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We assessed the generalizability of machine learning methods using natural
language processing (NLP) techniques to detect adverse drug events (ADEs)
from clinical narratives in electronic medical records (EMRs). We constructed a
new corpus correlating drugs with adverse drug events using 1,394 clinical notes
of 47 randomly selected patients who received immune checkpoint inhibitors
(ICIs) from 2011 to 2018 at The Ohio State University James Cancer Hospital,
annotating 189 drug-ADE relations in single sentences within themedical records.
We also used data from Harvard’s publicly available 2018 National Clinical
Challenge (n2c2), which includes 505 discharge summaries with annotations of
1,355 single-sentence drug-ADE relations. We applied classical machine learning
(support vector machine (SVM)), deep learning (convolutional neural network
(CNN) and bidirectional long short-term memory (BiLSTM)), and state-of-the-art
transformer-based (bidirectional encoder representations from transformers
(BERT) and ClinicalBERT) methods trained and tested in the two different
corpora and compared performance among them to detect drug–ADE
relationships. ClinicalBERT detected drug–ADE relationships better than the
other methods when trained using our dataset and tested in n2c2
(ClinicalBERT F-score, 0.78; other methods, F-scores, 0.61–0.73) and when
trained using the n2c2 dataset and tested in ours (ClinicalBERT F-score, 0.74;
other methods, F-scores, 0.55–0.72). Comparison among several machine
learning methods demonstrated the superior performance and, therefore, the
greatest generalizability of findings of ClinicalBERT for the detection of drug–ADE
relations from clinical narratives in electronic medical records.
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1 Introduction

Adverse drug events (ADEs) are unintended harmful effects of taking medication (Hohl
et al., 2018), which is a leading cause of death in the United States (Classen et al., 1997;
Binkheder et al., 2022) and responsible for the hospitalization of 9,440,757 patients from
2008 to 2011, with an increasing trend over time (Poudel et al., 2017). The estimated annual
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cost of drug-related morbidity and mortality resulting from non-
optimized medication therapy was $528.4 billion, equivalent to 16%
of total US healthcare expenditures, in 2016 (Watanabe et al., 2018).
Patients with ADEs have demonstrated significantly longer hospital
stays and an almost two-fold greater risk of death than patients
without ADEs (Classen et al., 1997). Nevertheless, ADEs are mostly
preventable (Rommers et al., 2007), and early detection can
substantially reduce morbidity and, thereby, decrease associated
healthcare costs (Classen et al., 1997; Kaushal et al., 2006;
Handler et al., 2007).

ADEs are largely detected after marketing, so timely surveillance
at this time is important for patient safety (Botsis et al., 2011;
Polepalli Ramesh et al., 2014). Pharmacovigilance has traditionally
employed spontaneous reporting systems (SRSs), but as many as
90% of ADEs may remain unreported in this voluntary scheme
(Hazell and Shakir, 2006). In contrast, electronic health records
(EHR) represent a potentially great source for post-marketing
surveillance of drug safety, accommodating real-time clinical data
gathered from routine clinical care (Coloma et al., 2013). One study
revealed relevant ADE information, for example, in the structured
data of 9,020 of 31,531 patients (28.6%) with side effects of statin
documented in provider notes (Skentzos et al., 2011). Furthermore,
clinical notes in EHRs provide longitudinal information related to
drug-induced adverse events, but the manual review and extraction
of ADEs from enormous clinical narratives is labor intensive, and
clinical notes in EHRs vary from patient to patient, physician to
physician, and hospital to hospital. Therefore, an automated system
that utilizes artificial intelligence (AI) is needed to extract ADEs
from clinical notes, and attempts have been made to build such a
system.

The Medication and Adverse Drug Events Challenge
(MADE1.0) (Jagannatha et al., 2019) aimed to automatically
identify clinical concepts and relations from clinical narratives
that included ADEs. The Challenge included three tasks: 1)
naming the recognized entity (NER) and identifying the
medication and its route, dosage, duration, frequency, and
indication, as well as associated ADEs and their severity; 2)
identifying relations (RI) of medications with ADEs,
indications, and other entities; and 3) performing the NER
and RI tasks jointly. The Challenge released 1,089 fully de-
identified clinical notes from 21 randomly selected patients
with cancer at the University of Massachusetts Memorial
Hospital that included 2,612 drug–ADE relations. Methods
used to classify relations ranged from statistical machine
learning (ML)-based methods, such as support vector machine
learning (SVM), random forest, and others, to neural-network-
based bidirectional long short-term memory (BiLSTM). The
best-performing model for the classification of ADE–drug
name relations achieved an F-score of 0.72.

Another effort, the n2c2 Shared Task Challenge (Henry et al.,
2020), mirrored MADE1.0 and included similar tasks. The
n2c2 dataset comprised 505 discharge summaries taken from the
Medical Information Mart for Intensive Care-III (MIMIC-III)
clinical care database (Johnson et al., 2016). Records were
selected by searching ADEs in the International Classification of
Diseases (ICD) code descriptions of the records, which yielded a
total of 1,840 ADE-drug relations. Methods used for the relation-
classification task ranged from SVM to attention-based BiLSTM,

with the best-performing model for ADE-drug name relation
yielding an F-score of 0.85.

The use of data from a single EHR source in the two
challenges allowed NLP approaches developed from these
models to be data-specific. The model that performed the best
(Wei et al., 2020) in relation extraction for the n2c2 Shared Task,
for example, contained a post-processing technique that was
dependent on the n2c2 annotation guideline to improve the
performance of their BiLSTM conditional random field (CRF)
algorithm. This n2c2 paper (Wei et al., 2020) also suggested that
language models like BERT (Devlin et al., 2018) in the biomedical
domain may further improve the NLP performance, and it
remains to be an interesting topic for future research. In the
best-performing model (Chapman et al., 2019) from the MADE
1.0 Challenge, the best model was random forest. The paper
(Chapman et al., 2019) stated that generalizability of the best-
performing model was unclear.

Though transformer-based methods like BERT (Devlin et al.,
2018), BioBERT (Lee et al., 2020), and ClinicalBERT (Alsentzer
et al., 2019) have become popular in recent years, they have not
been applied to identify ADEs from the clinical notes of EHRs.
Therefore, it is critical to implement the same model on data from
different data sources to assess the generalizability of a model. No
study has been conducted yet that used EHRs from different data
sources to address the issue of generalizability. BERT-based
methods have performed better than other machine and deep
learning methods (Sun et al., 2019; González-Carvajal and
Garrido-Merchán, 2020; Minaee et al., 2022) in mining
biomedical texts, and methods that integrate biomedical
corpora, such as ClinicalBERT, outperformed BERT models
(Huang et al., 2019). In this article, we investigate the
performance of deep learning (CNN, BiLSTM) and
transformer-based (BERT and ClinicalBERT) methods, as well
as classical SVM, in clinical notes of two different EHR systems.

The preprocessing of data is important in NLP in clinical text
and challenged by the inherent variations in EHRs, and the
preprocessing of clinical text in EHRs, such as tokenization,
which breaks the text into meaningful elements and detects
sentence boundaries, is different and more challenging than the
processing of data in the literature (Griffis et al., 2016). Publications
often inadequately present the end-to-end data preprocessing
method, but in this paper, we sufficiently detail the end-to-end
data preprocessing for all NLP methods used.

Our primary goal is to address whether and how ADE NLP
algorithms developed from the n2c2 Shared Task can be
generalized to a drug-specific ADE in a different EHR. There
are two types of generalizability in the NLP algorithm
development for detecting drug-induced ADEs. First, we want
to know whether the NLP model developed in one dataset
maintains a comparable performance in a different dataset.
Second, if one NLP method has a better performance than the
others, will it maintain its supreme performance in a different
dataset? In this paper, we study both types of generalizability for
NLP algorithms designed for drug–ADE relationship detection.
We will use ADEs induced by immune checkpoint inhibitors
(ICI) (Nashed et al., 2021) as recorded in clinical notes as
examples for analysis. MADE1.0 (Jagannatha et al., 2019) data
were not available to us when we conducted this study.
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2 Materials and methods

2.1 Datasets

We used two datasets to analyze the generalizability of ADE
detection from EHRs; one was developed from the EHR system of
The Ohio State University James Cancer Hospital, and the second
was that of the n2c2 Shared Task (Henry et al., 2020).

2.2 ICI-OSU corpus

We built the ICI-OSU corpus by manually annotating
1,394 clinical notes of 47 randomly selected patients who
received immune checkpoint inhibitors (ICIs) from 2011 to
2018 at The Ohio State University James Cancer Hospital.
Supplementary materials contain a detailed annotation guideline
that we developed to assist the annotators with manual annotation.
Supplementary Table S1 contains the annotation guideline for entity
annotation, whereas Supplementary Table S2 contains the guideline
for relation annotation. Figure 1 shows different types of entity tags
and relation annotations.

The entities included drug names, mentions of ADEs, dates
drugs were taken, dates of ADEs, terms drawing causal relation
between a drug and an ADE, and grades of ADE intensity. It is worth
mentioning that reasons for drug administration were not
considered as ADEs. Supplementary Figure S1 shows the
difference between ADE and reason for drug administration with
an example. Relations were annotated for entities located within a
single sentence and across sentences. Two annotators with
informatics skills and knowledge in cancer clinical trials
independently annotated each note, and a third annotator
performed the validation for inconsistent annotations between
the two annotators. One annotator was a resident physician with
hands-on experience with EHRs; the second had a master’s degree in
biology with 7 years of experience in corpus development and
annotation; the third annotator, who performed the validation,
was a graduate student in biomedical informatics. The
institutional review board of The Ohio State University approved
this study (#2020C0145).

2.3 ICI-OSU data processing pipeline

Figure 2 illustrates the data processing pipeline we built that
feeds processed data to the ADE NLP models for generalizability
analysis.

In the first step, we collected the clinical notes of the targeted
patient. The ICI-OSU corpus contains the patient’s notes for the first
12 months from the date of the first ICI dose in the structured data.
The order of note dates is maintained to keep track of longitudinal
data, such as the date of first drug use, date of first ADE, and date of
drug discontinuation.

In the second step, we cleaned data using regular expression
techniques (Wang et al., 2019), which included but were not limited
to normalizing uneven spaces and drug names and manipulating
abbreviations. For drug name normalization, we used the DrugBank

FIGURE 1
Annotation example for different entities in the ICI-OSU corpus.

FIGURE 2
ICI-OSU data processing pipeline. Python and C++
programming were used at different steps to automate the process.

TABLE 1 List of drug names and adverse drug events. We used all possible
mentions of these drugs and ADEs in our study.

Drug ADE

Atezolizumab Colitis

Ipilimumab Pneumonitis

Nivolumab Thyroid

Pembrolizumab Abnormalities

Tremelimumab Rash/dermatitis

Avelumab Hepatitis

Durvalumab Myalgia/arthralgia

Cemiplimab Cardiotoxicity
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database (Wishart et al., 2008) as our primary source, and we built a
lookup table that contained all possible mentions (such as the
generic and brand name) of a drug. Supplementary Figure S2
shows a raw original clinical note, and Supplementary Figure S3
shows the cleaned data.

In the third step, we performed automatic screening for drugs
and ADEs, tagging predefined drug and ADE terms for follow-up
manual annotation. Table 1 delineates the drug names and the ADE
list of our study. We used the Common Terminology Criteria for
Adverse Events (CTCAE) (Freites-Martinez et al., 2021) and the
DrugBank database as our primary guidelines for ADE and drug
mentions, respectively. Then, we built a lookup table for screening
that contained all possible mentions of these drugs and ADEs found
in EHRs. We discussed with a physician and annotators who had
hands-on experience working with EHRs, thus enriching and
verifying our lookup table to ensure accuracy.

In the fourth step, we used the Apache clinical Text Analysis and
Knowledge Extraction System (cTAKES)™ (Savova et al., 2010), an
open-source NLP tool, to segment sentences in the EHRs, which is
one of the most challenging tasks because of variations, such as in
use of punctuation and abbreviations, that are unique to the recorder
(Griffis et al., 2016). To optimize cTAKES™ performance on
sentence segmentation, we also encrypted the unexpected line
breakers to be consistent with the cTAKES™ segmentation rules.
After segmentation, we decrypted the data to preserve their
originality. Supplementary Figure S4 shows the data’s appearance
after sentence segmentation in cTAKES™.

In the fifth step, we performed automatic de-identification using
de-identification software (Neamatullah et al., 2008) from
PhysioNet (Goldberger et al., 2000) followed by manual de-
identification by the annotators to ensure accuracy. The recall
value of PhysioNet was over 98% in the de-identification task on
our dataset. Supplementary Figure S5 shows the data after de-
identification.

In the sixth step, we performed automatic tagging, annotating
the drug name, mention of ADE, and date of ADE, to reduce the
burden of subsequent manual annotation. For drug and ADE
annotation, we performed exact matching of the data with our
predefined drug and ADE lists. We used a rule-based method to
annotate the dates in the clinical text automatically, and this
annotation was consistent with that of the web-based brat rapid
annotation tool (BRAT) (Stenetorp et al., 2012), which we used later
for manual annotation. Though automatic annotation greatly
reduced the burden of manual annotation, the annotators were
free to annotate any new form of a drug name, mention of ADE, or
date of ADE. The annotators could also correct anything incorrectly
tagged in automatic tagging. Supplementary Figure S6 shows the
automatically annotated notes.

In the seventh step, our annotators performed manual
annotation in BRAT following the well-defined guideline
mentioned previously and included in the supplementary
materials. Supplementary Figure S7 shows the manually
annotated notes.

In the eighth and final step, we extracted relevant annotation
information automatically after manual annotation to build our
corpus. Information extracted to prepare the data for machine
learning models included drug–ADE relations, drug–ADE pairs,
and neighboring words.We built an automatic system to extract that

information from the annotated corpus based on the input format of
the ML models. Due to the repetitive nature of EHRs, several
drug–ADE relations were repeated when the text between a drug
and an ADE, as well as the context, were exactly the same. We
removed those duplicates in the automatic extraction.

2.4 n2c2 Shared Task corpus

The n2c2 data consisted of information from 505 discharge
summaries taken originally from the MIMIC-III clinical care
database (Johnson et al., 2016). The data provider described
their process as first searching for ADEs in the ICD code
description of each record and then manually screening the
records with at least one ADE and dividing the data into a
training set comprising 303 annotated files and a testing set that
included 202 files (Henry et al., 2020). The n2c2 data contained
several clinical concepts and relations as well as drug and ADE
annotations, and we performed preprocessing as described
previously to prepare the data for the ML models, first
cleaning the n2c2 data, then segmenting sentences using
cTAKES™, and finally using our automatic system to extract
relevant annotations.

2.5 The definition of positive and negative
drug–ADE relations in the n2c2 and ICI-OSU
corpora

Like other researchers (Wei et al., 2020), we considered all
possible combinations of drugs and ADEs to build positive and
negative data for training and validating NLP models. Our
generalizability analysis focused on drug–ADE relations within
a single sentence; so, for example, for a sentence containing the
drugs d1 and d2 and the ADEs a1 and a2, the four possible
drug–ADE combinations are (d1, a1), (d1, a2), (d2, a1), and (d2,
a2). A drug–ADE relation was considered positive if the drug
induced the ADE. We collected the positive samples directly from
annotation to build the positive dataset. A relation was
considered negative if the drug did not induce the ADE and
was, therefore, not annotated in the corpus. We derived the
negative dataset from all the drug–ADE combinations by
subtracting the annotated positive set from the corpus. After
removing duplicates, we obtained 189 positive samples and
698 negative samples from our annotated ICI-OSU data. The
default n2c2 training and test data yielded 1,355 positive and
865 negative samples after duplicates were removed.

2.6 Machine learning deep learning models

We implemented several machine learning, deep learning, and
transformer-based models, including SVM (Joachims, 1998), CNN
(Kim, 2014), BiLSTM (Sherstinsky, 2018; Xu et al., 2019), BERT
(Devlin et al., 2018), and ClinicalBERT (Alsentzer et al., 2019), to
analyze the n2c2 and ICI-OSU datasets, and we trained these models
on one dataset and validated them on the other to analyze the
generalizability of their findings.
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2.6.1 Training and validation data
Training and validation data were speculated under the intra-

and inter-dataset settings. The intra-dataset setting comprised
training and validation data allocated from the same data source,
either n2c2 or ICI-OSU. When training and validating the model
on the same n2c2 dataset in the intra-set setting, we used the
default training and validation data of the n2c2 dataset given by
the data providers. Because the ICU-OSU dataset was relatively
smaller, we applied five-fold cross-validation to avoid overfitting
when we trained and validated our model on the same ICU-OSU
dataset in the intra-set setting. In the inter-set setting, training
was performed on one dataset, and its validation was performed
in the other. We also withheld 30 percent of the data from the
training set to serve as the internal validation set in the inter-
dataset setting.

2.6.2 Hyperparameter selection and embedding
In the deep learning and transformer-based models, we

studied different dropout rates ranging between 0.1 and

0.8 and learning rates (0.1, 0.01, 0.001, and 0.0001) with batch
sizes of 16, 32, and 64. In those models, we used embedding
(Mikolov et al., 2013) techniques and pre-trained word-
embedding models, such as Stanford’s global vectors for word
representation (GloVe) (300-dimensional) (Pennington et al.,
2014). In our transformer-based model, we also incorporated
biomedical domain knowledge.

2.6.3 Preparation of input data, feature selection,
and model implementation

We focused on the contextual features while building the
models. Because the text between a drug and an ADE contains
most of the contextual information regarding a drug–ADE relation,
we considered the drug name, the ADE, and the text between them
as the input for all models. However, feature selection varied from
model to model. Our SVM model, for example, used character-level
n-grams, whereas the CNN model considered n-grams at the token
level. Figure 3A shows how we extracted the input text from a
drug–ADE relation.

FIGURE 3
(A) Input text processing from single-sentence drug–ADE relation. (B–F) Implementation details of (B) SVM, (C) BiLSTM, (D) CNN, (E) BERT, and (F)
clinicalBERT models.
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2.7 Implementation of the support vector
machine model

We generated character n-grams from the first character of a
sample to the last character of the input text using a range of
values for n, converted those n-grams in term frequency (TF)-
inverse document frequency (IDF) (Qaiser and Ali, 2018)
vectorization, and then finally fed the feature vector into the
model to predict the output y (0 or 1). We searched a range of
values for c and gamma to obtain the best hyperparameter set and
used the radial basis function (RBF) kernel in our SVM model.
Figure 3B details the implementation of our SVM model with an
example bigram.

2.8 Bidirectional long short-term memory
(BiLSTM)

Understanding the context of a sentence is critical and
requires that classification of the sentence includes
information in both directions, from the beginning of the
sentence to its end and from its end to its beginning.
Previous studies showed promising results using BiLSTM to
extract contextual information (Xu et al., 2019). BiLSTM
algorithms can learn long-term dependencies and work in
both directions of text and learn contextual features in a
given time stamp. For our model, the input was a sequence
from the start to the end of an entity of a sample. Figure 3C
shows the architecture of the BiLSTMmodel. We performed text
vectorization on the input and then used the pre-trained word
embedding of GloVe (300d) (Pennington et al., 2014) in the
embedding layer. The BiLSTM layer was used over the
embedding layer, and finally, the dense layer was used,
producing the output, y.

2.9 Convolutional neural network (CNN)

We implemented the standard CNN model (Kim, 2014), in
which we focused on contextual information while extracting
features. The CNN model applies a filter to extract features from
text and uses those features to classify the text. As mentioned
earlier, we used the text between the start of an entity and its end
to analyze sequential words to learn features to extract. We used
multiple filters of different sizes (2, 3, and 4) to examine different
n-grams within the text. Figure 3D shows the architecture of the
CNNmodel. We built a sentence matrix, with rows indicating the
tokens of a sentence and columns indicating the features in which
we implemented pre-trained word embedding. Sn is the number
of tokens in a sentence; Sd is the feature dimension of a token;Wh

is the kernel size. We then applied weight filters for the
convolution operation and feature mapping and, finally,
applied max pooling and fully connected the output layer to
generate output. We used the rectified linear unit (ReLU)
activation function and the pre-trained word embedding of
GloVe (300d) in the embedding layer (Pennington et al., 2014).

2.10 Bidirectional encoder representations
from transformers (BERT)

The BERT (Lee et al., 2020)model is based on a transformer encoder
that uses a self-attention mechanism for sequence modeling (Vaswani
et al., 2017). For our classification task, the sequential information of the
text could be important. We selected a segment from the start to the end
of an entity of a sample and then used the tokenized segment as input in
the BERTmodel. The class token clswas addedwith the input. To obtain
embeddings for our text, we used the pre-trained transformer model
rather than an embedding layer. For our analysis, we used BERT-base,
which consists of transformer blocks of 12 layers with 12 self-attention
heads, a hidden size of 768, and 110M trainable parameters (Lee et al.,
2020). Figure 3E shows the architecture of the BERT model.

2.11 ClinicalBERT

The implementation of the ClinicalBERT (Alsentzer et al., 2019)
model was similar to that of our BERT model, but ClinicalBERT
incorporated pre-trained biomedical domain knowledge. We used the
model that was initialized on BioBERT (Lee et al., 2020) and trained on
all notes of theMIMIC-III dataset (Johnson et al., 2016). The model had
a batch size of 32 and a maximum sequence length of 128 (Alsentzer
et al., 2019). Figure 3F shows the architecture of theClinicalBERTmodel.

3 Results

Annotation performance: we performed annotation in two rounds.
In round one, we annotated 118 single-sentence positive drug–ADE
relations and 24 cross-sentence positive drug–ADE relations. In round
two, we labeled 163 single-sentence positive drug–ADE relations and
27 cross-sentence positive drug–ADE relations. Table 2 shows the
average inter-annotator agreement (IAA) results of our two rounds of
annotations.We calculated Cohen’s kappa (McHugh, 2012) to measure
IAA. The results indicate considerable disagreement between the two
annotators regarding the identification of drug–ADE relations, which is
probably attributable to the diverse nature of ADE mentions in clinical
notes. Supplementary Table S3 shows more annotation results and
findings details of our corpus. Our OSU-ICI corpus is the first drug
class-specific drug–ADE corpus. By specifically targeting ICIs, it also
becomes a golden standard for developing immunotherapy-induced
adverse event phenotypes.

TABLE 2 Agreement between annotators.

Type F-score

Drug 99.00%

ADE 95.12%

Grade 70.66%

Causal term 73.58

Drug–ADE 70.94

Frontiers in Pharmacology frontiersin.org06

Zitu et al. 10.3389/fphar.2023.1218679

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218679


3.1 Performance evaluation and error
analysis

To analyze the generalizability of findings among the models, we
trained and tested each model on the dataset of the same data source
(intra-data) and a different source (inter-data). Figures 4A, B show
the performance of the different models in the intra-dataset setting.
The CNN-based deep learning model performed the best, with an
F-score of 80% for the ICI-OSU dataset, whereas the transformer-
based ClinicalBERT model achieved the best F-score (87%) for the
n2c2 data. The SVM model was also competitive and showed stable
performance in the intra-dataset setting. Our results demonstrate
that we did not get the best performance from either the BERT or
ClinicalBERT model when training and testing on the ICI-OSU
dataset. This is probably because the transformer models usually
perform better on a large dataset, and the ICI-OSU dataset is small.
Figures 4C, D show the performance of the different models in the
inter-dataset setting, with the transformer-based models showing
superior performance. The ClinicalBERT model achieved the
highest F-score in both combinations of inter-data training and
testing, probably because of the incorporation of domain knowledge
as ClinicalBERT was trained on the MIMIC-III dataset. These
performances indicate the importance of incorporating domain
knowledge in models. Figure 5 shows the cluster map for the
results of different models in the inter-dataset setting. In this
NLP analysis of four combinations of training sets and test sets

from n2c2 and ICI-OSU datasets, it is evident that ClinicalBERT has
the best performance in three out of four combinations.

Figures 5A, B show the cluster map while training on the
n2c2 dataset and testing on the ICI-OSU dataset. The BERT and
ClinicalBERT models performed similarly for positive sample
prediction, whereas the SVM and BiLSTM models clustered together
with similar results. BiLSTM and ClinicalBERT models performed
similarly for negative sample prediction. Figures 5C, D show the
cluster map while training on the ICI-OSU dataset and testing on
the n2c2 dataset. The BERT and ClinicalBERT models performed
similarly for both positive and negative sample prediction, and the
SVM and BiLSTM models clustered together with similar results.
Comparison of the results of Figures 4 and 5 demonstrates the
better performances of the machine learning and deep learning
models in the intra-dataset setting and of the transformer-based
models in the inter-dataset settings. Along with the internal capacity
of the models to recognize patterns, the variable length of the datasets
might contribute to such performance. Supplementary Tables S4 and S5
further detail the results.

3.2 Factors contributing to error 1
(differences in data sources)

The n2c2 dataset was the more general of the two sets and looked
for all drug mentions in a clinical note, whereas the ICI-OSU dataset

FIGURE 4
Comparison of precision, recall, and F-score among different models in intra- and inter-dataset settings. (A, B) show the performance of the
differentmachine learningmodels when trained and tested on the same data source (intra dataset). (C, D) show the performance of the differentmachine
learning models when trained and tested on different data source (inter dataset).
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focused on ICI drugs and annotated a specific set of ADEs. The use of
these differing types of data challenged training on one source and
testing on the other.

3.3 Factors contributing to error 2
(differences in annotation guidelines and
causal terms)

The annotation guidelines for the two datasets differed. The
guideline for the n2c2 dataset, for example, looked for the closest
entity rather than causation to draw a relation, whereas the guideline
for the ICI-OSU dataset looked for the presence of causal terms to
identify a causal relation between entities.

4 Discussion

4.1 Incorporation of domain knowledge

We attempted to analyze the generalizability of ADE
detection from clinical notes using several machine
learning, deep learning, and transformer-based models and
observed promising performance, particularly when we
applied state-of-the-art transformer-based models. The
superior performance of ClinicalBERT indicated the
importance of incorporating domain knowledge when using
pre-trained data. Thus, future studies should incorporate more
domain knowledge to further enhance the performance of the
models.

FIGURE 5
Cluster maps of results comparing predicted labels with true labels for every sample of positive and negative classes in inter dataset settings. Yellow:
predicted and true label matched; blue: labels did not match. (A, C) shows the results for positive class. (B, D) shows the results for negative class.

Frontiers in Pharmacology frontiersin.org08

Zitu et al. 10.3389/fphar.2023.1218679

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218679


4.2 Cross-sentence relation

Our study focused on single-sentence drug–ADE relations, in
which the drug and ADE occurred in the same sentence, and after
sentence segmentation and annotation, we ended with only a few
cross-sentence relations. However, it is also important to identify
cross-sentence relations. Our primary challenge in identifying
cross-sentence relations was the imbalance within a dataset that
could pose a very large number of negative relations against a
very small number of positive relations. In addition, our
experience in manual annotation showed that a drug and ADE
could be distantly related across sentences with numerous
sentences in between. Nevertheless, limiting the number of
sentences between two entities to draw a relation could help
limit the search space to accommodate most of the positive
relations across sentences. It would also keep the number of
negative relations considerably low.

4.3 Variation in sentence length

Variations in sentence lengths, some only a few words and some
extraordinarily long, made it difficult to train the model and
contributed greatly to the error. The ICI-OSU dataset included
two positive samples consisting of 30 tokens each, where every single
model except BERT classified them incorrectly. BERT was able to
predict the true label of one of those two samples correctly. A lack of
similar training data probably contributed to the error. Having more
training data of similar length or building a separate rule-based
approach could facilitate the management of extraordinarily long
sentences.

Data availability statement

The datasets presented in this article are not readily available
because the clinical notes of EHRs were used in this study. Therefore,
data could not be published at this point. Requests to access the
datasets should be directed to LL, Lang.Li@osumc.edu.

Ethics statement

The studies involving human participants were reviewed and
approved by the institutional review board of The Ohio State
University (#2020C0145). Written informed consent for

participation was not required for this study in accordance with
the national legislation and the institutional requirements.

Author contributions

MZ and LL were responsible for the overall study design and
writing the manuscript. MZ and SZ performed the end-to-end
annotation task from the definition of annotation guidelines to
the validation of manual annotation. MZ performed the
implementation task, which included data processing and
modeling. DO provided, enriched, and validated the drug and
ADE lists. CC provided logistic support and made the original
data available for study with the environmental setup. LL supervised
the overall study. All authors contributed to the article and approved
the submitted version.

Acknowledgments

We would like to acknowledge and thank Andrew Nashed for
his support in this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The supplementary material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2023.1218679/
full#supplementary-material

References

Alsentzer, E., Murphy, J. R., Boag, W., Weng, W., Jin, D., Naumann, T., et al. 2019.
Publicly available ClinicalBERT embeddings

Binkheder, S., Wu, H-Y., Quinney, S. K., Li, L., Gao, Y., Skaar, T. C., et al. (2022).
PhenoDEF: A corpus for annotating sentences with information of phenotype
definitions in biomedical literature. J. Biomed. Semant. 13 (1), 17. doi:10.1186/
s13326-022-00272-6

Botsis, T., Nguyen, M. D., Woo, E. J., Markatou, M., and Ball, R. (2011). Text mining
for the vaccine adverse event reporting system: Medical text classification using
informative feature selection. J. Am. Med. Inf. Assoc. 18 (5), 631–638. doi:10.1136/
amiajnl-2010-000022

Chapman, A. B., Peterson, K. S., Alba, P. R., DuVall, S. L., and Patterson, O. V. (2019).
Detecting adverse drug events with rapidly trained classification models. Drug Saf. 42
(1), 147–156. doi:10.1007/s40264-018-0763-y

Classen, D. C., Pestotnik, S. L., Evans, R. S., Lloyd, J. F., and Burke, J. P. (1997).
Adverse drug events in hospitalized Patients&lt;subtitle&gt;Excess length of stay, extra
costs, and attributable mortality</subtitle&gt;. JAMA 277 (4), 301–306. doi:10.1001/
jama.1997.03540280039031

Coloma, P. M., Trifirò, G., Patadia, V., and Sturkenboom, M. (2013). Postmarketing
safety surveillance: Where does signal detection using electronic healthcare records fit
into the big picture? Drug Saf. 36 (3), 183–197. doi:10.1007/s40264-013-0018-x

Frontiers in Pharmacology frontiersin.org09

Zitu et al. 10.3389/fphar.2023.1218679

mailto:Lang.Li@osumc.edu
https://www.frontiersin.org/articles/10.3389/fphar.2023.1218679/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1218679/full#supplementary-material
https://doi.org/10.1186/s13326-022-00272-6
https://doi.org/10.1186/s13326-022-00272-6
https://doi.org/10.1136/amiajnl-2010-000022
https://doi.org/10.1136/amiajnl-2010-000022
https://doi.org/10.1007/s40264-018-0763-y
https://doi.org/10.1001/jama.1997.03540280039031
https://doi.org/10.1001/jama.1997.03540280039031
https://doi.org/10.1007/s40264-013-0018-x
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218679


Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. https://arxiv.org/abs/1810.
04805.

Freites-Martinez, A., Santana, N., Arias-Santiago, S., and Viera, A. (2021). Using the
Common Terminology Criteria for adverse events (CTCAE - version 5.0) to evaluate the
severity of adverse events of anticancer therapies. Actas Dermosifiliogr. Engl. Ed. 112 (1),
90–92. doi:10.1016/j.ad.2019.05.009

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,
et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research
resource for complex physiologic signals. Circulation 101 (23), E215–E220. doi:10.1161/
01.cir.101.23.e215

González-Carvajal, S., and Garrido-Merchán, E. C., 2020. Comparing BERT against
traditional machine learning text classification.

Griffis, D., Shivade, C., Fosler-Lussier, E., and Lai, A. M., 2016. A quantitative and
qualitative evaluation of sentence boundary detection for the clinical domain. AMIA Jt
Summits Transl Sci Proc, p.88–97.

Handler, S. M., Altman, R. L., Perera, S., Hanlon, J. T., Studenski, S. A., Bost, J. E., et al.
(2007). A systematic review of the performance characteristics of clinical event monitor
signals used to detect adverse drug events in the hospital setting. J. Am. Med. Inf. Assoc.
14 (4), 451–458. doi:10.1197/jamia.M2369

Hazell, L., and Shakir, S. A. W. (2006). Under-reporting of adverse drug
reactions: A systematic review. Drug Saf. 29 (5), 385–396. doi:10.2165/
00002018-200629050-00003

Henry, S., Buchan, K., Filannino, M., Stubbs, A., and Uzuner, O. n2c2 Shared Task
Participants 2020 2018 n2c2 shared task on adverse drug events and medication
extraction in electronic health records. J. Am. Med. Inf. Assoc. 27 (1), 3–12. doi:10.
1093/jamia/ocz166

Hohl, C. M., Small, S. S., Peddie, D., Badke, K., Bailey, C., and Balka, E. (2018). Why
clinicians don’t report adverse drug events: Qualitative study. JMIR Public Health
Surveillance 4 (1), e21. doi:10.2196/publichealth.9282

Huang, K., Altosaar, J., and Ranganath, R., 2019. ClinicalBERT: Modeling clinical
notes and predicting hospital readmission.

Jagannatha, A., Liu, F., Liu, W., and Yu, H. (2019). Overview of the first natural
language processing challenge for extracting medication, indication, and adverse drug
events from electronic health record notes (MADE 1.0).Drug Saf. 42 (1), 99–111. doi:10.
1007/s40264-018-0762-z

Joachims, T. (1998). “Text categorization with support vector machines: Learning
with many relevant features,” in Machine learning: ECML-98. Ecml 1998. Editors
C. Nédellec, and C. Rouveirol (Berlin, Heidelberg: Springer), 1398. doi:10.1007/
BFb0026683

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. W. H., Feng, M., Ghassemi, M.,
et al. 2016. MIMIC-III, a freely accessible critical care database. Sci. Data. 3,
160035doi:10.1038/sdata.2016.35

Kaushal, R., Jha, A. K., Franz, C., Glaser, J., Shetty, K. D., Jaggi, T., et al. (2006). Return
on investment for a computerized physician order entry system. J. Am. Med. Inf. Assoc.
13 (3), 261–266. doi:10.1197/jamia.M1984

Kim, Y. (2014). “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP) (Doha, Qatar: Association for Computational Linguistics),
1746–1751.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., et al. (2020). BioBERT: A pre-
trained biomedical language representation model for biomedical text mining.
Bioinformatics 36 (4), 1234–1240. doi:10.1093/bioinformatics/btz682

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochem. Med.
Zagreb. 22 (3), 276–282. doi:10.11613/bm.2012.031

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). “Distributed
representations of words and phrases and their compositionality,” inAdvances in neural
information processing systems, 26.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., and Gao, J.
(2022). Deep learning-based text classification: A comprehensive review. ACM Comput.
Surv. (CSUR) 54 (3), 1–40. doi:10.1145/3439726

Nashed, A., Zhang, S., Chiang, C. W., Hwang, A., Riaz, N., Presley, C. J., et al. (2021).
Comparative assessment of manual chart review and ICD claims data in evaluating
immunotherapy-related adverse events. Cancer Immunol. Immunother. 70 (10),
2761–2769. doi:10.1007/s00262-021-02880-0

Neamatullah, I., Douglass, M. M., Lehman, L.-w. H., Reisner, A., Villarroel, M., Long,
W. J., et al. (2008). Automated de-identification of free-text medical records. BMCMed.
Inf. Decis. Mak. 8, 32. doi:10.1186/1472-6947-8-32

Pennington, J., Socher, R., and Manning, C. (2014). “GloVe: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (Doha, Qatar.

Polepalli Ramesh, B., Belknap, S. M., Li, Z., Frid, N., West, D. P., and Yu, H. (2014).
Automatically recognizing medication and adverse event information from food and
drug administration’s adverse event reporting system narratives. JMIR Med. Inf. 2 (1),
e10. doi:10.2196/medinform.3022

Poudel, D. R., Acharya, P., Ghimire, S., Dhital, R., and Bharati, R. (2017). Burden of
hospitalizations related to adverse drug events in the USA: A retrospective analysis from large
inpatient database. Pharmacoepidemiol. Drug Saf. 26 (6), 635–641. doi:10.1002/pds.4184

Qaiser, S., and Ali, R. (2018). Text mining: Use of TF-IDF to examine the relevance of
words to documents. Int. J. Comput. Appl. 181 (1), 25–29. doi:10.5120/ijca2018917395

Rommers, M. K., Teepe-Twiss, I. M., and Guchelaar, H-J. (2007). Preventing adverse
drug events in hospital practice: An overview. Pharmacoepidemiol. Drug Saf. 16 (10),
1129–1135. doi:10.1002/pds.1440

Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C.,
et al. (2010). Mayo clinical text analysis and knowledge extraction system (cTAKES):
Architecture, component evaluation and applications. J. Am. Med. Inf. Assoc. 17 (5),
507–513. doi:10.1136/jamia.2009.001560

Sherstinsky, A., 2018. Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network.

Skentzos, S., Shubina, M., Plutzky, J., and Turchin, A. (2011). “Structured vs.
unstructured: factors affecting adverse drug reaction documentation in an EMR
repository,” in AMIA annual symposium proceedings (American Medical
Informatics Association), 2011, 1270.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. I. (2012).
“BRAT: a web-based tool for NLP-assisted text annotation,” in Proceedings of the
Demonstrations at the 13th Conference of the European Chapter of the Association for
Computational Linguistics, 102–107.

Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). “How to fine-tune BERT for text
classification?,” in Chinese computational linguistics. CCL 2019. Editors M. Sun,
X. Huang, H. Ji, and Z. Liu (Cham: Springer), 11856. doi:10.1007/978-3-030-32381-3_16

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017).
“Attention is all you need,” in Advances in neural information processing systems, 6000–6010.

Wang, P., Bai, G. R., and Stolee, K. T., 2019. Exploring regular expression evolution.
Proceedings of the 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp.502–513.

Watanabe, J. H., McInnis, T., and Hirsch, J. D. (2018). Cost of prescription
drug–related morbidity and mortality. Ann. Pharmacother. 52 (9), 829–837.

Wei, Q., Ji, Z., Li, Z., Du, J., Wang, J., Xu, J., et al. (2020). A study of deep learning
approaches for medication and adverse drug event extraction from clinical text. J. Am.
Med. Inf. Assoc. 27 (1), 13–21. doi:10.1093/jamia/ocz063

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., et al. (2008).
DrugBank: A knowledgebase for drugs, drug actions and drug targets.Nucleic Acids Res.
36, D901–D906. doi:10.1093/nar/gkm958

Xu, G., Meng, Y., Qiu, X., Yu, Z., andWu, X. (2019). Sentiment analysis of comment texts
based on BiLSTM. IEEE Access 7, 51522–51532. doi:10.1109/ACCESS.2019.2909919

Frontiers in Pharmacology frontiersin.org10

Zitu et al. 10.3389/fphar.2023.1218679

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.ad.2019.05.009
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1197/jamia.M2369
https://doi.org/10.2165/00002018-200629050-00003
https://doi.org/10.2165/00002018-200629050-00003
https://doi.org/10.1093/jamia/ocz166
https://doi.org/10.1093/jamia/ocz166
https://doi.org/10.2196/publichealth.9282
https://doi.org/10.1007/s40264-018-0762-z
https://doi.org/10.1007/s40264-018-0762-z
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1197/jamia.M1984
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.1145/3439726
https://doi.org/10.1007/s00262-021-02880-0
https://doi.org/10.1186/1472-6947-8-32
https://doi.org/10.2196/medinform.3022
https://doi.org/10.1002/pds.4184
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1002/pds.1440
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1093/jamia/ocz063
https://doi.org/10.1093/nar/gkm958
https://doi.org/10.1109/ACCESS.2019.2909919
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218679

	Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medica ...
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 ICI-OSU corpus
	2.3 ICI-OSU data processing pipeline
	2.4 n2c2 Shared Task corpus
	2.5 The definition of positive and negative drug–ADE relations in the n2c2 and ICI-OSU corpora
	2.6 Machine learning deep learning models
	2.6.1 Training and validation data
	2.6.2 Hyperparameter selection and embedding
	2.6.3 Preparation of input data, feature selection, and model implementation

	2.7 Implementation of the support vector machine model
	2.8 Bidirectional long short-term memory (BiLSTM)
	2.9 Convolutional neural network (CNN)
	2.10 Bidirectional encoder representations from transformers (BERT)
	2.11 ClinicalBERT

	3 Results
	3.1 Performance evaluation and error analysis
	3.2 Factors contributing to error 1 (differences in data sources)
	3.3 Factors contributing to error 2 (differences in annotation guidelines and causal terms)

	4 Discussion
	4.1 Incorporation of domain knowledge
	4.2 Cross-sentence relation
	4.3 Variation in sentence length

	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


