/Caspase-1/GSDMD-mediated
pyroptosis and inflammation response. These findings demonstrated that SIT
could be a potential medication for UC treatment.
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1 Introduction

Ulcerative colitis (UC), a global public health problem, which is
a chronic non-specific, non-infectious, and inflammatory intestinal
disease. It is a continuous mucosal ulcer with unknown origin and
usually begins in the rectum, involves the colonic mucosa and
submucosa layer, and then spreads to the cecum for the longest,
which is characterized by continuous and diffuse distribution.
Clinical manifestations of this illness are chronic and recurrent
with abdominal pain, diarrhea, fecal bleeding, weight loss, and
intestinal mucosal (Ordás et al., 2012). In recent years, UC has
had increasing prevalence and incidence in developing and
developed countries worldwide due to the rapid economic
development and westernized diet uptake (Ng et al., 2017).
Additionally, the incidence among people with UC in China has
nearly tripled in the past decades (Ye et al., 2013). Research shows
that patients with long-term UC have a higher risk of developing
colorectal cancer and colitis-associated cancer is a major cause of
death in patients with UC (Rogler, 2014), thereby resulting in a high
economic burden on individuals and society health systems. For the
above reasons, effective intervention in the course of UC is urgent.

Though the etiology of UC remains undefined, the inflammatory
response definitely exists in the pathogenesis of UC (Du and Ha, 2020).
Studies have suggested the large aggregation of inflammatorymolecules
such as TNF-α, IL-1β, and IL-18 could lead to colonic tissue injury and
epithelial integrity disruption in the gut while inhibiting cytokine-
mediated inflammation could treat or cure UC (Elmaksoud et al.,
2021). NF-κB is a key transcriptional regulator in the regulation of
proinflammatory mediators and chemokines production and secretion,
which leads to an inflammatory cascade (Cui et al., 2019). The
abnormal activation of NF-κB signaling was founded in colonic
tissues of UC patients and experimental models (Neurath et al.,
1996). Pyroptosis is a newly found form of pro-inflammatory
programmed cell death unlike traditional necrosis and apoptosis (Shi
et al., 2015). Pyroptosis plays an essential role in host defense and
inflammatory responses, in which Caspase-1 or Caspase-11/4/5 was
activated during this process (Yu P. et al., 2021). Activation of
inflammatory caspases can trigger pyroptosis and release pro-
inflammatory cytokines IL-1β and IL-18, which are relevant to
inflammatory diseases (Yuan et al., 2018). In addition, over-
expression of pyroptosis-related proteins, including nucleotide-
binding oligomerization segment-like receptor family 3 (NLRP3),
apoptosis-associated speck-like protein (ASC), Caspase-1, and
gasdermin D-N-terminal (GSDMD-N) in colonic tissues has been
observed in experimental colitis (Chao et al., 2020; Wei et al., 2021)

and suppression of the NLRP3/Caspase-1/GSDMD-mediated
pyroptosis signaling pathway can attenuate the damage of UC (Jie
et al., 2021), thus therapy targeting pyroptosis could be promising and
merits further investigation.

While immunosuppressants, glucocorticoids, salicylic acid, and
biological agents are the frontline therapy for clinical patients with
UC (Nakamura et al., 2008; Berends et al., 2019), there are many side
effects associated with these pharmaceutical medications (Moreau and
Mas, 2015). Therefore, more researchers have paid attention to natural
plant substances, which will be safe and beneficial with less deleterious
effects (Cao et al., 2019). Phytosterols are a critical class of bioorganic
compounds that are abundant in a range of organisms such as plants,
animals, and fungi, and exert an important role in the physiological
processes of eukaryotes (Zhang et al., 2022). β-sitosterol (SIT)
(Figure 1), the major compound of phytosterol, is a plant-derived
natural product widely present in many countries. Its pharmacological
effects and biological activities were well documented in the literature
including anti-inflammation (Loizou et al., 2010; Sun et al., 2020), anti-
anxiety (Panayotis et al., 2021), antiviral properties (Chen et al., 2022),
anti-oxidant stress, immunomodulation (Cheng et al., 2020), anti-
diabetes (Babu et al., 2020), anti-tumor (Bae et al., 2021), anti-
microbes (Pierre Luhata and Usuki, 2021), hepatoprotective effects
(Kim et al., 2014), cardioprotective effects (Lin et al., 2020), anti-diabetes
(Ponnulakshmi et al., 2019), as well as regulation of gut microbiota (Yu
Y. et al., 2021). These studies showed that SIT could be a potential
measure of various diseases. Furthermore, evidence from experimental
studies on SIT indicates its anti-inflammatory ability and can be used as

FIGURE 1
Chemical structure of β-sitosterol. (DrugBank Accession
Number: DB14038).
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a safe pharmaceutical complement in the treatment of experimental
colitis (Lee et al., 2012; Aldini et al., 2014; Bin Sayeed et al., 2016; Feng
et al., 2017; Ding et al., 2019). Of note, SIT has been proven
experimentally that it does not produce cytotoxic impacts under
long-term use (Malini and Vanithakumari, 1990; Paniagua-Pérez
et al., 2005; Feng et al., 2020). Despite this, further experimental
studies are required to uncover the role of SIT in the recovery of
experimental UC and elucidate its possible anti-pyroptosis mechanism
behind this.

Thus, in this study, we established the DSS-induced
experimental colitis in rats and Caco-2 cells to assess the
protective and therapeutic effects of SIT on UC and further
explore its underlying mechanism.

2 Materials and methods

2.1 Drug, and reagents

Dextran sulfate sodium and β-sitosterol (SIT, purity >95% and
HPLC ≥98%) were purchased from Shanghai Yuanye Bio-Technology

Co., Ltd. (Shanghai, China). Carboxymethyl cellulose was purchased
from Biotopped Technology Co. Ltd. (Beijing, China). Enzyme-linked
immunosorbent assay (ELISA) kits of TNF-α, IL-1β, and IL-18 were
obtained from Cloud-Clone Corp (Wuhan, China). Antibodies against
NLRP3, occludin, β-Actin, goat-anti-rabbit IgG H&L (HRP), and goat-
anti-mouse IgGH&L (HRP) were purchased fromAbcam (Cambridge,
United Kingdom). Antibodies against Caspase-1, GSDMD, IKB alpha,
and ZO-1 were obtained from Proteintech (Wuhan, China). Antibodies
against NF-kappaB p65, phospho-NF-kappaB p65, and phospho-IkB
alpha were purchased from Invitrogen (Carlsbad, CA). Antibody
against cleaved Caspase-1 was purchased from Cell Signalling
Technology (Danvers, MA, United States). Antibody against
GSDMD-N terminal was purchased from ABclonal (Wuhan,
China). The Cell Counting Kit-8 (CCK-8) was purchased from
Biorigin (Beijing, China).

The following reagents were obtained from GenePool
Biotechnology (Beijing, China): Total RNA Extraction with
DNase Ⅰ Kit, mRNA cDNA Synthesis Kit, mRNA qPCR Kit,
RNA Loading Buffer, BSA Blocking Buffer, SDS-PAGE Gel Ki,
SDS-PAGE Loading Buffer, Tris-Glycine Running Buffer, WB
Transfer Buffer, and TBST. The following reagents were

FIGURE 2
SIT protects rats from DSS-induced UC. (A) An experimental design in vivo. (B) Changes of body weight (N = 10 per group). (C) The disease activity
index (DAI) scores (N = 10 per group). (D) Representative picture of the colon. (E) The colon lengths (N = 11 per group). (F) The colon length/weight ratio
(N = 11 per group). (G) The colonic histopathological scores (N = 6 per group). (H) Representative histopathologic image of colon. H&E staining, 100 ×;
scale bar, 50 μm. Red arrow: distortion or loss of crypts; Blue arrow: infiltration of inflammatory cells; Green arrow: depletion of goblet cells. The
data are presented as mean ± SD. CON, control group; DSS, dextran sulfate sodium-induced group; SIT, β-sitosterol; LD, low-dose SIT group; MD,
middle-dose SIT group; HD, high-dose SIT group; H&E, hematoxylin and eosin; SD, standard deviation. **p < 0.01 compared with CON group; #p < 0.05,
##p < 0.01 compared with DSS group.
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purchased from Beyotime Biotechnology (Shanghai, China): Cell
lysis buffer for Western and IP, Protein Extraction Kit, BCA
protein assay kit, enhanced chemiluminescence (ECL) kit,
Citrate-EDTA Antigen Retrieval Solution, and Hematoxylin
and Eosin Staining Kit. The following reagents were purchased
from Gibco (Carlsbad, CA, United States): fetal bovine serum
(FBS), minimum essential medium (MEM), Penicillin-
Streptomycin antibiotics, non-essential amino acids (NEAA),
and 0.25% trypsin solution with EDTA. All other chemicals
were of reagent grade.

2.2 Animal experimental design and
treatment

Sixty male Sprague-Dawley rats (6–8 weeks old, weighing
180–200 g) were purchased from Beijing Sibeifu Bioscience, Co.,
Ltd. (Beijing, China) (License NO. SCXK [Beijing] 2019-0010). All
animals were raised under standard specific pathogen-free (SPF)
conditions (temperature, 25°C ± 1°C; humidity, 60% ± 5%) with a
12 h light/dark cycle per day and allowed ad libitum eat and drink.
Ethical approvals for the animal experiments were obtained from the
animal ethics committee of Beijing University of Chinese Medicine
(NO. BUCM-4-2022102901-4029).

This experimental design consists of two steps: a DSS-
induced colitis stage and a drug treatment stage as described
in Figure 2A. 60 rats were randomly assigned to five groups: 1)
Control group (CON): received only double-drilled water; 2) DSS
group (DSS): received 4% DSS (molecular weight: 40 000 Da;
purity >98%) dissolved in double-drilled water in their daily
drinking water; 3) Low-dose group (LD): received DSS and then
gavaged with 50 mg/kg of SIT (purity >95%) suspended in 0.1%
carboxymethyl cellulose; 4) Middle-dose group (MD): received
DSS and then gavaged with 100 mg/kg SIT; 5) High-dose group
(HD): received DSS and then gavaged with 200 mg/kg SIT. The
intervention period of DSS was from day 1 to day 7 and the period
of drug treatment was from day 8 to day 21.

Following the 14-day intervention, rats were all deeply
anesthetized after 24 h fasting with 1% sodium pentobarbital
(40 mg/kg). After recording the colon length and weight, blood
samples were collected and centrifuged for serum. Then the colon
specimens were immediately removed and then fixed in 4%
paraformaldehyde for histopathological studies or stored at −80°C
for molecular biology detection.

2.3 Observation of UC symptoms and signs
in rats

During this experimental period, body weight, stool status, and
rectal bleeding were recorded every day to calculate disease activity
index (DAI) scores on a previously established scoring system
(Kihara et al., 2003) and listed in Table 1. DAI score is the
average of the three categories. All evaluations were performed
while unaware of the conditions.

2.4 Histological examination

Hematoxylin and eosin (H&E) detection was conducted with a
standard protocol. The colon tissues were fixed in 4%
paraformaldehyde and embedded in paraffin. Then, the paraffin-
blocked samples were cut into 5-µm sections on slides for staining
with hematoxylin and eosin. Slides were scanned using a Panoramic
MIDI Scan Whole Slide Scanner (3DHISTECH Ltd., Budapest,
Hungary) and viewed with Panoramic Viewer 1.15.4
(3DHISTECH); in addition, histopathological scores for
histopathological changes were calculated based on a previously
developed scoring system (Dieleman et al., 1998) and listed in
Table 2. The individual scoring was blinded to the identity of the
slides.

2.5 Cell preparation and viability assay

Human epithelial colorectal adenocarcinoma (Caco-2) cell lines
(originally obtained fromATCC) were purchased from IMMOCELL
(Xiamen, China). The Caco-2 cells were maintained in minimum
essential medium (MEM) containing 10% fetal bovine serum (FBS),
100 U/ml of penicillin, 100 μg/mL of streptomycin, and 1% non-
essential amino acids supplements. Cells were maintained at 37°C
with 5% CO2 atmosphere.

Caco-2 cell viability was measured by CCK-8 assay followed by a
standard protocol. After preparing single-cell suspensions, cells (5 ×
104 cells/well) were added to 96-well plates and continued to culture
till 80% confluency. Then, 10 μL/well of CCK-8 solution was added
and incubated protected from light for 2 h at 37°C. The 450 nm
absorbance values were detected with a multifunctional microplate
reader (Thermo, Manassas, United States) to measure the cell
growth inhibition rate.

TABLE 1 Disease activity index (DAI) scoring system.

Score Weight loss (%) Stool consistency Gross bleeding/rectal bleeding

0 0 Normal None

1 1–5 Loose stool Haemoccult positive

2 6–10 Loose stool Haemoccult positive

3 11–20 Loose stool Haemoccult positive

4 >20 Diarrhea Severe bleeding
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2.6 Caco-2 inflammation model
establishment and treatment

Cells were cultured overnight with or without SIT (HPLC ≥98%)
dissolved in absolute ethanol (concentrations of 8 μg/mL as Low-
dose group and 16 μg/mL as High-dose group). Supernatants of cells
were discarded and washed with PBS, and 50 mg/mLDSS was added
to establish the inflammation model.

2.7 Cytokine assays

The serum of rats and supernatant of cells were collected and
then calculated for TNF-α, IL-1β, and IL-18 levels using ELISA kits
according to the manufacturer’s scheme.

2.8 Quantitative polymerase chain reaction

Relative levels of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-
18 mRNAs in colonic tissues were analyzed by a quantitative real-
time (qRT)-PCR. Total RNA of colonic tissues was isolated using
the Total RNA Extraction Kit and cDNA was synthesized by
using the mRNA cDNA Synthesis Kit in accordance with the
manufacturer’s protocols. The specific primers for NLRP3,

Caspase-1, GSDMD, IL-1β, and IL-18 were designed and
synthesized by GenePool Biotechnology (Beijing, China) and
listed in Table 3. The PCR reaction parameters were
predetermined: 95°C for 5 min, followed by a 35 cycle-
denaturation for 30 s at 95°C, 55°C for 30 s, and extension for
1 min at 72°C. Each sample underwent three biological
replications for statistical analysis to determine significant
differences. GAPDH was an internal control and relative gene
expression levels were calculated using the 2−ΔΔCT method.

2.9 Western blot analysis

The total proteins of tissues and cells were extracted using
Western and IP lysate buffer, BCA protein assay kit was applied
to determine protein concentration. After homogenization, an
equal quantity of proteins was separated with SDS-PAGE and
transferred to PVDF membranes (Millipore corp.,
Massachusetts, United States), then blocked with 5% BSA.
Primary antibodies of NLRP3 (dilution 1:1 000), Caspase-1
(dilution 1:2 000), cleaved-Caspase-1 (dilution 1:1 000),
GSDMD (dilution 1:2 000), GSDMD-N (dilution 1:1 000), p65
(dilution 1:1 000), p-p65 (dilution 1:1 000), IκBα (dilution 1:1
000), p-IκBα (dilution 1:1 000), ZO-1 (dilution 1:5 000), occludin
(dilution 1:1 000), and β-Actin (dilution 1:5 000) were incubated
overnight at 4°C. After being washed with TBST three times,
membranes were then incubated with secondary antibodies
against Goat Anti-Rabbit IgG H&L (HRP) (dilution 1:5 000)
or Goat Anti-Mouse IgG H&L (HRP) (dilution 1:5 000) for 1 h at
37°C, and bands were visualized with an ECL kit captured with
Tanon 5200 Chemiluminescent Imaging System (Tanon,
Shanghai, China). Finally, the relative grey values of the target
proteins blots normalized to β-Actin were analyzed by the ImageJ
software (National Institutes of Health, United States).

2.10 Statistical analysis

Statistical analysis was performed by SPSS 26.0 system.
Quantitative results were expressed as arithmetic mean plus or
minus the standard deviation (SD) and analyzed using one-way
analysis of variance (ANOVA) followed by least significant
difference (LSD)’s multiple-comparison test, while Kruskal-
Wallis test was performed for difference analysis of non-
parametric data. p-value < 0.05 was considered statistically
significant.

TABLE 2 Histopathological scoring system.

Score Inflammation Mucosal damage Regeneration Crypt damage Range of lesions (%)

0 None None Complete regeneration or normal tissue None 0

1 Mild Mucous layer Alomost complete regeneration Basal 1/3 damage 1%–25%

2 Moderate Mucousa and submucosa Regeneration with crypt depletion Basal 2/3 damage 26%–50%

3 Severe Transmural Surface epithelium not intact Crypt lost; surface epithelium present 51%–75%

4 - - No tissue repair Crypt and surface epithelium lost 76%–100%

TABLE 3 Primers used in quantitative RT-PCR assay.

Gene Primer sequences (5′-3′)

IL-1β Forward CCCAACTGGTACATCAGCACCTCTC

Reverse CTATGTCCCGACCATTGCTG

IL-18 Forward CCGAACAGCCAACGAATCC

Reverse ACATCCTTCCATCCTTCACAGA

Caspase-1 Forward CTGGTCTTGTGACTTGGAGGA

Reverse TCAGTGGTTGGCATCTGTAGT

NLRP3 Forward AGACCTCCAAGACCACGACTG

Reverse CATCCGCAGCCAATGAACAGA

GSDMD Forward GCAGTGGTGAGCAGGTAGAG

Reverse CCAGAGCCTTAGTAGCCAGTAG

GAPDH Forward TGGAGTCTACTGGCGTCTT

Reverse TGTCATATTTCTCGTGGTTCA
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3 Results

3.1 SIT alleviates DSS-induced UC

In order to investigate the therapeutic effects of SIT in vivo, UC
model rats were induced by 4% DSS for 7 consecutive days. During
the experiment period, rats in the control group remained in a
normal state, and body weight was rising steadily, while those in the
model group represented a poor mental state with disheveled fur,
decreased feeding, persistent fecal bleeding, and obvious body
weight loss. Compared to the control group DAI score in the
DSS-induced model group was significantly increased, which was
consistent with the clinical characteristics. Notably, administration
of SIT recovered the body weight and colon length gradually
(Figures 2C–E) as well as decreased DAI score (Figure 2B) in
DSS-induced rats, especially at the dose of 200 mg/kg.

Furthermore, colonic shortening caused by DSS was evidently
mitigated after SIT intake. As can be seen from Figure 2F, DSS in the
UC group led to a significant decrease in colon length/weight ratio
compared with the control group. High dose of SIT agonist partly
offset the decrease of colon length/weight ratio. Under microscopy,
results by H&E staining showed that there were pathological lesions
and superficial inflammation in the DSS-induced colonic tissues
characterized by inflammatory cell infiltration, crypt architectural
distortion or absence and mucosa defects or damage. Consistent
with the remission of clinical signs, the pathological changes were
improved to varying degrees following the administration of SIT
(Figures 2F,G). Collectively, these results indicated that SIT is
protective against DSS-induced colitis and the effects might be
dose-dependent.

3.2 Effects of SIT on the viability of Caco-2
cells

Before the formal in vitro experiments, toxicity evaluation of
different concentrations of SIT (1, 2, 4, 8, 16, 32, and 64 μg/mL) on
Caco-2 was carried out using the CCK-8 assay. After the

24 h-intervention, we observed that there was a significant
decline in cell viability of Caco-2 following the higher
concentrations of SIT (Figure 3A). Based on this, we chose the
relatively safe concentrations for low-dose SIT (LD, 8 μg/mL) and
high-dose SIT (HD, 16 μg/mL), respectively. In addition, at the
concentration of 46.34 mg/mL DSS, growth of 50% cells was
inhibited (Figure 3B). For convenience, we used 50 mg/mL DSS
for subsequent experimental Caco-2 modeling, and found that SIT
serves protectively against DSS-induced Caco-2 damage,
(Figure 3C).

3.3 SIT inhibits proinflammatory mediators

To validate the suppressive effects of SIT on inflammation
involved in UC, we detected the levels of inflammatory-related
factors. The ELISA results showed that there was a significantly
increase of TNF-α, IL-1β, and IL-18 levels after DSS treatment
compared with the control group in rats and SIT effectively
decreased the expression (Figure 4A). We further noticed the
protective effects of SIT on Caco-2 from inflammation after
being exposed to DSS (Figure 4B).

3.4 SIT regulates the NF-κB inflammatory
pathway

NF-κB signaling participates in the regulation of inflammatory
response. We wondered whether the anti-inflammatory role of SIT
was associated with the signaling. The expression levels of the major
proteins p-p65, p65, p-IκBα, and IκBα in the NF-kB signaling
pathways were consequently measured by Western blot. The
experimental results showed that the levels of p-p65 and p-IκBα
in DSS-induced colonic tissues were abnormally higher compared to
the control group. In comparison with the DSS group, the protein
expression ratio of p-p65/p65 and p-IκBα/IκBα were attenuated
after stimulation with SIT (Figures 4C,D) while none were
statistically significant. These results indicate that NF-κB

FIGURE 3
SIT protects Caco-2 cells from DSS-induced damage. (A) The viability of Caco-2 cells under the treatment with different concentrations SIT-
containing medium for 24 h, and the viability was assayed by CCK-8. (B) Caco-2 cells were cultured with 10, 20, 30, 40, 50, 60, 70, 80, and 90 mg/mL
DSS-containingmedium for 24 h. (C) The cells were first cultured with SIT-containingmedium for 24 h, incubated in 50 mg/mLDSS-containingmedium
for 6 h, and then replaced with fresh complete medium to culture for 18 h. N = 6 per group. The data are presented as mean ± SD. DSS, dextran
sulfate sodium-induced group; SIT, β-sitosterol; SD, standard deviation. *p < 0.05, **p < 0.01 compared with Control group; ##p < 0.01 compared with
Model group.
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signaling might be involved in the reduction of DSS-induced UC
inflammation by SIT administration.

3.5 SIT suppresses critical indicators activity
of pyroptosis

Pyroptosis is a type of programmed cell death (PCD) and
participates in inflammatory disease processes involved in UC.
For this reason, we further measured the expression of critical
indicators of NLRP3/Caspase-1/GSDMD-mediated pyroptosis to
explicit the anti-inflammatory effects of SIT. RT-qPCR analysis
was carried out to assess the gene expression of Caspase-1,
NLRP3, GSDMD, IL-1β, and IL-18 in colonic tissues. When
compared to the control group, the mRNA expression levels of

the above genes were upregulated in the DSS group while
significantly downregulated with SIT administration (Figure 5A).

As expected, Western blot analysis showed that protein
expression levels of Caspase-1, Cleaved-Caspase-1, NLRP3,
GSDMD, and GSDMD-N distinctly increased after DSS
treatment in colonic tissues and Caco-2 cells and significantly
counteracted following the intervention with SIT (Figures 5B–E).
Meanwhile, ELISA indicated that SIT treatment significantly
inhibited DSS-induced increased levels of IL-1β and IL-18 in
serum and cell supernatant; it has been shown that secretion of
cytokines IL-1β and IL-18 were associated with the
NLRP3 inflammasome and induced an inflammatory cell death
mode termed as pyroptosis (He et al., 2015). Comprehensively, the
above results suggest that SIT plays a possible therapeutic role in UC
via regulating Caspase-1-mediated pyroptosis.

FIGURE 4
SIT regulates the pro-inflammatory cytokines and NF-κB pathway. The expression levels of TNF-α, IL-1β, and IL-18 in serum (A) and Caco-2 cells (B)
were analyzed by ELISA (N = 6 per group). (C) Gel electrophoresis images of p-p65, p65, p-IκBα, and IκBα were analyzed by Western blot. (D) Analysis of
protein expression levels (N = 3 per group). The data are presented asmean ± SD. NF-κB, nuclear transcription factor-kappa B; CON, control group; DSS,
dextran sulfate sodium-induced group; SIT, β-sitosterol; LD, low-dose SIT group; MD,middle-dose SIT group; HD, high-dose SIT group; TNF, tumor
necrosis factor; IL, interleukin; ELISA, enzyme-linked immunosorbent assay; SD, standard deviation. **p < 0.01 compared with CON or Control group;
#p < 0.05, ##p < 0.01 compared with DSS or Model group; NS, not statistically significant.
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3.6 SIT attenuates colonic mucosal barrier

Tight junction proteins are the essential parts for the
maintenance of the gut mucosal barrier integrity, which could
against the invasion of luminal detrimental substances and lower
the risk of microbe-induced inflammation (Parikh et al., 2019).
Therefore, we further verified whether the protective mechanism
of SIT on the colon is related to the restoration of intestinal
barrier function. ZO-1 and occludin, are important two tight
junction-associated proteins (Ji et al., 2016), which were
measured by Western blot. The expression levels of ZO-1 and
occludin were decreased compared with the control group, which
were significantly reversed by SIT as provided in Figure 6,
suggesting that SIT could alleviate colitis through enhancing
mucosal barrier integrity.

4 Discussion

UC is a main subtype of chronic relapsing inflammatory bowel
disease and is highly prevalent worldwide. The nature of UC is
complex and the pathogenesis of UC has not been well elucidated
yet. Current therapeutic agents are not entirely desirable in terms of
potency with many side effects, erratic efficacy, and recurrence or
failure after reduction or termination of administration as well as a
heavy financial burden (Bressler et al., 2015; Berends et al., 2019).
Hence new alternative therapeutic medication from natural
products is of high interest in research. SIT is a well-known
bioactive phytosterol naturally plentiful in dietary and non-
dietary plant cell membranes, accounting for about 65% of
human herbal nutrition forming (Weihrauch and Gardner, 1978).
They are not only highly found in lipid-rich plant foods such as nuts,

FIGURE 5
SIT inhibits DSS-induced Caspase-1 mediated pyroptosis pathway activation. (A) ThemRNA levels of Caspase-1, NLRP3, GSDMD, IL-1β, and IL-18 in
colon tissues. Gel electrophoresis images of Caspase-1, Cleaved-Caspase-1, NLRP3, GSDMD, and GSDMD-N in colon tissues (B) and Caco-2 cells (D)
were analyzed by Western blot. Analysis of protein expression levels was analyzed and shown in (C) and (E). N = 3 per group. The data are presented as
mean ± SD. CON, control group; DSS, dextran sulfate sodium-induced group; SIT, β-sitosterol; LD, low-dose SIT group; MD, middle-dose SIT
group; HD, high-dose SIT group; NLRP3, nucleotide-binding oligomerization domain (Nod)-like receptor thermal protein domain associated protein 3;
GSDMD, gasdermin D; GSDMD-N, gasdermin D-N terminal; IL, interleukin; SD, standard deviation. **p < 0.01 comparedwith CON or Control group; #p <
0.05, ##p < 0.01 compared with DSS or Model group.
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seeds, and legumes but also in vegetables and fruits (Khan et al.,
2022). Over the past few decades, research on SIT was at an ever-
accelerating pace and has suggested it may exert preventable and
therapeutic effects on UC (Lee et al., 2012; Ding et al., 2019) with
much less research on its role in pyroptosis.

DSS-induced experimental colitis is a reliable andmature animal
model, which resembles clinically pathological symptoms and
histological features in chronic UC (Tessner et al., 1998). In our
current study, we demonstrated that SIT did significantly relieve the
body weight loss in rats with 4%DSS-induced UC, with an increased
DAI score, a main indicator in the assessment of the severity of UC.

In addition, colonic shortening, another indirect indicator in the
evaluation of the severity of UC, was attenuated by SIT treatment,
indicating that SIT has therapeutic potential in UC rats. For colon
pathological injury, we detected histological analysis and found that
administration of SIT could improve cryptal glands and submucosa
and reduce inflammatory cells infiltrating. Also, with the increase of
SIT dosages, the therapeutic effects improve correspondingly,
suggesting that SIT may be a potential drug of choice for UC
treatment.

Self-limiting acute inflammation is crucial for the body to
eliminate the danger and restore homeostasis, while unresolved

FIGURE 6
SIT alleviates colitis from barrier damage. (A) Gel electrophoresis images of occludin and ZO-1 in colon tissues were analyzed by Western blot. (B)
Analysis of protein expression levels (N = 3 per group). The data are presented as mean ± SD. CON, control group; DSS, dextran sulfate sodium-induced
group; SIT, β-sitosterol; LD, low-dose SIT group; MD, middle-dose SIT group; HD, high-dose SIT group; ZO, zonula occludens; SD, standard deviation.
**p < 0.01 compared with CON group; ##p < 0.01 compared with DSS group.

FIGURE 7
Overview of the effects of SIT on DSS-induced UC (By FigDraw, ID: SSITU8168e).
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inflammation contributes to the pathogenesis of autoimmune
diseases including UC (Afonina et al., 2017). An increasing body
of evidence has shown that aberrant inflammatory responses are the
key contributors to the progression and exacerbation of UC.
Pyroptosis, a novel type of programmed cell death, is mainly
elicited by either classical Caspase-1-mediated or non-classical
Caspase-11/4/5/11-mediated pathways in inflammation (Fang
et al., 2020). Research has indicated that both Caspase-1-
mediated and Caspase-11-mediated pyroptosis are closely linked
to the development of UC (Chao et al., 2020), in which
NLRP3 inflammasome plays a key role (Chen et al., 2019; Zhen
and Zhang, 2019). NLRP3 first interacts with ASC and combines
with Caspase-1 to assemble the inflammasome complex (Lu et al.,
2014). Cleaved Caspase-1 then cleaves GSDMD to the N-terminal
fragment (GSDMD-N). After that, the activated N-terminal domain
of GSDMD translocates and forms cell membrane pores, thus
resulting in the occurrence of pyroptosis and triggering the
damage of the epithelial cells in the gut, and releasing pro-
inflammatory cytokines (Yuan et al., 2018). The secretion of IL-
1β and IL-18 can further amplify and perpetuate the inflammatory
reaction (He et al., 2015; Shi et al., 2015). Of note, as the co-substrate
of multiple inflammasomes and two main pathways of pyroptosis,
GSDMD performs the primary function of pyroptosis executioner
(Kayagaki et al., 2015; Shi et al., 2015).

Inflammatory cytokines IL-1β and IL-18 are the main markers for
pyroptosis and their overproduction was found in various regions of the
colon in UC active patients (Thinwa et al., 2014). Recent findings
suggested that both Caspase-1 and Caspase-11 activation possess the
function to induce the release of IL-1β and IL-18, but only Caspase-1
could directly cleave them (Man and Kanneganti, 2015); in addition,
epithelium IL-18 secretion was independent on NLRP3 but dependent
on Caspase-1 (Song-Zhao et al., 2014). Numerous experimental studies
on animals have demonstrated inhibiting Caspase-1-dependent
pyroptosis could protect against DSS-induced colitis (Tian et al.,
2020; Cui et al., 2022; Xue et al., 2022). In view of this, we observed
the regulation effect of SIT on inflammatory mediators in our present
study. The results showed that SIT alleviated DSS-induced
inflammation both in UC rats and Caco-2 cells with downregulation
of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-18.
Furthermore, we explored the canonical Caspase-1 dependent pathway
which underlies UC and we found that SIT treatment downregulated
the protein levels of Caspase-1, cleaved-Caspase-1, NLRP3, GSDMD,
andGSDMD-N in tissues and cells as expected. Taken together, SIT did
ameliorate experimental colitis by inhibiting the NLRP3/Caspase-1/
GSDMD-dependent pyroptosis pathway.

Furthermore, NF-κB pathway played an important role in the
inflammatory responses of UC (Tong et al., 2021). In mammals, NF-κB
family can form homo- or heterodimers of which the most common
form is a dimer of p50 and p65. Normally, NF-κB remains inactive with
the combination of members of IKB family (Lawrence, 2009). Clinical
studies also have demonstrated excessive inflammation activated by
NF-κB exists in UC (Zhou et al., 2018). Activation of NF-κB signaling
cascade response was reported to participate in the regulation of
NLRP3 inflammasome transcription and Caspase-1 has been proven
as an active activator of NF-κB (Danelishvili et al., 2011; Hu et al., 2019;
Zhen and Zhang, 2019). Previous studies have demonstrated that SIT
could reduce the secretion of inflammatory mediators such as TNF-α
and IL-1β; in addition, SIT has the ability to suppress the initiation of

NLRP3 and the activation of Caspase-1 as well as partial inhibition of
NF-κB in vitro (Liao et al., 2018). In this study, we also assessed the
major proteins of NF-κB pathway. We observed the over-expressed
phosphorylation levels of p65 subunit and IκBα, the protein content in
colon tissues was suppressed under the SIT treatment. However, it
cannot be stated with certainty that SIT-mediated inflammation
alleviation is associated with NF-κB pathway in UC in light of our
present results.

The mechanical barrier is the most important barrier among the
intestinal mucosal barrier, with the structural basis consisting of intact
intestinal epithelial cells and tight junction (TJ) proteins between the
cells (Odenwald and Turner, 2017). Once the intestinal barrier was
disrupted, the bacteria and toxins from the gut would translocate to
the mucosa and activate deleterious intestinal inflammation (Liao
et al., 2018; Zhang et al., 2018). Previous literature has demonstrated
that the dysfunction of intestinal barrier integrity is responsible for the
exacerbation of inflammatory bowel disease includingUC (Zhao et al.,
2020). Therefore, restoring the intestinal barrier integrity can act in
preventing or treating UC. To gain further insight into the actions of
SIT on the colonic barrier function, we detected the expression levels
of the TJ-associated proteins ZO-1 and occludin. Western blot results
suggested that the protein expression of ZO-1 and occludin were
markedly weakened by DSS treatment while increasing in response to
SIT administration. These results suggest that SIT could protect the
gut against the occurrence of intestinal inflammation by maintaining
mucosal barrier integrity, and therefore halt UC progression.

5 Conclusion

In summary, SIT not only inhibits the production of pro-
inflammatory mediators and suppresses pyroptosis via
suppression the NLRP3/Caspase-1/GSDMD-dependent pathway,
but also enhances the function of the intestinal mucosal barrier
through regulation of epithelial tight junction proteins expression
(Figure 7). These findings indicate that SIT is an effective drug
candidate and may be potential in clinical applications of UC
treatment in the future.

As far as we know, it is the first evidence to show that SIT is
effective in regulating pyroptosis in experimental UC. Although
many studies have shown that SIT has good safety profiles, its poor
stability, low water solubility, and short half-life also confine its
broader application, and await to be addressed.
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