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Heart diseases have a high incidence and mortality rate, and seriously affect
people’s quality of life. Mitochondria provide energy for the heart to function
properly. The process of various heart diseases is closely related to mitochondrial
dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is
widely used to treat various cardiovascular diseases. Many studies have confirmed
that P. ginseng and ginsenosides can regulate and improve mitochondrial
dysfunction. Therefore, the role of mitochondria in various heart diseases and
the protective effect of P. ginseng on heart diseases by regulating mitochondrial
function were reviewed in this paper, aiming to gain new understanding of the
mechanisms, and promote the clinical application of P. ginseng.
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1 Introduction

Heart diseases are one of the world’s top public health concerns. In 2017, approximately
17.8 million people died of cardiovascular disease globally, representing 330 million years of
life lost and another 35.6 million years of disabled life (Mensah et al., 2019) According to the
Global Burden of Disease Study 2019 (GBD 2019), an estimated 523.2 million people suffer
from cardiovascular diseases, including 194.2 million people with ischemic heart disease
(Brodmann et al., 2020). It is reported that 290 million people suffer from cardiovascular
diseases in China, of which hypertension is the most common, followed by coronary heart
disease, heart failure, rheumatic heart disease and congenital heart disease. The number of
sudden cardiac death in China exceeds 500,000 every year, ranking first in the world. (Wu,
2022). There are many risk factors for heart diseases, including a family history of heart
diseases, obesity, high cholesterol, diabetes, lack of exercise and so on (Fuster, 2014). Heart
diseases involves various regulatory mechanisms, including mitochondrial dysfunction,
oxidative stress response, myocardial fibrosis and apoptosis (Chen et al., 2023).
Therefore, it is of considerable clinical value to understand the pathogenesis of heart
diseases and search for therapeutic drugs.

Panax ginseng C.A.Mey (Panax ginseng) is widely used as a traditional herb in Southeast
Asian countries and is gaining popularity worldwide due to its medicinal properties (Lee
et al., 2020). The medicinal properties of P. ginseng are mainly contributed by its chemical
components, such as saponins/ginsenosides, polysaccharides, phenolics, volatile oils,
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alkaloids, proteins, etc (Baek et al., 2012). Ginsenosides are
considered as the primary active components of P. ginseng and
more than 200 ginsenosides have been isolated from it (Li et al.,
2018a; Lee et al., 2020; Liu et al., 2020; Liu et al., 2021; Ratan et al.,
2021). According to their aglycone structures, ginsenosides are
divided into three groups: dammaranes, ocotillols, and oleananes.
The dammarane triterpenes, to which most ginsenosides belong, can
be generally further classified as protopanaxadiol (Rb1, Rb2, Rb3,
Rd, and PPD) and protopanaxatriol (Rg1, Re, Rf, Rg2 and PPT)
(Angelova and Abramov, 2018). A total of 131 kinds of ginsenosides
were detected in 70% methanol extracts of roots and stems of P.
ginseng, and 19 kinds of ginsenosides including Ra1, Ra2, Rb1 and
Rb2 were quantitatively analyzed by 4000 QTRAP triple quadrupole
tandem mass spectrometry (HPLC-ESI-MS) (Wang et al., 2016).
64 ginsenosides including Rg1, Re, Rf and Rb1 were isolated from
70% ethanol extract of P. ginseng flower by UPLC-Q-TOF/MS (Li
et al., 2018b). More than 400 compounds were identified from the
methanol extracts of P. ginseng cultivated in different growth
environments, including 81 new compounds, such as hexanoyl-
Rd and decadienoyl-Rh1 (Sun et al., 2023).

P. ginseng extracts obtained by different methods contain a
variety of ginsenosides. 12 ginsenosides were isolated from P.
ginseng root extract by column chromatography with 70%
ethanol reflow D101 resin. Namely, Rg1, Re, R0, malonyl Rb1
(mRb1), malonyl Rc (mRc), malonyl Rb2 (mRb2), malonyl Rd
(mRd), Rf, Rb1, Rc, Rb2 and Rd (Yi et al., 2010).
11 ginsenosides, including Rg1, Re, Rb1, Rc, Rb2, Rd, Rk3, (20S)
Rg3, (20R) Rg3, Rk1, and Rg5, were identified from the ethanol-

extracted P. ginseng root extract by HPLC (Luo et al., 2015). This
paper mainly discusses the protective effects of various ginsenosides
(such as ginsenosides Rb1, Rb2, Rb3, Rd, Rg3, Rh2, compound K,
Rg1, Re and Rg5; Figure 1) or P. ginseng extracts on various heart
diseases including improving arrhythmia, reducing myocardial
damage, improving mitochondrial dysfunction, inhibiting
oxidative stress and apoptosis (Li et al., 2015; Yu et al., 2019;
Yuan et al., 2019).

Mitochondria, as a crucial organelle in cell physiology, make up
about one-third of the volume of adult cardiomyocytes, and most of
the approximately 95% ATP consumed by cardiomyocytes comes
from oxidative metabolism in mitochondria (Zhou and Tian, 2018).
Therefore, mitochondria are colloquially known as the “energy
house” of the cell, as well as the major source of ATP, NADH
and NADPH (Disatnik et al., 2015). Mitochondrial dysfunction
contributes to the development of cardiovascular and
cerebrovascular diseases, cancer, neurodegeneration, and
metabolic diseases (Kuida et al., 1998; Zhang et al., 2019; Oh
et al., 2019). The overproduction of ROS in mitochondria is also
a major cause of cell destruction, which activates the process of
programmed cell death or apoptosis (Disatnik et al., 2015).

Numerous studies have verified that P. ginseng has a protective
effect against various heart diseases by improving mitochondrial
dysfunction (Chen et al., 2019; Qi et al., 2020; Wang et al., 2021). In
order to better understand how P. ginseng and ginsenosides exert
pharmacological effects on the basis of mitochondrial dysfunction,
this paper reviews the research progress of the protective effect of P.
ginseng on various heart disease. 1) This paper first reviewed the

FIGURE 1
The chemical structures and names of ginsenosides in Panax ginseng.
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biological functions of mitochondria, including mitochondria-
mediated ROS, mitochondria-mediated apoptosis, mitochondrial
dynamics, mitochondrial autophagy and mitochondria-mediated
Ca2+ homeostasis. 2) The pathophysiological effects of P. ginseng
on various heart diseases based on mitochondrial dysfunction were
reviewed, including diabetic cardiomyopathy, myocardial ischemia/
reperfusion injury, cardiac hypertrophy, heart failure and
myocardial fibrosis. 3) The regulation and molecular mechanism
of P. ginseng and different ginsenosides on various heart diseases
were reviewed in terms of mitochondrial dysfunction. This study
aims to provide new views into the research and application of P.
ginseng in the area of heart disease.

2 Mitochondria Dysfunction in heart
diseases

2.1 Mitochondrial structure and function

Mitochondria are organelles found in almost all eukaryotic
cells and vary in shape from spherical to rod-shaped to reticular
between cell types (Ding et al., 2021). Mitochondria are delineated
by outer and inner membrane (Figure 2A). The outer membrane
forms an envelope that small molecules can freely penetrate.
Because it contains pore-forming proteins, solutes with
molecular masses up to several thousand Daltons are also free
to permeate, but macromolecules are not (Collins et al., 2002;
Pileggi et al., 2021). Morphologically, the inner membrane can be
subdivided into inner boundary membrane and the cristae
membrane. The inner boundary membrane is closely opposite

to the inner membrane and can be regarded as the second envelope
structure. The cristae membrane constitutes majority of the inner
membrane surface and houses a variety of respiratory complexes
containing electron transport chains. In most cases, the cristae
form extended sheets, but it may also form tubules or perforated
sheets (Frey et al., 2002). The intermembrane space between the
inner and outer membranes contains proteins that determine the
structure, organization, and folding of mitochondrial proteins
(Vogel et al., 2006).

2.2 Mitochondria-mediated ROS

The primary function of mitochondria is to generate energy. To
ensure cell survival and homeostasis, mitochondria maintain cellular
metabolism and high energy supply in the form of ATP through
oxidative phosphorylation (OXPHOS) (Zhou and Tian, 2018).
Oxidative phosphorylation occurs within the mitochondrial inner
membrane, where four large multi-subunit enzyme complexes
comprise the electron transport chain, namely, NADH
(Figure 2A): ubiquitin oxidoreductase (complex I), succinate
dehydrogenase (complex II), coenzyme Q: cytochrome c
reductase (complex III), and cytochrome c oxidase (complex IV)
(Ashrafi and Schwarz, 2013). In a series of redox reactions, electrons
pass through complex I and eventually to complex IV. Using the
energy provided in these reactions, ATP synthases can convert ADP
into ATP (Newmeyer and Ferguson-Miller, 2003; Ruprecht et al.,
2019). The maintenance of mitochondrial structure and integrity is
essential for human health. This is especially evident in heart cells
that require high energy levels. Mitochondria make up about 30% of

FIGURE 2
Mitochondria Dysfunction in heart diseases. (A), Mitochondria-mediated ROS, bioenergetics, and apoptosis. (B), Mitochondria mitophagy. (C),
Mitochondria dynamics. Mito, Mitochondria; Cyto-C, Cytochrome C.
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TABLE 1 In vitro and vivo in studies of Panax ginseng and ginsenosides in the application of myocardial ischemia/reperfusion injuries.

Compounds Dosage Model Mechanism Ref

mitochondria-mediated oxidative stress

Rb1 40 mg/kg SD rats Oxidative stress Xia et al. (2011)

Rb1 12.5 μg/mL H9c2 cells Oxidative stress, apoptosis Ai et al. (2015)

Rb2 10, 20 mg/kg Wistar rats Oxidative stress, inflammatory Xue et al. (2020)

Rb3 5, 10, 20 mg/kg SD rats Oxidative stress, microcirculatory Shi et al. (2011)

Rb3 2, 5, 8 μm, 50 mg/kg H9c2, SD rats Oxidative stress Sun et al. (2019)

Rd 50 mg/kg SD rats Oxidative stress Zeng et al. (2015)

Rg1 10, 20, 40, 60 μM H9c2 cells Oxidative stress Li et al. (2017a)

TGS 100, 200 mg/kg guinea pig Oxidative stress Aravinthan et al. (2015)

TGS 20 mg/kg SD rats Oxidative stress Kim and Lee. (2010)

GSE 10 mg/mL SD rats Oxidative stress Maffer Facino et al. (1999)

RGE 250, 500 mg/kg guinea pigs Oxidative stress Lim et al. (2013b)

mitochondria-mediated apoptosis

Rb1 100 μM H9c2 cells Apoptosis Fan et al. (2020)

Rb1 100 μm H9c2 cells Apoptosis Zhang et al. (2019c)

Rb1 2.5, 5, 10, 20, 40 ?M NRCMs Apoptosis Yan et al. (2014)

Rb1 6.25, 25, 100 μmol/L SD rats Apoptosis, mPTP opening Li et al. (2015)

Rb l 20 mg/kg Wistar rats Apoptosis Chen et al. (2002)

Rb1 20 mg/kg Wistar rats Apoptosis Guan et al. (2002)

Rb l 20, 40, 80 mg/kg/d SD rats Apoptosis Li et al. (2020)

Rb1 2.5, 5, 7.5 mg/kg SD rats Apoptosis Cui et al. (2017)

Rb1 40 mg/kg/d SD rats Apoptosis Wang et al. (2008)

Rb1 40 mg/kg SD rats Apoptosis Wu et al. (2011)

Rb1 40 mg/kg SD rats Apoptosis Li et al. (2015)

Rb 3 2, 5 μmol/L H9c2 cells Apoptosis, inflammation Ma et al. (2014)

Rb3 40 μM H9c2 cells Apoptosis Chen et al. (2019)

Rd 50 mg/kg SD rats Apoptosis Wang et al. (2013a)

Re 20, 40, 80 mg/kg Wistar rats Apoptosis Liu et al. (2002)

Rg1 5 mg/kg/h SD rats Apoptosis, energy metabolism Li et al. (2018c)

Rg3 5, 20 mg/kg SD rats Apoptosis, inflammation Zhang et al. (2016)

Rg3 10 mM, 60 mg/kg NRCMs, SD rats Apoptosis Wang et al. (2015)

CK 2, 4, 8 μm H9c2 cells Apoptosis Li et al. (2018b)

CK 10 mg/kg C57BL/6 mice Apoptosis Tsutsumi et al. (2011)

TGS 50 ?g/mL, 50 mg/L HAECs, SD rats Apoptosis Yi et al. (2010)

GSE 80 mg/kg/d SD rats Apoptosis Luo et al. (2015)

GSE 80 mg/kg/d SD rats Apoptosis Luo et al. (2013)

GSE 20, 40, 80 mg/kg/d SD rats Apoptosis Zhou et al. (2011)

Ginsenosides 2 μmol/L H9c2 cells Apoptosis, inflammation Feng et al. (2018)

(Continued on following page)
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FIGURE 3
Role and molecular mechanism of P. ginseng and ginsenosides in the signaling pathway of myocardial ischemia/reperfusion injury. (A), P. ginseng
and ginsenosides regulate apoptosis-related pathways. (B), P. ginseng and ginsenosides regulate oxidative stress-related pathways. (C), P. ginseng and
ginsenosides regulate NF-κB related pathways. During the development of myocardial ischemia/reperfusion injury, a variety of molecular mechanisms
are involved in the regulation, including apoptotic factors (Bcl, Bax, caspase family), oxidative stress-related substances (ROS, NO), etc. Ginsenosides
(Rb1, Rb2, Rg3, Rd, Rg1, Re), CK, TGS and GSE can effectively target different molecular mechanisms, such as inhibiting ROS expression, JNK signaling
pathway, caspase-dependent apoptosis pathway, MAPK signaling pathway, etc. TGS: total ginsenosides; GSE: ginseng extract; CK, Ginsenoside
compound K; GS: ginsenosides; ERK, extracellular signal-regulated kinase; PI3K, Phosphatidylinositol 3-hydroxykinase; JNK, Jun Amino-terminal kinase.

TABLE 1 (Continued) In vitro and vivo in studies of Panax ginseng and ginsenosides in the application of myocardial ischemia/reperfusion injuries.

Compounds Dosage Model Mechanism Ref

Other

Rb1 50 mg/kg/d ICR mice Fatty acid, oxidation Li et al. (2017b)

Rg1 12.5 μM H9c2 cells mitochondrial dynamics Dong et al. (2016)

Rg1 100 ?mol/L H9c2 cells Autophagy Zhang et al. (2012)

Rg1 12.5 μmol/L H9c2 cells Nutritional stress Xu et al. (2019)

Re 30, 100 μm SD rats Hemodynamics functions Lim et al. (2013a)

Re 100 μM HL-1 cells Ubiquitination Sun et al. (2020b)

Rg5 10 ?M, 50 mg/kg NRVMs, ICR Mitochondrial morphological, functional integrity Yang et al. (2017)

TGS 50 mg/L SD rats Energy, metabolism Wang et al. (2012)

TGS: total ginsenosides; GSE: ginseng extract; RGE, red ginseng; CK, Ginsenoside compound K.
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the total volume of heart cells and maintain the mechanical function
of the heart by producing a surprising amount of ATP through
oxidative phosphorylation every day (Hall et al., 2014; Vasquez-
Trincado et al., 2016).

Mitochondrial oxidative metabolism is not limited to the
production of 6–30 kg ATP per day (Allard et al., 1994;
Lopaschuk et al., 2021), but also regulate cellular signaling by
modulating redox status, which is also a major source of ROS
(Figure 2A). ROS can trigger oxidative stress, which affects cell
survival and death (Bhatti et al., 2017; Kiyuna et al., 2018). ROS
refers to all active chemicals derived from oxygen, including free
radical (e.g., O2•-, •OH), as well as non-free radicals (e.g., H2O2)
(Yardeni et al., 2019). Free radical superoxide is produced by the
reaction of excess electrons with molecular oxygen and is
characterized by an initially very active reactive oxygen species.
When extra electrons are acquired, it leads to the formation of other
forms of ROS, such as •OH and H2O2 (Bugger and Pfeil, 2020). One
of the main sources of ROS in eukaryotic cells is produced by
mitochondrial electron transport. In vitro experiments have proven
that electron leakage from the respiratory chain complex I, II and III
leads to the formation of ROS in the mitochondria (Nolfi-Donegan
et al., 2020; Kowalcayk et al., 2021). In vivo studies have shown that
ROS production occurs primarily in the mitochondrial matrix of
complex I or intermembrane space of complex III (Goncalves et al.,
2015; Newmeyer and Ferguson-Miller, 2003). Eleven sites in the
electron transport chain (ETC) and mitochondrial substrate
metabolism have been identified as producing ROS. Some studies
have suggested that mitochondrial reverse electron transport (RET)
is another source of superoxide production (Bugger and Pfeil, 2020).
Superoxide production occurs during leakage of electrons, which are
transferred from complex II to complex I via ubiquinon reducing

NAD+ to NADH. Complex I produced ROS as electrons cycle
forward or backward (Kowalcayk et al., 2021). In addition, ROS
can also be produced by monoamine oxidase and mitochondria
localized NADPH oxidase 4 (Kuroda et al., 2010; Kaludercic et al.,
2013).

Mitochondrial ROS is critical in physiology and pathology
(Angelova and Abramov, 2018). Mitochondria ROS, a byproduct
of normal aerobic metabolism, not only regulates signaling
within mitochondria, but also regulates signaling cascades
outside mitochondria (Bartosz, 2009). For example, ROS can
induce the sensitivity of insulin receptors to autophosphorylation
and activates G-protein-coupled receptors, growth factors,
cytokines, and MAPKs. Various transcription factors, such as
NF-κB, Nrf2, p53, HIF-1α, and calcium-treated proteins, such as
L-type Ca2+ channels, calmodulin, and SERCA2a are also
regulated by ROS (Moris et al., 2017). ROS are associated with
cell damage, necrosis and cell apoptosis due to their direct
oxidizing effects on proteins, lipids and DNA (Ray et al.,
2012). It is worth noting that ROS is involved in cell signal
transduction as a mediator and regulator of vascular function.
The imbalance between ROS and antioxidants under
pathophysiological conditions plays an important role in
endothelial dysfunction and various cardiovascular diseases
(Kim et al., 2016).

2.3 Mitochondria-mediated apoptosis

The roles of mitochondria are more than just life-sustaining,
they are also actively involved in cell death (Zhou and Tian,
2018). Mitochondrial dysfunction caused by DNA damage and

FIGURE 4
Role and molecular mechanism of Panax ginseng and ginsenosides in the signaling pathway of cardiac hypertrophy, heart failure and myocardial
fibrosis. A variety ofmolecularmechanisms are involved in the above regulation, including apoptosis factors (Bcl-2, Bax, caspase family), calcium ions, etc.
Ginsenosides (Rb1, Rg3, Re) and TGS can effectively target different molecular mechanisms, such as the regulation of calcium ion concentration,
inhibition of caspase-dependent apoptosis pathway, endoplasmic reticulum stress, etc. TNF-α, tumor necrosis factor-α; TGS: Total ginsenosides;
GS, ginsenosides; Cyto-C, Cytochrome C.
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other factors leads to apoptotic cell death (Figure 2A).
Mitochondrial fragmentation during apoptosis is considered to
be an irreversible signal in the death cascade (Green and
Kroemer, 2004). Various diseases associated with heart failure,
neurodegeneration, autoimmune and viral infections are
mediated by mitochondria-mediated apoptosis (Schneider
et al., 2019; Faccenda and Campanella, 2020; Baburina et al.,
2021; Steudler et al., 2022).

Programmed cell death or apoptosis is a cellular self-
destruction mechanism involving multiple biological events.
There are a variety of cellular pathways causing apoptosis,
among which the endogenous and exogenous pathways are
more specific (Jeong and Seol, 2008). Endogenous pathways
are controlled by members of the Bcl-2 family that include
pro-apoptotic and anti-apoptotic proteins. Exogenous
pathways include cell surface tumor necrosis factor (TNF)-
associated receptor families such as TNF receptors, CD95/Fas,
and TRAIL death receptors. The process of apoptosis is carried
out by the cysteine protease family. These proteases, which are
called caspases, specifically lyse their substrates on aspartic acid
residues. Caspases are activated by exogenous and/or
endogenous pathways (Adams, 2003).

The effect of mitochondria in cardiac apoptosis has been
well established (Baines, 2009). Under the conditions of
impaired electron transfer chain activity, increased ATP
depletion and oxidative stress, dysfunctional mitochondria
can initiate the internal mechanism of cardiomyocyte
apoptosis (Chistiakov et al., 2018). Mitochondrial outer
membrane integrity during apoptosis is connected with
members of the Bcl-2 protein family (Harris and Thompson,
2000; Adams and Cory, 2001; Kuwana et al., 2005). Bax and Bak
produce cell death via mitochondrial outer membrane
permeabilization, resulting in the arrival of small pro-
apoptotic molecules from the mitochondrial intermembrane

space into the cytoplasm, for example, endonuclease G,
cytochrome c, and apoptosis-inducing factors, which
subsequently trigger caspase-dependent apoptosis pathways
(Jeong and Seol, 2008). The release of cytochrome c further
activates caspase-3 and apoptotic protease activator 1, causing
nuclear DNA fragmentation and cell death (Palaniyandi et al.,
2010). Additionally, dysfunction of mitochondria can lead to
endoplasmic reticulum (ER) stress, which subsequently
activates calpain whose activation markedly regulates the
expression of caspase family (Zuo et al., 2018; Thompson
et al., 2020). For example, caspase-12 activation has been
widely established to be mediated by calpain (Martinez et al.,
2010; An et al., 2019). During cardiac ischemia, a mitochondrial
serine protease, such as high temperature requirement A2, is
also released from the mitochondria to the cytoplasm, where it is
involved in caspase activation and promotes apoptosis
(Chistiakov et al., 2018). Mitochondrial dysfunction
associated with cardiomyopathy are reversed by targeting
apoptotic factors, enzymes and kinases. For example, the
increase of Bcl-2 can act an anti-apoptotic role by regulating
Ca2+ concentration, and possess a protective effect on
myocardial injury (Chen et al., 2001). In short, mitochondrial
dysfunction plays a crucial role in cardiomyocyte apoptosis.

2.4 Mitochondrial dynamics

Mitochondria are highly dynamic organelles that regulate their form,
distribution and function through fusion and fission cycles, which are
known as “mitochondrial dynamics” (Dorn et al., 2015) (Figure 2B).
Disruption of mitochondrial quality control leads to defects in
mitochondrial function, which is likely associated with many
different complex diseases such as cardiovascular and cerebrovascular
diseases, diabetes, cataract and myasthenia (Liesa et al., 2009).

TABLE 2 In vivo and in vitro studies of Panax ginseng and ginsenosides in the application of cardiac hypertrophy, heart failure and myocardial fibrosis.

Compounds Dosage Model Mechanism Ref

Rb1 6.25, 25, 100 mg/kg Cardiac hypertrophy Inflammation Wang et al. (2021)

Ginsenosides 0.1, 1.0, 10 μg/mL Myocytes Cardiomyocyte hypertrophy NHE-1 Guo et al. (2011)

100 mg/kg Heart failure Calcineurin activity

Rb1 -, 20 mg/kg H9c2 cells, ISO-induced apoptosis Apoptosis Wang et al. (2013b)

Rg3 25, 50, 100 mg/kg Heart failure Ca2+ Liu et al. (2021b)

TGS 20 mg/kg Chronic heart failure Haemodynamics, Ca2+ Li et al. (2009)

Re 5, 20 mg/kg ISO-induced myocardial fibrosis Fibrosis, heart failure Wang et al. (2019)

Heart Failure

Rb1 35, 70 mg/kg Cardiac dysfunction and remodeling cardiac hypertrophy, myocardial Zheng et al. (2017)

Rd 50 ug/kg Cardiac dysfunction and remodeling cardiac dysfunction Zhang et al. (2019b)

fibrosis

Rg1 50 mg/kg TAC-induced left ventricular hypertrophy Fibrosis Zhang et al. (2013)

Rh2 5 mg/kg Myocardial fibrosis Fibrosis Lo et al. (2017)

TGS: total ginsenosides; GSE: ginseng extract; ISO, isoproterenol.
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The molecular mechanisms that control the mitochondrial
fusion process are highly regulated. Mitochondrial fusion
involves two processes, in which MFN1 and MFN2 proteins
coordinate the fusion of the mitochondrial outer membrane
and optic atrophy factor 1 (OPA1) mediates the intimal fusion
(Song et al., 2007; Van der bliek et al., 2013; Disatnik et al., 2015).
Mitochondrial fission can also be an important component of
mitochondrial quality control, which is used to remove impaired
mitochondria during oxidative stress and loss of mitochondrial
membrane potential (Twig et al., 2008; Boulton and Caino, 2022).
Multiple proteins work together to control mitochondrial fission,
including fission protein, dynamin-related protein 1 (DRP1)
(Fonseca et al., 2019), mitochondrial fission factor (MFF)
(Toyama et al., 2016), mitochondrial fission protein 1 (FIS1)
(Zhang and Chan, 2007), and the mitochondrial dynamics
proteins (MiD49 and MiD51) (Osellame et al., 2016).

As a major fission promoting protein, DRP1 activity is strictly
regulated. DRP1 lacks mitochondrial target sequence. Therefore,
DRP1 needs to be collected and assembled on the outer
membrane by MFF and FIS1 to form a fission complex (Losóna
et al., 2012; Yu et al., 2017; Pileggi et al., 2021). Multiple post-
translational modifications (PTMs) of DRP1, including
phosphorylation, ubiquitination, S-nitrosylation, palmitation,
SUMOylation and O-GlcNAcylation, play a critical role in the
regulation of mitochondrial dynamics (Jin et al., 2021). For
example, phosphorylation of Cdk1/cyclin B kinase increase
DRP1 fission activity (Chang and Blackstone, 2007; Taguchi

et al., 2007; Song et al., 2021). Fission mitochondrial fragments
can be observed with electron microscopy in many different heart
diseases, including acute myocardial ischemia/reperfusion (MI/R)
injury, myocarditis, stroke, doxorubicin cardiotoxicity,
septicaemia related cardiomyopathy, and diabetic
cardiomyopathy (DCM) (Rovira-Llopis et al., 2017; Hernandez-
Resendiz et al., 2020).

2.5 Mitophagy

Mitophagy is one of the main mechanisms of mitochondrial
quality control (Dombi et al., 2017) (Figure 2C). In healthy cells,
mitophagy is a tightly controlled process (Scherz-Shouval and
Elazar, 2007). In damaged cells, mitochondria can be targeted to
remove damaged mitochondria through mitophagy (Campos et al.,
2016). The autophagy degradation of mitochondria may be due to a
variety of causes, such as basal turnover for recycling, damage and
starvation induced degradation (Youle and Narendra, 2011).
Mitophagy can also be strongly amplified under various
pathological stimulation. The core mechanism of autophagy is
highly conserved in evolution, and signaling cascades mediate
selective autophagic processes (Xie and Klionsky, 2007).

Mitophagy is a special form of autophagy, including putative
kinase protein 1 (PINK1)/Parkin-mediated mitophagy, ubiquitin-
mediated mitophagy, BNIP3/NIX/FUNDC1 pathway, neuronal
mitophagy and mitophagy in vivo (Pankiv et al., 2007; Vives-

FIGURE 5
Role and molecular mechanism of Panax ginseng and ginsenosides in the signaling pathway of diabetic cardiomyopathy. In the development of
diabetic cardiomyopathy, a variety of molecular mechanisms are involved in the regulation, including apoptosis factors (Bcl, Bax, caspase family),
oxidative stress-related substances (ROS), calcium ions, etc. The active components of Panax ginseng include Rb1 and Rg1, as well as GFS, which can
effectively target different molecular mechanisms, such as inhibiting ER stress, regulating Ca2+ concentration, inhibiting ROS, and inhibiting caspase
family-dependent apoptosis pathways. TNF-α, tumor necrosis factor-α; GFS, Ginseng fruit saponin; Cyto-C, Cytochrome C; PARP, poly ADP-ribose
polymerase.
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Bauza et al., 2010; Sarraf et al., 2013; Cai and Jeong, 2020; Zhang
et al., 2021). Phosphatase and tensin (PTEN)-induced PINK1/
Parkin pathway is the most widely characterized mitophagy
pathway (Narendra et al., 2010; Yoo and Jung, 2018; Pileggi
et al., 2021). Mitophagy is also activated during hypoxia by
inducing junction proteins such as FUN14 domain 1 (FUNDC1),
B-cell lymphoma 2 kDa interacting protein 3 (Bnip3) and its analog
NIX. All three belong to mitochondrial outer membrane proteins
(Novak et al., 2010; Chen et al., 2014; Drake et al., 2017).

Mitochondrial fusion, fission, and autophagy jointly maintain
mitochondrial and cellular homeostasis (Vásquez-Trincado et al.,
2016). It is now accepted that mitochondrial fission precedes
autophagy (Ferro et al., 2020). Mitochondrial fission factor Kinetics
Associated protein (Drp) 1 interacts with the mitophagy proteins
Parkin and BNIP3 (Lee et al., 2011). Under hypoxia conditions,
because FUNDC1 is recruited in the mitochondria-associated ER
network, the interaction between FUNDC1 and the ER protein
calnexin is further strengthened, leading to the recruitment of Drp1,
which allows mitochondrial fission and mitophagy (Wu et al., 2016).

2.6 Mitochondria-mediated Ca2+

homeostasis

Mitochondrial homeostasis is the mechanism that maintains the
integrity and function of mitochondria, and mitochondrial Ca2+
homeostasis occupies a prominent position (Zhang et al., 2022). The
homeostasis of Ca2+ concentration is controlled by organelles, for
example, mitochondria, endoplasmic reticulum and extracellular
matrix (Berridge et al., 2000). Mitochondrial Ca2+ homeostasis
exerts a suite of key roles in regulating energy metabolism,
oxygen free radical production, death mechanism, autophagy and
other cellular physiological and pathological processes (Deceypere
et al., 2011; Dietl and Maack, 2017). Therefore, the process of many
diseases, such as cardiovascular and cerebrovascular diseases, are
closely related to mitochondrial Ca2+ homeostasis (Li and Wang,
2014; Qin et al., 2019; Wu et al., 2019).

Mitochondria produce energy through oxidative
phosphorylation, this process that depends on Ca2+
concentration (Viola and Hool, 2014). Mitochondrial Ca2+
produces ATP by activating TCA cyclase and ATP synthase.
Moreover, there is a positive feedback regulatory relationship
between Ca2+ release and ATP production under agonist-
activated cellular conditions (Nichols et al., 1994; Maes et al.,
2000; Betzenhauser et al., 2008; Baughman et al., 2011). Ca2+
can also promote ROS production by stimulating the TCA cycle
and oxidative phosphorylation (Brookes et al., 2004; Modesti et al.,
2021). In addition, Ca2+ has a similar effect by improving
respiratory rate and decreasing substrate concentration (Alderton
et al., 2001). Just as Ca2+ is essential for the production of ROS, ROS
also plays an indispensable role in regulating Ca2+ signaling
pathways (Peng et al., 2022). ROS oxidizes and regulates
ryanodine receptor (RyR), plasma membrane Ca2+-ATPase,
inositol 1,4, 5-triphosphate receptor (IP3R) channels, and other
Ca2+ transporters (Aon et al., 2010).

Mitochondrial Ca2+ overload increases the risk of cell death
(Rizzuto et al., 2008). The inner membrane of mitochondria is
impervious to water under physiological conditions (Kwong and
Molkentin, 2014). Under pathological conditions, mitochondrial
Ca2+ overload resulted in the opening of permeability transition
pore (mPTP). This leading to the release of ions and metabolites,
production of ROS, cessation of oxidative phosphorylation,
followed by ATP hydrolysis, loss of matrix solutes, and
mitochondrial decomposition (Rasola et al., 2010). Apoptosis-
inducing factors and cytochrome c are released from the
membrane gap. These apoptotic factors will activate caspase
apoptosis-related proteins and guide cells into the apoptotic
stage. Therefore, mitochondrial Ca2+ overload is considered
to be one of the pro-apoptotic pathways (Kwong and Reed,
2000). Mitochondrial Ca2+ is considered to be a potential
specific signal regulating mitochondrial autophagy (La Rovere
et al., 2016). Mitochondrial autophagy is associated with
abnormal regulation of Ca2+ in mitochondria-associated
membranes. In addition, interruption of Ca2+ signaling

TABLE 3 In vivo and in vitro studies of Panax ginseng and ginsenosides in the application of diabetic cardiomyopathy.

Compounds Dosage Model Mechanism Ref

Rg1 10, 15, 20 mg/kg STZ-diabetic rat Oxidative stress, apoptosis Yu et al. (2015)

Rb1 50 mg/kg STZ-diabetic rat Oxidative stress, apoptosis Qi et al. (2020)

Rb1 25, 50, 100 mg/kg db/db mice Oxidative stress, inflammation, apoptosis Zhang et al. (2022b)

GFS 80 mg/kg STZ-diabetic rat Oxidative stress, inflammation Sun et al. (2020a)

Rb1 10, 20 mg/kg STZ-diabetic rat Apoptosis Zhang et al. (2021a)

Rg1 10, 15, 20 mg/kg STZ-diabetic rat Apoptosis Yu et al. (2016)

GFS 40 mg/kg STZ-diabetic rat Apoptosis Zhao et al. (2014)

Rg1 15, 30, 60 mol/L myocardial cell Ca2+ Li and Wang. (2014)

Rb1 40 mg/kg C57BL/6 mice Ca2+ Qin et al. (2019)

Rh2 5 mg/kg STZ-diabetic rat Fibrosis Lo et al. (2017)

GFS: ginseng fruit saponin.
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pathway between mitochondria and ER can also induce
autophagy (Cárdenas et al., 2011; Puri et al., 2019).

3 Protective effect of Panax ginseng on
myocardial ischemia/reperfusion (MI/R)
injury based on mitochondrial
dysfunction

Myocardial ischemia/reperfusion (MI/R) injury refers to the
injury of myocardial cells secondary to the recovery of blood
circulation during the treatment of myocardial infarction
(thrombolysis and anticoagulation, etc.), which can lead to
further expansion of the infarct area, arrhythmia, heart failure,
etc (Heusch, 2020). This is the main reason for the high
incidence and mortality of myocardial infarction. The
pathological mechanism of MI/R injury is quite complex, mainly
involving many aspects such as mitochondrial autophagy,
mitochondrial biogenesis, mitochondrial fusion, mitochondrial
division, mitochondrial oxidative stress and mitochondrial
apoptosis (Tombo et al., 2020). Table 1 summarizes the in vitro
and in vivo studies of P. ginseng and ginsenosides in MI/R injury so
far (Table 1).

3.1 Panax ginseng protects MI/R injury
through mitochondria-mediated oxidative
stress

Ginsenoside Rb1: Rb1 pretreatment obviously reduced infarct
size and MDA level after local myocardial ischemia reperfusion, and
enhanced eNOS expression, NO concentration and SOD activity
(Figure 3A; Xia et al., 2011). NO is an important vascular protective
molecule, which is related to myocardial cell function, neutrophil
activation and free radical production (Jones et al., 2003). Therefore,
Rb1 can reduce MI/R injury by reducing oxidative stress (Xia et al.,
2011). MI/R injury is a major factor affecting the prevalence of acute
myocardial infarction (Yellon et al., 2007). Ai et al. (2015) used
hypoxia/reoxygenation (H/R) model to study whether Rb1 has a
protective effect on acute myocardial infarction. H/R-induced injury
increased ROS concentration in H9c2 cardiomyocytes and MDA
levels, a marker of oxidative stress. Rb1 preconditioning effectively
reversed the above injury, suggesting that Rb1 can play a cardiac
protective role by alleviating H/R -induced oxidative stress in
H9c2 cardiomyocytes (Ai et al., 2015).

Ginsenoside Rb2, Rb3: Similarly, Rb3 treatment can also
dramatically decrease MDA level and enhance SOD expression.
This suggests that the cardioprotective properties of Rb3 are related
to antioxidant activity (Shi et al., 2011). Rb2 has been reported to
reduce myocardial superoxide production, mRNA expression levels
and activity of IL-1β, IL-6, and TNF-α. In addition, it can upregulate
the expression of Sirt1 and downregulate the expression of Ac-p53.
These results suggest that ginsenoside Rb2 alleviates MI/R damage
in rats by activating Sirt1 to inhibit oxidative stress and
inflammation (Figure 3A; Xue et al., 2020).

Ginsenoside Rd, Rg1 and Rb3: Nrf2 is a transcription factor
associated with oxidative stress in cardiovascular diseases, and is activated
in a tissue-specificmanner in response toROSproduced bymitochondria

or NADPH oxidase (Cominacini et al., 2015). Nrf2 regulates intracellular
redox homeostasis by synergistically regulating a series of antioxidant
enzymes and proteins (Tsushima et al., 2020). Rd, Rg1 and Rb3 can
alleviate MI/R injury by mediating nuclear factor erythroid 2 associated
factor 2 (Nrf2) -related pathways. Rd alleviates MI/R injury by activating
theNrf-2/HO-1 signaling pathway. After Rd treatment, the levels of LDH
and Cardiac troponin I (cTnI) decreased, while the expressions of
Nrf2 and HO-1 increased (Figure 3B; Zeng et al., 2015). The
beneficial effect of Rg1 on H9c2 cells was related to the activation of
Nrf2/HO-1 and the inhibition of JNKpathway. Rg1 increased the levels of
SOD, GSH-Px and GSH in H9c2 cells, resulting in reduced ROS
expression and reduced mitochondrial membrane depolarization.
Treatment with Rg1 resulted in Nrf2 nuclear translocation and
enhanced HO-1 expression, and reversed H/R-enhanced
phosphorylated-JNK levels (Figures 3A,B; Li et al., 2017). Rb3 reduces
oxidative stress in vivo and in vitro by activating the PERK/Nrf2/
HMOX1 antioxidant signaling pathway. In H9c2 cells,
Rb3 preconditioning inhibited ROS accumulation, enhanced T-AOC,
and partially saved H/R-induced oxidative stress and cardiomyocyte
apoptosis. In MIR/I rats, Rb3 increased total antioxidant levels,
induced PERK phosphorylation and nuclear translocation of
transcription factor Nrf2, and promoted the expression of antioxidant
genes such asHMOX1, thereby reducing the size ofmyocardial infarction
(Sun et al., 2019).

Ginseng extract: In addition to the reported ginseng monomers,
total ginsenosides (TGS), ginseng extract (GSE) and red ginseng extract
(RGE) have also been reported to reduce MI/R injury. TGS protect
myocardial cells from MI/R injury by alleviating oxidative stress. TGS
normalizes levels of MDA, GSH and nitrite, which are oxidative stress
markers. In addition, TGS can significantly inhibit the expression of IL-
1β, IL-6 and NF-κB, and enhance the expression of IL-10 in heart tissue
(Figure 3C; Aravinthan et al., 2015). TGS pretreatment inhibited the
increase of LDH and MDA levels, and inhibited the decrease of GSH
levels, suggesting that it could improve MI/R injury by reducing
oxidative stress (Kim and Lee, 2010). Maffer Facino et al. explored
the effect of GSE on myocardial ischemia injury induced by hyperbaric
oxygen. The results confirmed that GSE could significantly reduceMI/R
injury and extracardiac endothelial function injury caused by ROS
explosion through antioxidant intervention (Maffer Facino et al., 1999).
In addition, RGE may also protect against heart damage by improving
biochemical and oxidative stress. It significantly inhibited LDH, creatine
kinase-MB components and cardiac troponin I, and improved levels of
oxidative stress markers (e.g., MDA and GSH) (Lim et al., 2013b).

3.2 Panax ginseng protects MI/R injury
through mitochondria-mediated apoptosis

Mitochondria-mediated apoptosis plays a crucial role in MI/R
injury. Many studies have reported that ginsenosides or ginseng
extracts relieve MI/R injury through mitochondria-regulated
apoptosis pathway. Rb1 was the most commonly reported, followed
by ginseng extract, Rb3, Rg3 and CK. The signaling pathways involved
mainly include caspase-induced apoptosis pathway, PI3K-Akt signaling
pathway, NF-κB signaling pathway, etc (Figure 3).

Ginsenoside Rb1: In vitro studies confirmed that Rb1 involved in
cardiac protection by inhibiting the mitochondrial apoptosis pathway.
The cardioprotective effect of Rb1 is associated with inhibition ofmPTP
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opening by stabilizing mitochondrial membrane potential (Li et al.,
2016; Zhang et al., 2019). Rb1 also significantly reduced ROS
production, restored mitochondrial transmembrane potential, and
inhibited caspase family-dependent apoptotic pathways (Figure 3A;
Fan et al., 2020; Yan et al., 2014).

It has been confirmed in vivo that cardiomyocytes apoptosis in rats
was observed by transmission electron microscopy. Compared with the
model group, Rb1 significantly inhibited cardiomyocytes apoptosis in
MI/R injury rats. The mechanism may be related to scavenging oxygen
free radicals and blocking the influx of extracellular calcium. ROS and
Ca2+, as important messengers of apoptosis signal transduction, can
directly activate the caspase cascade and induce apoptosis (Chen et al.,
2002). Similarly, Guan et al. (2002) also used transmission electron
microscopy to find apoptotic cells in myocardial ischemic area in MI/R
injury group, and the apoptotic cells were reduced by 2.5 times after
Rb1 treatment (Guan et al., 2002). Transmission electron microscopy
has been used not only for the study of Rb1, but also for the study of Re.
Liu et al. confirmed cardiomyocyte apoptosis by transmission electron
microscopy, in situ nick end labeling (TUNEL) method and light
microscopy. The mechanism of Re inhibiting cardiomyocyte
apoptosis was related to inhibiting the expression of pro-apoptotic
gene Bax and increasing the ratio of Bcl-2/Bax (Table 1; Liu et al., 2002).

Numerous in vivo studies have shown that Rb1 prevents MI/
R-induced cardiomyocytes apoptosis through multiple pathways.
The beneficial effect of Rb1 on cardiomyocytes apoptosis induced by
MI/R injury is connected with the activation of mTOR signaling
pathway. Compared with MI/R group, Rb1 preconditioning
improved cardiac function indicators, reduced cleaved caspase-3
expression, and significantly upregulated the mTOR pathway
(Figure 3A; Li et al., 2020). Rb1 may prevent MI/R injury by
regulating RhoA/ROCK signaling pathways. Activated RhoA/ROCK
can aggravate MI/R injury by mediating myocardial apoptosis,
inflammatory myocardial remodeling, and myocardial fibrosis.
Rb1 preconditioning directly binds to RhoA, inhibits the activation
of RhoA/ROCK1 signaling pathway, and restores ATP production
during MI/R injury (Cui et al., 2017). Similar to Rb1, the mechanism of
Rg1 to MI/R injury is also through binding with RhoA, inhibiting
myocardial apoptosis and regulating energymetabolism (Li et al., 2018).

The protective effect of Rb1 on MI/R injury may also be
completed by mediating PI3K/Akt signaling pathway.
Rb1 pretreatment significantly decreased infarct size and
increased Akt phosphorylated expression. The action of Rb1 was
cancelled by the PI3K inhibitor wortmannin (Wang et al., 2008; Wu
et al., 2011). It has been indicated that Rb1 prevents H/R-induced
H9c2 cardiomyocyte apoptosis through PI3K/Akt/Nrf2/HO-
1 signaling pathway (Ai et al., 2015). The p38 mitogen activated
protein kinase (MAPK) pathway was also participate in the
cardioprotective effect of Rb1. Compared with the model group,
Rb1 reduced myocardial infarction size, and caspase-3 activity,
TNF-α levels, and phosphorylated p38 MAPK levels were also
reduced by Rb1 pretreatment (Figure 3A; Li and Ji, 2018).

Ginsenoside Rb3: In vitro studies have shown that Rb3 inhibits
ROS production and mediates the proteins expression associated
with the NF-κB signaling pathway in oxygen-glucose deprivation
reperfusion (OGD-rep) MI/R models. The protective effect of
Rb3 on MI/R damage was realized by inhibiting the NF-κB
pathway mediated by JNK (Figure 3A; Ma et al., 2014). Chen
et al. (2019) demonstrated that Rb3 treatment upregulates the

expression of mitochondrial deacetylase sirtuin 3 (Sirt 3),
peroxidation-activating receptor α (PPARα), and key enzymes
related to fatty acid β-oxidation. These results suggest that
Rb3 can maintain mitochondrial membrane integrity and inhibit
cell apoptosis (Chen et al., 2019).

Ginsenoside Rg3:After treatment with Rg3, the activity of Bcl-2
was enhanced, while the activities of Bax, caspase-3 and
inflammation-related factors (TNF-α and IL-1β) were decreased.
This suggests that the cardioprotective effect of Rg3 is related to its
anti-apoptotic and anti-inflammatory effects (Zhang et al., 2016).
Wang et al. (2015) also demonstrated cardioprotective effects of
Rg3 onMI/R-induced apoptosis mediated by the Bcl-2/Bax pathway
and Akt/eNOS signaling pathway in hypoxia and reoxygen injury
models and MI/R models. Rg3 inhibited the expression of caspase-3
and caspase-9, increased the levels of p-Akt, eNOS and the ratio of
Bcl-2/Bax, and reduced the apoptosis of neonatal rat cardiomyocytes
(Wang et al., 2015). Similar to the mechanism of action of Rg3, Rd
mediates cardiac protection against MI/R-induced apoptosis
through a mito-apoptotic pathway (Figure 3A; Wang et al., 2013).

Ginsenoside compound K (CK): A novel ginsenoside
metabolite, CK, is formed by gut bacteria. Previous studies have
confirmed that CK inhibits cardiomyocyte apoptosis mainly by
activating the Bcl-2/Bax pathway. In H9c2 cells, CK
preconditioning alleviates ROS accumulation, restores
mitochondrial membrane potential, and inhibits autophagy
regulated apoptosis (Li et al., 2018a). In addition, PI3K-Akt
signaling pathway is also participate in the cardioprotective effect
of CK on MI/R injury. Compared with the control group, CK
significantly increased protein kinase B (Akt) and eNOS
activities. The cardioprotective effect of CK was blocked by the
PI3K inhibitor wortmannin (Figure 3A; Tsutsumi et al., 2011).

Ginseng extract (GSE): Total ginsenosides have been reported to
significantly increase coronary perfusion flow in MI/R rats in a dose-
dependent manner by activating the PI3K/Akt-eNOS signaling
pathway (Yi et al., 2010). Ginseng extract showed similar effects,
significantly reducing infarct size, increasing serum NO production,
and inhibiting serum creatine kinase and lactate dehydrogenase
activities. This may be connected with the activation of GR/ER,
PI3K-Akt-eNOS cascade and ERK1/2 signaling pathway (Figure 3A;
Zhou et al., 2011). Ginseng extract also showed the above effects in rat
model of acute MI/R injury (Luo et al., 2013). Luo et al. (2015) reported
that long-term ingestion of ginseng extract can also reduce acute MI/
R-induced heart damage in middle-aged and elderly rats by activating
Akt/eNOS pathway (Luo et al., 2015). Feng et al. (2018) discussed the
protective effects of protopanaxadiol (S/R), protopanaxatriol, Rh2, Rg3,
Rh1 and Rg2 on H/R injury of H9c2 cardiomyocytes. The S
enantiomers of the six ginsenosides targeted H/R cardiomyocyte
apoptosis more effectively than the R enantiomers. Ginsenosides
alleviate H/R-induced apoptosis by activating AMPK and
inactivating JNK signaling pathways (Feng et al., 2018).

3.3 Panax ginseng protects MI/R injury
through mitochondrial autophagy,
mitochondrial dynamics, and other aspects

Ginsenoside Rg1 (Mitochondrial autophagy): The
pharmacological effect of ginsenosides on myocardial autophagy has
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also been reported. After treatment with Rg1, the activities of AMPKα
and mTOR were reversed, and the expressions of LC3B-2 and Beclin-1
were decreased. Rg1 prevents autophagosome formation due to ATP
production and elimination of oxidative stress (Zhang et al., 2012).

Ginsenoside Rb1 and Rg1 (Mitochondrial dynamics):
Mitochondrial dysfunction is a prominent feature of MI/R injury.
In vitro and in vivo studies have confirmed that Rb1 prevents
succinic acid accumulation by countering mitochondrial fatty
acid oxidation and improves cell metabolic homeostasis, thereby
reducing apoptosis during H/R injury (Li Q. et al., 2017). Ginseng
has been reported to protect cardiomyocytes damage by regulating
mitochondrial dynamics (fusion/fission). In H/R cardiomyocyte
model in vitro, Rg1 regulates dysregulation of glutamate
dehydrogenase, significantly increases mitochondrial length,
reduces the number of mitochondrial fragment cells, ultimately
prevents mitochondrial dynamic imbalance after H/R injury. The
effect of Rg1 was reversed after MFN2 knockout. These results
suggest that Rg1 regulates glutamate dehydrogenase and MFN2 to
sustain mitochondrial dynamics and ultimately protect
cardiomyocytes (Table 1; Dong et al., 2016).

Other aspects (Rg1 and Re): Rg1 inhibits cell death, which is
caused by glucose competition, by rescuing ATP levels and
mitochondrial membrane potential. In vivo studies confirmed
that Rg1 increased the expression of aldolase, p-AMPK, and
PINK1 in the hearts of hungry mice. Moreover, it may limit
nutritional stress-induced H9c2 cell damage by controlling the
aldolase/AMP activated protein kinase/PINK1 pathway (Xu et al.,
2019). Ginsenoside Re had a significant protective effect on MI/
R-induced rat hearts, which was manifested as dramatically
preventing the decrease of hemodynamic parameters, improving
electrocardiogram abnormalities, and inhibiting the level of
inflammation marker TNF-α (Lim et al., 2013a). In vitro,
H/R-induced myocardial damage was mitigated by Re, which
may be related to inhibition of HIF-1α ubiquitination (Sun H.
et al., 2020). The cardioprotective effect of Rg5 is regulated by
mitochondrial hexokinase-II (HK-II) and dynamin-related protein
1 (Drp1). The mechanism of the cardioprotective effect of Rg5 may
be to prevent apoptosis by promoting the mitochondrial binding of
HK-II and reducing the recruitment of Drp1 to mitochondria
(Table 1; Yang et al., 2017). The cardioprotective mechanism of
total ginsenosides is related to the activation of tricarboxylic acid
(TCA) circulating protein and improvement of myocardial energy
metabolism. Energy metabolism-related proteins (e.g., LDHB and
ODP-2) were improved by total ginsenosides treatment in MI/
R-damaged heart tissue (Wang et al., 2012).

4 Protective effect of Panax ginseng on
cardiac hypertrophy, heart failure and
myocardial fibrosis

Myocardial hypertrophy is a risk factor for adverse reactions in
patients with cardiovascular diseases. Persistent myocardial
hypertrophy is a multifactorial clinical syndrome and a major
cause of heart failure (Ho and Wang, 2021). Heart failure is a
common and complex clinical syndrome, which is the end-stage
manifestation of heart failure in many cardiovascular diseases and
the leading cause of death (Elgendy et al., 2019). Inflammation,

hypertrophy, apoptosis and fibrosis of cardiomyocytes are multiple
factors that lead to heart failure (Figure 4). Table 2 summarizes the
in vitro and in vivo studies of P. ginseng and ginsenosides in cardiac
hypertrophy, heart failure and myocardial fibrosis so far (Table 2).

4.1 Protective effect of Panax ginseng on
cardiac hypertrophy

P. ginseng is widely used in China to treat cardiovascular disease.
The pharmacological significance of Rb1 on improving myocardial
hypertrophy was investigated. In vivo, Rb1 reduced angiotensin II
induced myocardial hypertrophy, heart inflammation, and systemic
inflammation. Mitochondrial function is maintained. In
macrophages, Rb1 reduces the phosphorylation of mitogen
activated protein kinases (MAPKs) and mitogen activated protein
kinases 1/2 (MEK1/2) as well as the production of IL-1β, IL-6, and
TNF. The effect of Rb1 in preventing myocardial hypertrophy may
be through inhibition of inflammatory mechanisms (Wang et al.,
2021). In addition to ginsenoside monomers, anti-myocardial
hypertrophy effects of ginsenosides on cardiomyocytes have also
been reported. Ginsenosides significantly inhibited NHE-1 activity,
intracellular concentrations of Na2+ and Ca2+, and calcineurin
activity in a concentration-dependent manner. The results
showed that ginsenosides exerts strong anti-hypertrophy effects
by inhibiting NHE-1 dependent calcineurin activation (Figure 4;
Guo et al., 2011). At present, there are few reports about the anti-
myocardial hypertrophy effect of P. ginseng, and it is very potential
to explore the effective active ingredients of P. ginseng for this effect.

4.2 Protective effect of Panax ginseng on
heart failure and myocardial fibrosis

Ginsenoside Rg3 and total ginsenosides (Heart failure): Ca2+

homeostasis plays a pivotal role in heart failure. Rg3 reversed
isoproterenol-induced Ca2+ levels in HL-1 cell hypertrophy
models. The cardioprotective effect of Rg3 was cancelled after
SUMO1 gene knockout in mice. In addition, mutations at the
SERCA2a SUMOylation site block the active role of Rg3 in Ca2+

cycling and are associated with ER stress and ROS production (Liu
et al., 2021). In the isoproterenol-induced chronic heart failure rat
model, the left ventricular peak pressure (LVSP) and the maximum
increase rate of left ventricular isovolumic systolic pressure (+dp/
dtmax) are significantly increased in the total ginsenosides (TGS)
and berberine combined group, while the left ventricular end-
diastolic pressure (LVEDP), plasma BNP and cardiomyocyte Ca2+

concentrations are significantly decreased. In conclusion, total
ginsenosides can improve hemodynamic abnormalities, plasma
BNP and calcium overload in cardiomyocytes in chronic heart
failure rats (Figure 4; Li et al., 2009).

Ginsenoside Rb1 and other ginsenosides (Heart failure):
Apoptosis induced by caspase family proteins is a typical
mitochondria-dependent pathway. In vitro and in vivo studies
have confirmed that PKA and caspase-9 pathways may be
referred to the effect of Rb1 on cardiomyocyte apoptosis
(Figure 4; Wang et al., 2013). The heart failure effects of
ginsenosides on cardiomyocytes have also been reported.
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Ginsenosides significantly inhibited NHE-1 activity, which is a key
factor in myocardial hypertrophy, myocardial remodeling, and heart
failure, suggesting that ginsenosides also contributes to anti-heart
failure effects (Guo et al., 2011).

Ginsenoside Re (Myocardial fibrosis): According to previous
reports, there are few studies on the effect of P. ginseng and ginsenosides
onmyocardial fibrosis,Wang et al. (2019) reported that after 4 weeks of
Re treatment, changes in left ventricular systolic blood pressure, left
ventricular end-diastolic blood pressure, and positive and negative
extremes of the first derivative of left ventricular pressure were
improved. These results suggest that Re possess a beneficial effect on
protecting myocardial fibrosis and heart failure in rats. Compared with
the model group, Re significantly reduced the level of transforming
growth factors-β1 (TGF-β1) in serum, and the expression of Smad3 and
type I collagen in heart tissue. The results showed that Re can be
mediated TGF-β1/Smad3 pathway to improve the isopropylmyocardial
fibrosis induced by epinephrine and heart failure (Figure 4; Wang et al.,
2019).

Ginsenoside Rb1 and Rd (Myocardial fibrosis): Rb1 (70mg/kg)
decreased cardiac hypertrophy and myocardial fibrosis by attenuating the
levels of β-myosin heavy chain (β-MHC), atrial natriuretic factor (ANF),
periostin, collagen I, Angiotensin II (Ang II), Angiotensin converting
enzyme (ACE) and Ang II type 1 (AT1) receptor and reducing left
ventricular (LV) weight/heart weight ratio and cardiomyocyte cross-
sectional area. Rb1 may inhibit TGF-β1/Smad and ERK signaling
pathways, activate Akt pathway, restore cardiac/mitochondrial
function, and improve myocardial fibrosis (Figure 4; Zheng et al.,
2017). Similar to the mechanism of action of Rb1, Rd can significantly
improve the systolic dysfunction, fibrosis, myocardial hypertrophy,
inflammation and oxidative stress caused by pressure load in mice.
The inhibition of Akt, calcineurin A, ERK1/2 and TGF-β1 signaling
pathways in the heart may be the mechanism of Rd to improve cardiac
dysfunction and remodeling induced by pressure load (Zhang et al., 2019).

Ginsenoside Rg1 and Rh2 (Myocardial fibrosis): In a rat model
of TAC-induced left ventricular hypertrophy, Rg1 significantly
reduced TAC-induced myocardial fibrosis and left ventricular
hypertrophy. The cardioprotective effect of Rg1 was associated
with the activation of phosphorylated Akt and the inhibition of
p38MAPK (Table 2; Zhang et al., 2013). Lo et al. (2017) explored the
effect of Rh2 on myocardial fibrosis in vivo and in vitro. In vivo
studies have shown that Rh2 can significantly reduce the heart
weight ratio and myocardial fibrosis in STZ-diabetic rats, and has a
protective effect on cardiac function. In cardiomyocytes,
Rh2 reduced the levels of fibrotic signaling proteins, including
signal sensor and activator of transcription 3 (STAT3),
connective tissue growth factor (CCN2), and fibronectin. These
effects can be reversed by PPARδ specific siRNA, so Rh2 may
improve cardiac function and fibrosis by increasing PPARδ
signaling. In conclusion, Rh2 was suitable for development as an
alternative treatment for cardiac fibrosis (Lo et al., 2017).

5 Protective effect of Panax ginseng on
diabetic cardiomyopathy (DCM) based
on mitochondrial dysfunction

Diabetic cardiomyopathy (DCM) is a disease in which the
myocardial functions and structures abnormally in people with

diabetes in the absence of other heart disease risk factors,
including coronary artery disease, hypertension and valvular
disease (Huang et al., 2017). DCM is distinguished by left
ventricular hypertrophy, myocardial fibrosis, and impaired left
ventricular systolic/diastolic function, ultimately leading to heart
failure (Tian et al., 2017). The process of DCM involves diversified
mechanisms (Figure 5), including but not limited to oxidative stress,
endoplasmic reticulum stress, myocardial apoptosis, mitophagy,
impaired calcium processing, myocardial insulin resistance,
endothelial dysfunction, mitochondrial dysfunction, etc (Liu
et al., 2014; Delbridge et al., 2017). Table 3 summarizes the
in vitro and in vivo studies of P. ginseng and ginsenosides in
DCM so far (Table 3).

5.1 Panax ginseng protects DCM through
mitochondria-mediated oxidative stress and
apoptosis

Oxidative stress is considered to be a key mechanism of DCM
induced by diabetes (Hayyan et al., 2016). Mitochondria are the
main source of excess superoxide production (Jiang et al., 2019).
Excess ROS results in increased oxidative stress, as well as protein,
lipid, and DNA damage in cardiomyocytes (Kayama et al., 2015).
Apoptosis is one of the crucial mechanisms of myocardial cell injury
in DCM. Apoptosis induced by oxidative stress may occur through
mitochondrial, death receptor or endoplasmic reticulum stress
pathways (Green and Kroemer, 1998; Bäcklund et al., 2004;
Voulgari et al., 2010).

Ginsenoside Rg1: Previous studies have found that Rg1 protects
the myocardium from DCM damage, which may be related to its
antioxidant and anti-apoptotic effects (Yu et al., 2015). In diabetic rat
model, Rg1 treatment significantly decreased serum and myocardial
malondialdehyde levels, and raised superoxide dismutase, catalase and
glutathione peroxidase levels compared with normal group. This
indicates that Rg1 has a strong ability to reduce the oxidative
damage caused by DCM. Rg1 may induce GSH biosynthesis through
upregulation of rate-limiting enzymes, thereby enhancing antioxidant
activity. TUNEL staining showed that after Rg1 pretreatment for
12 weeks, the apoptosis of rat cardiomyocytes decreased, which may
be related to the decrease of caspase-3 level and the increase of Bcl-xL
level (Yu et al., 2015). Yu et al. (2016) reported that Rg1 significantly
reduced serum cTnI levels, improved cardiac function, and reduced
cardiomyocytes damage and apoptosis. The expression of GRP78,
CHOP, and caspase-12 proteins decreased, confirming that
Rg1 alleviates diabetic myocardial injury by reducing ER stress
apoptosis (Table3; Yu et al., 2016). Endoplasmic reticulum and
mitochondria are both dynamic organelles (Lepretti et al., 2018). ER
andmitochondria cooperate in apoptosis signaling through close contact
sites calledmitochondria-associated ERmembranes (MAMs), which are
critical for the regulation of cell homeostasis (Moltedo et al., 2019).
However, there is no evidence to confirm the effect of Rg1 or other
ginsenosides on MAMs.

Ginsenoside Rb1: The mechanism of Rb1 protecting DCM was
similar to previous reports (Yan et al., 2014; Fan et al., 2020), that is
Rb1 increased mitochondrial biogenesis and reduced the increase of
mitochondrial ROS, thus reducing cell apoptosis (Figure 5; Qi et al.,
2020). In addition to mitochondria-associated oxidative stress pathways,
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Rb1may also prevent DCMby delaying the adipokine pathway and thus
activating the antioxidant pathway. Zhang et al. (2022) reported that
Rb1 treatment improved serum levels of inflammation-related factors
(IL-1β, TNF-α, MCP-1, IL-6, and CRP) and reduced lipid accumulation
in diabetic mice after 12 weeks administration. Improvements in cardiac
function as well as reductions in oxidative stress, fibrosis, and apoptosis
were observed in the heart (Zhang et al., 2022). Hyperglycemia-induced
apoptosis of cardiomyocytes is considered to be an important
mechanism of DCM (Huynh et al., 2014). Zhang et al. demonstrated
that Rb1 has a protective effect on DCM by inhibiting caspase family
proteins and NF⁃κB pathway (Zhang et al., 2021), which is similar to the
protective effect of Rb1 on MI/R (Figure 3C; Fan et al., 2020; Yan et al.,
2014). NF⁃κB is a key factor in triggering inflammatory response and
regulating apoptotic response, and its phosphorylation and acetylation
are indicative of mitochondria-dependent apoptotic signals (Guan et al.,
2018). The expression level of silent information regulator 1 (Sirt1)
increased significantly after Rb1 stimulation, suggesting that it can
activate Sirt1 (Zhang et al., 2021). Sirt1 is an NAD+ dependent
protein-modifying enzyme, which can inhibit cardiomyocyte
apoptosis and participate in cell metabolism and mitochondrial
function (Zhang et al., 2021).

Ginseng fruit saponin (GFS): Interestingly, the combination of
GFS and total flavonoids ofmurraya paniculate leaves also contributed to
the cardioprotective effect (Figure 5). It obviously enhanced the level of
SODandGSH-Px, and decreased the activities ofMDA, suggesting that it
could protect DCM by improving oxidative stress damage induced by
high sugar. In addition, the activities of IL-6 and TNF-α were also
decreased (Sun et al., 2020). Another study showed that GFS treatment
significantly increased the level of biochemical indicators (TC, TG, LDH),
improved cardiomyocyte abnormalities, and reduced cell apoptosis and
caspase-12 protein expression. These results suggest that GFS play a
protective effect on DCM by inhibiting endoplasmic reticulum stress-
induced apoptosis (Zhao et al., 2014). C/EBP homologous protein
(CHOP) is the first key molecule in endoplasmic reticulum stress
mediated apoptosis, which regulates the increase of ROS and Ca2+

concentrations. CHOP reduced the anti-apoptotic expression of Bcl-2
and Bcl-xl, and enhanced the expression of pro-apoptotic proteins, such
as Bax. IRE1 binds to TNF receptor-related factor 2 (TRAF2) to trigger
caspase-12, which activates apoptotic factor caspase-3, and finally
activates JNK signaling pathway to play the role of apoptosis
(Martucciello et al., 2020).

To sum up, to the best of our knowledge, there are few literature
on the protective effects of P. ginseng and ginsenosides on DCM, and
the studies mainly focus on Rb1, Rg1 and GFS. In the future, the
beneficial effects of P. ginseng and ginsenosides on DCM should be
further expanded or explored.

5.2 Panax ginseng protects against DCM
through regulation of mitochondria-
mediated Ca2+ homeostasis, and improved
myocardial fibrosis

Ginsenoside Rb1 and Rg1: In addition to protecting DCM
through mitochondria-mediated oxidative stress, apoptosis and
endoplasmic reticulum stress pathways, Rb1 also plays this role by
regulating calcium signaling pathways. Qin et al. found that feeding
Rb1 for 8 weeks significantly improved diabetes-induced cardiac

dysfunction and abnormal calcium signaling in cardiomyocytes.
Rb1 reduces Ca2+ leakage caused by overactivated ryanodine receptor
2 (RyR2) and increases Ca2+ uptake by sarcoplasmic reticulum Ca2+-
ATPase 2a (SERCA 2a). In conclusion, Rb1 can not only enhance energy
metabolism and regulate calcium processing protein, but also directly
inhibit RyR2 activity and regulate calcium signal (Figure 5; Qin et al.,
2019). The transfer of Ca2+ from the sarcoplasmic reticulum to
mitochondria via RyR2 is thought to play a key role in metabolic
requirements. The transferred Ca2+ enters the mitochondria mainly
through the mitochondrial Ca2+ single-transporter (MCU) complex
(Hamilton et al., 2020). The increased activity of RyR2 disrupted the
homeostasis of mito-Ca2+ and raised the emission of mito-ROS. This in
turn exacerbates RyR2 leaks and contributing to cardiac pathologies
(Tow et al., 2022). Rg1 was found to have a protective effect against
DCM. Compared with the model group, Rg1 (30 and 60mol/L)
significantly improved cardiomyocyte hypertrophy and inhibited
hyperglycemic-induced calcium transient increase, suggesting that the
protective effect of Rg1 on hyperglycemic-induced myocardial
hypertrophy is related to the inhibition of intracellular calcium
overload (Li and Wang, 2014). There are few reports on the
beneficial effect of ginsenosides on DCM. Previous studies mainly
focused on Rb1 and Rg1, and the protective effects of other
ginsenosides on DCM are worthy of further study.

Ginsenoside Rh2: Rh2 significantly improved cardiac function and
myocardial fibrosis indexes in streptozotocin induced diabetic rats. The
effect of Rh2 was reversed by GSK0660 of the oxidase body proliferator-
activated receptor (PPARδ), hinting that Rh2 may improve cardiac
function and fibrosis by increasing the PPARδ signaling pathway (Lo
et al., 2017). The expression of PPARδ was decreased in the heart of
diabetic cardiomyopathy rats (Lee et al., 2010). Decreased PPARδ
expression in heart cells is associated with ROS production (Chen
et al., 2013). Lo et al. also investigated the superoxide levels of
H9c2 cells and found that the superoxide levels of H9c2 cells cultured
in a high glucose medium were significantly elevated. After treatment
with Rh2 and PPARδ, superoxide levels were reduced (Lo et al., 2017).
Activation of PPARδ also reduced oxidative stress-induced apoptosis in
H9c2 cells (Pesant et al., 2006). Therefore, Rh2 activates PPARδ and
inhibits oxidative stress, which may be one of the main mechanisms to
reduce myocardial fibrosis in diabetic rats (Table 3).

6 Conclusion and future perspectives

P. ginseng and ginsenosides have attracted research interest due
to their extensive pharmacological actions and medical applications.
The protective mechanisms of P. ginseng and ginsenosides against
various heart diseases mainly focus on restoring mitochondrial
membrane potential, regulating Ca2+ concentration, and
inhibiting caspase-dependent apoptosis pathway. For example,
ginsenosides Rb1, Rg1, Rb3, CK and GSE play a protective role
in myocardial injury by inhibiting ROS expression and restoring
mitochondrial membrane potential, thus maintaining
mitochondrial integrity. Rb1, Rg3 and Rd protect against
myocardial injury by inhibiting the mitochondrial dependent
apoptotic pathway, which is dominated by the caspase-dependent
apoptotic pathway. Rb1 and Rg1 also play a role in protecting
myocardial injury by regulating mitochondrial dependent Ca2+

leakage or Ca2+ transient. At present, P. ginseng and ginsenosides
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mainly targets mitochondrial membrane potential and Bcl-2/Bax
protein related to mitochondrial apoptosis in alleviating heart
disease. Some studies have reported that ginsenoside Rg5 targeted
the mitochondrial fission protein DRP1, and Rg1 targeted the
mitophagy protein PINK1 to protect against heart injury.
Mitophagy protein and fission protein may be new targets of P.
ginseng and ginsenosides in the treatment of various heart diseases.
Previously, formulas containing ginsenoside components have been
studied in clinical practice, but the study of ginsenosides to alleviate
heart disease is still in the preclinical research stage, and relevant
clinical studies are limited. The clinical research of ginsenosides in
the field of cardiovascular diseases is the future research direction.
This article reviews the related research of P. ginseng and
ginsenosides in alleviating various heart diseases (such as
myocardial ischemia/reperfusion, diabetic cardiomyopathy), in
order to provide theoretical basis for clinical research.
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