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Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important
member of the protein tyrosine phosphatase family, can regulate various
signaling pathways and biological processes by dephosphorylating receptor
protein tyrosine kinases. Accumulating evidence has demonstrated that
PTPN2 is involved in the occurrence and development of atherosclerotic
cardiovascular disease. Recently, it has been reported that PTPN2 exerts an
anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte
proliferation and migration, macrophage polarization, T cell polarization,
autophagy, pyroptosis, and insulin resistance. In this review, we summarize the
latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to
provide a rationale for better future research and therapeutic interventions.

KEYWORDS

cardiovascular disease, atherosclerosis, PTPN2, inflammatory response, inflammatory
cytokines

1 Introduction

Cardiovascular disease (CVD) has gradually developed into a common disease
threatening human health. The number of people dying from CVD ranks first among all
causes of death worldwide every year (Barquera et al., 2015). Atherosclerosis (As) is the
pathological basis of most CVD such as coronary heart disease, cerebral infarction, and
peripheral vascular disease (Ouimet et al., 2019). As is a chronic vascular inflammatory
disease, its main pathological feature is lipid deposition in subendothelial space of large- and
medium-sized arteries, eventually forming atherosclerotic plaques (Zhu et al., 2018). The
formation of atherosclerotic lesions involves the interaction of various cells with cytokines,
and the occurrence of inflammatory response exerts a significant effect in promoting the
progression of atherosclerosis (Karunakaran et al., 2021). Although statins have obtained
considerable improvement in the clinical outcomes of CVD patients, the residual
cardiovascular risk is still high (Okuyama et al., 2015). Therefore, a better understanding
of the role of key molecules in the pathogenesis of atherosclerosis is important for developing
new promising strategies for the prevention and treatment of atherosclerotic CVD.

Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of
the protein tyrosine phosphatase (PTPs) family, which was first named T-cell protein-
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tyrosine phosphatase (TC-PTP) because it was first discovered in
T cells (Cool et al., 1989). PTPN2 is an intracellular PTP that
consists of a PTP domain and a C-terminus domain (Hongdusit and
Fox, 2021). As a dephosphorylation enzyme, PTPN2 can negatively
regulate many signaling pathways through dephosphorylation. The
biggest manifestation is that PTPN2 can inhibit multiple
inflammatory signaling pathways (Meng et al., 2019). In addition,
PTPN2 can also regulate many biological processes, including
hematopoiesis, cell proliferation, and cell differentiation (Hsieh
et al., 2020). Inflammatory response run through all stages of
atherosclerosis, such as the formation and rupture of
atherosclerotic plaques (Zhu et al., 2018). PTPN2 regulates a
variety of pathophysiological processes involving atherosclerosis,
including endothelial injury, monocyte proliferation and migration,
macrophage polarization, T cell polarization, autophagy, pyroptosis,
and insulin resistance (L. Nie et al., 2013; Spalinger et al., 2018; Yang
et al., 2022; You et al., 2015). In addition, PTPN2 expression is
significantly downregulated in high cholesterol-induced apoE−/−

mouse atherosclerotic lesions (Hu et al., 2020).
In this review, we summarized current studies regarding the

protective effect and mechanism of PTPN2 in the progression of
atherosclerosis-related diseases, whichmay prove the potential value
of PTPN2 in the treatment of atherosclerosis and a basis for further
investigation on PTPN2 and atherosclerosis.

2 Structure of PTPN2

The structure of PTPs contains a conserved catalytic domain
and N- or C-terminus non-catalytic fragments (Sharma et al., 2021).
PTPs regulate a variety of biological processes such as cell growth,
proliferation, migration, differentiation, and apoptosis by catalyzing
the dephosphorylation of protein tyrosine phosphorylated residues
(Tonks and Neel, 1996). PTPs include two types of members,
receptor-like PTP and intracellular PTP (Du and Grandis, 2015).
PTPN2 is a typical intracellular PTP, which was first discovered in
human T cells and cloned from the T cell cDNA library (Cool et al.,
1989). The human PTPN2 gene is mapped on the 18P11.2-
P11.3 region (HG19:CHR18:12,785,481-12,884,334), and the
mouse PTPN2 gene is also mapped on the homologous region of
chromosome 18 (MM9: CHR18: 67825155-67884275) (Sakaguchi
et al., 1992). There are four isoforms of PTPN2 (PTP-S1, PTP-S2,
PTP-S3 and PTP-S4) in rat cells, of which PTP-S2 (TC45) and PTP-
S4 (TC48) are the predominant forms (Chen et al., 2021). In rat
DNA, 57 bases (19 amino acids) at the 5′end of exon E were excised
using an internal receptor site consistent with the eukaryotic
3′splicer site, resulting in the PTP-S1 and PTP-S3.3′splicer site
sequence AG, which is highly conserved in rat DNA and lost in
human DNA. Thus, there are only two isoforms in human cells:
TC45 (PTP-S2) and TC48 (PTP-S4) (Reddy and Swarup, 1995).
Because the mRNA of PTPN2 is selectively spliced, the C-terminal
regions of TC45 and TC48 differ in size, hydrophobicity, and
function. Three transcripts composed of 10 exons encode a
product of 387 amino acids (aa), resulting in a 45.2 kDa protein,
which is human cell TC45 (NM_080422.2) (Muppirala, Gupta and
Swarup, 2013). A unique exon at the 3′terminal of TC45 encodes
6 hydrophilic amino acids, resulting in TC45 lacking a hydrophobic
fragment (residues 382-418). In addition, the C- terminal of PTPN2

(residues 350-358 and 377-381) contains a Nuclear localization
sequence (NLS), so TC45 localizes to the nucleus (Tillmann
et al., 1994). TC48(NM_002828.3) is a 415aa product encoded by
nine exons, producing a 48.5 kDa protein (Muppirala et al., 2013).
The alternative splicing event results in the formation of a transcript
of TC48 with the penultimate exon and 3′intron extension.
Therefore, 6 amino acids at the C- terminal of TC45 were
replaced by 34 amino acids in TC48 comprising 19 hydrophobic
residues. So TC48 is localized to the endoplasmic reticulum and
requires detergent treatment for extraction (Cool et al., 1989;
Lorenzen et al., 1995). In mouse cells, TC45(NM_008977.3)
consists of 10 exons encoding a 382 AA product to produce a
44.5 kDa protein, and TC48(NM_001127177.1) consists of 9 exons
encoding a 406 AA product to produce a 47.4 kDa protein
(Muppirala et al., 2013). The residue sequence conservation of
mouse and human TC45 is 78.5%, while that of TC48 is 73.6%
(Muppirala et al., 2013). The conserved catalytic domain of
PTPN2 plays a physiological role in its family, and its C-
terminal fragment may interact with other proteins and have
targeted functions. The C- terminal domain of PTPN2 is of great
importance to its localization and regulatory function because the
autoregulatory sites in the non-catalytic fragment of PTPN2 C-
terminal have reversible intramolecular interactions with the
catalytic domain to regulate the activity of PTPN2(Ylilauri et al.,
2013). Some studies have determined the crystal structure of
PTPN2 and found that PTPN2 has a helix α7 at its C- terminal.
Cutting the helix α7 will reduce the catalytic efficiency of PTPN2,
indicating that the structure outside the conservative catalytic
domain, such as helix α7, can also regulate the catalytic activity
of PTPN2(Singh et al., 2021). Cys216 in PTPN2 corresponds to an
active site residue of PTP, and Cys216 has an affinity for the
phosphotyrosine residue of the substrate (Nian et al., 2022).
Mutation of the Cys residue in this active site renders the
PTPase catalytically inactive but still can bind to substrates
(Reiterer et al., 2020; Mattei et al., 2021). This indicates that the
function of PTPT2 can be regulated not only by changing the
conserved catalytic domain of PTPN2 but also by changing the
structure outside the conserved catalytic domain. Taken together,
understanding the structure features and posttranslational
modifications of PTPN2 can help to provide a better
understanding of its biological functions in cardiovascular
development and disease. The structure diagram of PTPN2 is
shown in Figure 1.

3 Tissue and intracellular distribution of
PTPN2

PTPN2 is more abundant in cells involved in the regulation of
inflammation, such as vascular endothelial cells (VECs),
monocytes, macrophages, B lymphocytes, T lymphocytes, and
other cells (Wiede et al., 2020; Spalinger et al., 2021). In addition,
PTPN2 is also highly expressed in the gastrointestinal tract, liver,
lung, and brain (Wang et al., 2018). Therefore, deletion of
PTPN2 often leads to the development of inflammation-
related diseases such as Crohn’s disease, hepatitis, diabetes,
and atherosclerosis (Spalinger et al., 2020; Sabev et al., 2021;
Zhu et al., 2021). Due to alternative splicing of mRNA, PTPN2 is
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normally spliced into two isoforms. The C-terminus of
TC45 lacks a hydrophobic fragment (residues 382-418),
allowing it to localize to the nucleus, while the C-terminus of
TC48 has 19 hydrophobic residues, allowing it to localize to the
endoplasmic reticulum (Tiganis et al., 1998). In addition,
TC45 can also localize to the cytoplasm and cell membrane,
and TC48 is also localized to the endoplasmic reticulum-Golgi
intermediate compartment (Lorenzen et al., 1995). TC45 can
shuttle between the nucleus and cytoplasm and dephosphorylate
plasma membrane receptors, thereby regulating various signaling
pathways and biological processes. However, it is unknown
whether TC48 can also play the same regulatory role.

4 PTPN2 and inflammatory signaling

Atherosclerosis has always been considered a chronic
inflammatory disease, and its occurrence and development are
closely related to an inflammatory response (Mendez-Barbero
et al., 2021). Stimulating inflammatory cells and immune cells to
produce inflammatory signals promotes the development of
atherosclerosis.

Firstly, mitogen-activated protein kinase (MAPK) can activate
transcription factors-associated inflammation, such as nuclear
factor kappa-B (NF-κB), signal transducer and activator of
transcription (STAT)1, and STAT3 by stimulating extracellular
regulated protein kinases 1/2 (ERK1/2) and p38MAPK signaling
(Bode et al., 2012; Cao et al., 2021). Meanwhile, activation of
p38MAPK upregulates the expression of inflammatory cytokines
such as tumor necrosis factor -α(TNF-α)and interleukin −1(IL-1)
(Nie et al., 2020). The secretion of inflammatory factors by
macrophages further promotes endothelial dysfunction and
damage, and promote the development of atherosclerosis (Xu
et al., 2019). Activation of MAPK in macrophages is significantly
increased when humans carry the PTPN2 gene variant: SNP;
rs1893217; A>G (Scharl et al., 2012). After the knockdown of
PTPN2, the phosphorylation of p38MAPK and ERK1/2 is
significantly reduced (Scharl et al., 2011; Moron et al., 2013).

Secondly, after knocking out PTPN2, the expression of
inflammatory cytokines such as NF-κB, TNF-α, and IL-6 induced
by the MAPK signaling pathway in macrophages is also significantly
reduced, and the levels of phosphorylated STAT1 and STAT3 are
also significantly reduced (van Vliet et al., 2005; Scharl et al., 2010).
In addition, Studies have shown that IFN-γ-induced
phosphorylation of STAT1/3 and IFN-γ-induced expression of
vascular cell adhesion molecule-1(VCAM-1), monocyte
chemoattractant protein-1 (MCP-1), and IL-6 are significantly
reduced when PTPN2 expression and activity are increased in
macrophages, also inhibiting the activation of p38 MAPK(Scharl
et al., 2010; Moron et al., 2013). When the human body carries the
PTPN2 gene variant (SNP; rs1893217; A>G), the secretion of IFN-γ
also increases (Scharl et al., 2012). A deficiency of PTPN2 leads to
aggravation of IFN-γ-induced inflammatory response in
macrophages (Elvira et al., 2022).

Thirdly, in macrophages, knockdown of PTPN2 results in a
marked increase in the phosphorylation of JAK1, JAK3, and
downstream STAT1 and STAT. In PTPN2-deficient mice, the
STAT1/STAT3 signaling is activated in CD4+ T cells, which

promotes the polarization of Type 1/17 helper T (Th1/Th17)
cells, resulting in systemic inflammation in mice (Spalinger et al.,
2016).

Lastly, Downregulation of PTPN2 expression in macrophages
enhances IL-6 secretion (Hamel-Cote et al., 2019). Activation of
PTPN2 in macrophages inhibits platelet-activating factor (PAF)-
mediated activation of transcription factors such as activator
protein-1 (AP-1), CCAAT/enhancer binding protein β(C/EBPß),
STAT5, and NF-κB, which in turn inhibits the activation of the IL-6
promoter, results in downregulation of IL-6 expression, ultimately
reduces inflammatory response (Hamel-Cote et al., 2019).

PTPN2 has a significant anti-inflammatory effect, which can
inhibit or reduce the occurrence of inflammation by regulating
related signaling pathways, and then reduce the occurrence and
development of atherosclerosis.

5 Role of PTPN2 in atherosclerosis

The occurrence and development of atherosclerosis involve
multiple etiologies, such as endothelial injury, monocyte
proliferation and migration, macrophage differentiation, T-cell
polarization, autophagy, pyroptosis, and insulin resistance.
Multiple studies have found that PTPN2 may inhibit
atherosclerosis through the following mechanisms.

5.1 PTPN2 attenuates endothelial injury

After vascular endothelial injury, VECs secretes vascular
endothelial growth factor (VEGF), which binds to vascular
endothelial growth factor receptor 2(VEGFR2) on VECs to
promote receptor dimerization and phosphorylation, and then
activates downstream signaling pathways, which can promote the
proliferation and migration of VECs, increase microvascular
permeability, and promote the formation of new blood vessels in
vivo, tissue adhesion, then lead to atherosclerosis (Shibuya, 2015;
Karaman et al., 2018). Studies have shown that the knockdown of
PTPN2 in human umbilical vein endothelial cells (HUVECs)
significantly increases the proliferation and migration of VECs
induced by VEGF, and undergoes significant morphological
changes, VEGF can also induce angiogenesis in vitro. In three-
dimensional cultures of HUVECs spheroids, activation of PTPN2 by
integrinα1(ITGA1) significantly inhibited in vitro angiogenesis
(Mattila et al., 2008). In addition, PTPN2 phosphatase can bind
to VEGFR2 kinase and subsequently promote the
dephosphorylation of VEGFR2 and inhibit its signal
transduction. In HUVEC, silencing of PTPN2 with siRNA
significantly enhances VEGF-induced phosphorylation of p44/
42 MAPK and protein kinase B (AKT) and also increases
phosphorylation of VEGFR2 to further promote VECs damage
and cytokine release (L. Nie et al., 2013). Angiogenin-1 (Ang-1)
is the activating ligand of endothelial cell-specific receptor tyrosine
kinase 2(Tie-2). In adult blood vessels, Ang-1/Tie-2 signaling
reduces endothelial hyperpermeability and inflammation by
inhibiting Occludin tyrosine phosphorylation and promoting the
interaction of Occludin with ZO-1(Y. Shi et al., 2019). In human
brain microvascular endothelial cells (HBMECs), knockdown of
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PTPN2 significantly elevates the levels of Occludin tyrosine
phosphorylation, which in turn leads to a significant reduction in
the barrier protection effect of Ang-1 on cells, then increases
endothelial cell permeability and inflammation, and ultimately
leads to endothelial injury (Siddiqui et al., 2015). PTPN2 reduces
VECs injury and inflammatory response by regulating VEGF/
VEGFR2 and Ang-1/Tie-2 signaling. Therefore, PTPN2 may act
as a regulatory target of atherosclerosis and exert an anti-
atherosclerotic effect.

5.2 PTPN2 inhibits monocyte proliferation
and migration

Vascular endothelial injury and dysfunction can lead to the
release of various cytokines and adhesion molecules from VECs,
which induces the recruitment of monocytes and other
inflammatory cells to the subendothelial layer, which is the
initiating link of atherosclerosis (Liang et al., 2020). When
PTPN2 is knocked out in monocytes, the expression of VCAM-1,
MCP-1, and IL-6 induced by IFN-γ is significantly upregulated, and
the overexpression of VCAM-1 and MCP-1 promotes the
recruitment of monocytes to the injured vascular endothelium
(Scharl et al., 2010; Moron et al., 2013). The EDU assay found
that the deficiency of PTPN2 significantly promotes the
proliferation of monocytes, and also promotes the proliferation
of HUVECs after the subsequent co-incubation of monocytes
with HUVECs. In addition, transwell migration and invasion
assays showed that the knockdown of PTPN2 in monocytes also
enhances cell migration and invasion (Hu et al., 2020). These results
suggest that a deficiency of PTPN2 promotes monocyte
proliferation, migration, and invasion. Therefore, PTPN2 may
function as anti-atherosclerosis.

5.3 PTPN2 inhibits macrophage polarization
toward M1

Macrophages are abundant in the process of atherosclerotic
lesions, and their major types include pro-inflammatory (M1)
macrophages and anti-inflammatory (M2) macrophages
(Jinnouchi et al., 2020). M1 macrophages can secrete a variety of
pro-inflammatory cytokines, such as cytokines TNF-α, IL-1α, IL-1β,
IL-6, IL-12, IL-15, IL-23, chemokines CXCL9, CXCL10, and cell
mediators ROS and NO(Shapouri-Moghaddam et al., 2018). These
may contribute to persistent inflammation around atherosclerotic
plaques, recruitment of inflammatory cells, and plaque formation
(Farias-Itao et al., 2022). Studies have shown that the expression of
PTPN2 in monocytes is significantly downregulated in the apoE−/−

inflammatory mouse atherosclerosis model (Yang et al., 2022).
Deletion of PTPN2 in monocytes induces their transformation
into M1-type macrophages, promotes the secretion of IL-12 and
IL-1β, promotes cell proliferation and migration, and increases p65,
p38, and STAT3 phosphorylation (Y. Li et al., 2018). Meanwhile, the
expression of IL-6, TNF-α, and inducible nitric oxide synthase
(iNOS) associated with M1 polarization is significantly
upregulated in PTPN2-deficient cells (Hu et al., 2020). When
PTPN2 is overexpressed, it can block the inflammatory response

of macrophages by mediating the dephosphorylation of p65/p38/
STAT3 (Hu et al., 2020). IL-4 induces M2 polarization in
macrophages by interacting with its receptor IL-4Rα(L. Shi et al.,
2021). IL-6 can promote the expression of IL-4Rα, which in turn
promotes IL-4-induced macrophage polarization to M2.
Knockdown of PTPN2 in macrophages results in downregulation
of IL-6R expression, which in turn inhibited the signaling cascade
caused by IL-6 binding to IL-6R, failing M2 macrophage
polarization, while the levels of M1 macrophage markers are
significantly increased, exacerbating the cellular inflammatory
response (Spalinger et al., 2022). These results suggest that
PTPN2 inhibits the inflammatory response of atherosclerosis by
inhibiting the polarization of macrophages to M2, thus, PTPN2 may
play an important role in regulating macrophage polarization and
inhibiting atherosclerosis.

5.4 PTPN2 inhibits T cell polarization

T cells enter the vessel wall by a mechanism similar to that of
monocytes and are subsequently activated upon antigenic
stimulation to produce inflammatory cytokines, which further
amplify the inflammatory response and aggravate the progression
of atherosclerosis (Saigusa et al., 2020). Th1 cells can secrete IFN-γ,
TNF-α, IL-4, IL-5, and IL-13, mediate macrophage activation and
eosinophils participate in inflammatory response (Ali et al., 2020).
Th2 cells may be a pro-atherosclerotic risk factor in the context of
hypercholesterolemia (Z. Li et al., 2022; Taleb, 2016). Regulatory
T cells (Treg) usually suppress Th1 and Th2 pathological responses
and can produce a large amount of transforming growth factor-β
(TGF-β) and IL-10, which can inhibit the formation of
atherosclerosis (Shapouri-Moghaddam et al., 2018; Y. N; Wang
et al., 2021). The new view is that the formation and
development of atherosclerotic plaques are caused by the
imbalance of pathogenic Th1 cells, Th2 cells, Th17 cells, and
Treg (Saigusa et al., 2020). After the isolation of PTPN2-deficient
CD4+ T cells in the diabetic mouse model, they tend to polarize into
Th1 cells, and some of the formation of Th1 cells is due to the
enhanced STAT1 signal after PTPN2 knockout (J. Gao et al., 2022;
Wiede et al., 2019). The levels of PTPN2 in visceral adipose tissue
(VAT) of diabetic apoE−/− mice are significantly downregulated,
which leads to pro-inflammatory polarization of T cells in VAT,
resulting in the inflammatory response and instability of
atherosclerotic plaques (Wiede et al., 2019). The deficiency of
PTPN2 in VAT leads to T cell polarization toward Th1 and
Th17 cells but not toward Treg (Xue et al., 2022), which results
in the imbalance of the Th1, Th17, and Treg ratio (Flosbach et al.,
2020). However, PTPN2 overexpression in VAT increases the levels
of Treg. Thus, the ratio of Th1/Treg, Th2/Treg, and Th17/Treg is
decreased, which alleviates the body’s inflammatory response and
ultimately stabilizes the atherosclerotic plaque (Li et al., 2018; Zhang
et al., 2018).

In PTPN2-LckCre mice, Treg levels are significantly decreased,
while Th1 and Th17 levels are significantly increased, and increased
levels of Th1 and Th17-related genes are detected in biopsies from
areas of inflammation (Spalinger et al., 2015; Svensson et al., 2019).
Moreover, clinical data show that Th17 and IL-17 account for an
increased proportion of coronary heart disease and atherosclerosis,
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and are positively correlated with disease severity (Esmailbeig and
Ghaderi, 2017). IL-2 is a necessary cytokine for Treg activation and
survival (Abbas et al., 2018). When the PTPN2 gene is deficient, IL-
2R signaling in CD4+ T cells is inhibited, resulting in a decrease in
the sensitivity of CD4+ T cells to IL-2, and activation of the Treg is
inhibited (Kasahara et al., 2014). Therefore, PTPN2 may serve as an
important target for regulating T cell polarization, thereby
protecting atherosclerosis.

5.5 PTPN2 promotes autophagy

Autophagy has a protective effect on atherosclerosis by inhibiting
inflammation and apoptosis, promoting cholesterol efflux, and
reducing lipid deposition (Qiao et al., 2021). Autophagy dysfunction
promotes the occurrence and development of atherosclerosis (Miao
et al., 2020; Robichaud et al., 2021). Atherosclerosis is closely associated
with VECs, macrophages, and VSMCs. Impaired autophagy in VECs
aggravates atherosclerosis (Wei et al., 2021). Autophagy inmacrophages
inhibits the formation of foam cells and inhibits the development of
atherosclerosis (Y. Cao et al., 2019; Zhang et al., 2021). Promoting
autophagy in VSMCs can protect VSMCs under noxious stimuli and
play an anti-atherosclerotic role (Grootaert et al., 2018; Shan et al.,
2021). The transcriptional enhancer STAT3 of autophagy-related genes
in the nucleus performs anti-autophagy by upregulating the expression
of negative regulators of autophagy such as B-cell lymphoma-2(BCL2),
BCL2L1, myeloid cell leukemia-1 (MCL1), phosphoinositide-3-kinase
regulatory subunit 1(PIK3R1)/p55α and PIK3R1/p50α, or by
downregulating the expression of essential autophagy genes such as
Beclin1 and PIK3C3 (You et al., 2015). STAT3 is generally located in the
cytoplasm and can only be transferred to the nucleus when it is
dimerized after phosphorylation activation (Liu et al., 2021).
PTPN2 is a negative regulator of the JAK/STAT signaling and
inhibits its activation and transfer to the nucleus by
dephosphorylation of several of its members, such as JAK1/3 and
STAT1/3. In macrophages, knockdown of PTPN2 significantly
enhances the activation of JAK-STAT, whereas when cells were
treated with a JAK inhibitor, the activation of JAK-STAT caused by
PTPN2 deletion was significantly inhibited and the phosphorylation
levels are significantly reduced (Spalinger et al., 2021). The same
conclusion is obtained in PTPN2-LysMCre mice. Deletion of
PTPN2 significantly enhanced the activity of the STAT3 transcript,
which in turn led to autophagy impairment in macrophages (Zhu et al.,
2020). Microtubule-associated protein 1 light chain 3B-Ⅱ(LC3B-II) is a
marker of autophagosome formation, and muramyl-dipeptide (MDP)
can induce autophagosome formation (Chung et al., 2017). In MDP-
treated PTPN2-WTmacrophages, the levels of LC3B-II are significantly
increased and the levels of p62 are significantly decreased, but in MDP-
treated PTPN2-WTmacrophages, the levels of LC3B-II are significantly
increased, but this effect is blocked in PTPN2mutant cells (Scharl, et al.,
2012). Knockdown of PTPN2 in macrophages also results in
downregulated protein expression of autophagy-related molecules,
such as Beclin-1, autophagy-related gene (ATG)5/7/12, autophagy-
related 16-like 1 (ATG16L1) (Scharl et al., 2012). Deletion of
PTPN2 in macrophages leads to increased levels of TNF-α and IFN-
γ, these induce the formation of larger LC3B + vacuoles, a marker of
dysfunctional autophagosome formation due to defects in the
autophagic process (Svensson et al., 2019). Moreover, the deletion of

PTPN2 also causes abnormal expression of IRGM, which is also a
marker of abnormal autophagy induced by cytokines TNF-α and IFN-
γ(Scharl et al., 2012). Therefore, it can be found that PTPN2 inhibits the
development of atherosclerosis by regulating the autophagy of
macrophages. However, the role of PTPN2 in regulating autophagy
in VECs and VSMCs has not been reported and needs further study.

5.6 PTPN2 inhibits pyroptosis

Pyroptosis is a process in which the NLRP3 inflammasome is
activated and then promotes the release of inflammatory factors
such as IL-1β and IL-18 (Gaul et al., 2021). Pyroptosis promotes
VECs damage and foam cell formation, and leads to defective
reverse cholesterol transport, thereby promoting the development
of atherosclerosis (Opoku et al., 2021). It has been reported that
PTPN2 regulates pyroptosis from two aspects. On the one hand,
PTPN2 negatively regulates the expression of IL-1β and IL-18 by
interfering with the transduction of inflammatory signaling
pathways (Spalinger et al., 2018; Wang et al., 2023). On the other
hand, PTPN2 inhibits the assembly of the NLRP3 inflammasome
and prevents the release of IL-1β and IL-18 after its activation
(Scharl et al., 2012). The NLRP3 inflammasome is assembled from
three parts, NLRP3, ASC, and pro-caspase-1, while the effect of
PTPN2 on inflammasome assembly is indirect. First, the loss of
PTPN2 leads to increased activity of c-jun-terminal kinase (JNK)
and spleen tyrosine kinase (Syk), then JNK and Syk activate the
tyrosine phosphatase proline-rich tyrosine kinase (PYK2), and the
activated PYK2 induces an increase in apoptosis-associated speck-
like protein containing CARD (ASC) tyrosine phosphorylation, the
formation of ASC multimers, and the activation of Caspase-1, and
finally promotes maturation and release of IL-1β and IL-18
(Spalinger et al., 2018; Spalinger et al., 2020). In macrophages
with high PTPN2 expression, the expression of IL-1β and IL-18
is significantly downregulated due to the inhibition of
inflammasome assembly (Hu et al., 2020). Therefore,
PTPN2 attenuates the cellular inflammatory response and
inhibits the further release of inflammatory factors and adhesion
molecules frommacrophages, thereby reducing the damage of VECs
and the formation of foam cells (Moore et al., 2009; Bourdeau et al.,
2013). PTPN2 inhibits the development of atherosclerosis by
inhibiting pyroptosis and thus may serve as a potential regulatory
target of atherosclerosis.

5.7 PTPN2 reduces insulin resistance

Atherosclerosis is also considered to be a metabolic disease. A
large amount of evidence has demonstrated that inflammatory
factors released by inflammatory cells lead to aggravation of
insulin resistance in the body, and subsequently cause vascular
endothelial damage and lipid metabolism disorders, finally
accelerating the process of atherosclerosis (Di Pino and
DeFronzo, 2019). A recent study showed that apoE−/− mice with
combined hyperglycemia and hypercholesterolemia exhibited severe
insulin resistance accompanied by a markedly downregulated
expression of PTPN2(Y. Li et al., 2019). Overexpression of
PTPN2 significantly reduces the levels of NF-κB, TNF-α, IL-6,
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and the inflammatory response in diabetic mice, and then alleviated
insulin resistance. Overexpression of PTPN2 also significantly
downregulates the expression of monocytes Cell and T-cell
chemokine (MCP-1) and adhesion molecule VCAM-1, thus
attenuating VECs damage and monocyte migration (Yoo et al.,
2018). The STAT signaling pathway regulates various mediators and
participates in the secretion of pro-inflammatory factors, and
PTPN2 can dephosphorylate STAT1/3 in diabetic mice and
inhibit its inflammatory signaling (Kim et al., 2018). Knockout of
PTPN2 in apoE−/− mice leads to severe insulin resistance, and then
leads to disordered lipid metabolism and atherosclerosis (Gurzov
et al., 2015). PTPN2 treatment significantly reduces serum
triglyceride, total cholesterol, and low-density lipoprotein-
cholesterol levels, and also reduces metabolic disturbances and
hyperglycemia in mice (Y. Li et al., 2019; Wiede et al., 2019).
PTPN2 reduces insulin resistance by inhibiting the inflammatory
response of cells and the body and then plays a role in regulating the
lipid metabolism disorder of the body, so it can be used as a

therapeutic target for reducing atherosclerosis. The possible
targets of PTPN2 are summarized in Table 1, and the related
signaling pathways of PTPN2 are shown in Figure 2.

6 Therapeutic strategies to promote
PTPN2 expression

PTPN2 plays a regulatory role in many signaling pathways and
biological processes, and activation of PTPN2 plays an important
role in diseases such as atherosclerosis, tumors, inflammatory bowel
diseases, autoimmune diseases, and diabetes. Therefore, PTPN2 is
an important target of drug development. Studies have found that
there are some small molecule drugs and proteins that can activate
PTPN2. The N-terminus of TC45 protein inhibits its activation by
binding to the C-terminus, while the α1-Cyt in the ITGA1 structure
interacts with the N-terminus of TC45 and competes with the
C-terminus of TC45 to bind to the N-terminus, thereby relieving

TABLE 1 The target genes of PTPN2 and its roles in atherosclerosis.

Targets Effects Function As Reference

MAPK Inactivation Reduce insulin resistance ↓ Moron et al. (2013)

Reduce macrophages inflammation

JAK1 Inactivation Reduce insulin resistance ↓ Zhang et al. (2018)

JAK3 Inactivation Reduce insulin resistance ↓ Li et al. (2019)

STAT1 Inactivation Suppresses Th1 cell formation ↓ Spalinger et al. (2016)

STAT3 Inactivation Promote autophagy ↓ Spalinger et al. (2021)

TNF-α Inactivation Reduce insulin resistance ↓ Meng et al. (2019)

Promote autophagy

Monocyte migration

IFN-γ Inactivation Monocyte migration ↓ Moron et al. (2013)

Promote autophagy

IL-4 Inactivation Suppresses VECs injury ↓ Kim et al. (2019)

Activation Promote the polarization of macrophages to M2

IL-6 Inactivation Reduce macrophages inflammation ↓ Hamel-Cote et al. (2019)

VEGF Inactivation Suppresses VECs injury ↓ Mattila et al. (2008)

VEGFR2 Inactivation Suppresses VECs injury ↓ Nie et al. (2013)

Occludin Inactivation Suppresses VECs injury ↓ Shi et al. (2019)

IL-6R Activation Promote the polarization of macrophages to M2 ↓ Spalinger et al. (2022)

IL-2R Activation Promote Treg formation ↓ Kasahara et al. (2014)

MDP Activation Promote autophagy ↓ Scharl et al. (2012)

Beclin −1 Activation Promote autophagy ↓ Scharl et al. (2012)

ATG5 Activation Promote autophagy ↓ Scharl et al. (2012)

ASC Inactivation Suppresses NLRP3 inflammasome formation ↓ Spalinger et al. (2018)

IL-1β Inactivation Suppresses NLRP3 inflammasome formation ↓ Spalinger et al. (2018)

IL-18 Inactivation Suppresses NLRP3 inflammasome formation ↓ Spalinger et al. (2018)

↓, inhibitory effect; AS, atherosclerosis.
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autoinhibition and activating TC45 (Singh et al., 2022). Activation of
TC45 by α1-Cyt inhibits EGF-induced EGFR phosphorylation and
reduces cell proliferation and malignant cell growth (Mattila et al.,
2005). Spermidine and mitoxantrone can compete with α1-Cyt for
binding to the N-terminus site of TC45, indicating that spermidine
and mitoxantrone also activate TC45 in the same way as ITGA1
(Ylilauri et al., 2013; Niechcial et al., 2023). Spermidine can inhibit
cell proliferation and attenuate RTK signaling in a TC45-dependent

manner, and spermidine also can inhibit the activation of IFN-γ-
induced downstream signaling by activating PTPN2(Niechcial et al.,
2020; Shaw et al., 2021). In adult blood vessels, activation of
PTPN2 by Ang-1/Tie-2 signaling promotes the
dephosphorylation of Occludin, which in turn promotes the
binding of Occludin to ZO-1, thereby regulating endothelial cell
permeability and inflammatory responses (Siddiqui et al., 2015).
VSL#3 probiotics can increase the enzyme activity and expression of

FIGURE 1
Schematic diagram of human PTPN2 structure. The human PTPN2 gene expresses two protein forms, TC45 and TC48. Both proteins contain a
catalytic region, and the C-terminal domain of the protein contains a helix α7 structure. The biggest difference between the two is that the C-terminal
domain of TC45 contains an NLS sequence that localizes it in the nucleus, while the C-terminal domain of TC48 contains hydrophobic fragments that
localize it in the cytoplasm.

FIGURE 2
Various anti-atherosclerosis mechanisms of PTPN2 in different kinds of cells. In vascular endothelial cells, knocking down or silting PTPN2 can lead
to the binding of VEGF and VEGFR, promote the phosphorylation of p44/42MAPK and AKT, and also weaken the Ang-1/Tie-2 signal, which in turn leads to
the reduction of Occludin and ZO-1 junction, both mechanisms ultimately lead to vascular endothelial injury. In monocytes, PTPN2 knockout leads to
IFN-γ-induced production of VCAM-1, MCP-1, and IL-6, thereby promoting monocyte proliferation and migration. In macrophages, knockout of
PTPN2 causes polarization of macrophages towardsM1, which leads to inflammation, and activation of NLRP3 inflammasome, which leads to endothelial
damage and foam cell formation. In T-cells, the knockout of PTPN2 will lead to the reduction of Treg, and the imbalance of Th1, Th17, and Treg, thus
promoting the occurrence of inflammation. In apoE−/− mice, PTPN2 knockout leads to increased insulin resistance and promotes endothelial injury. In
addition, knocking out PTPN2 in macrophages, vascular endothelial cells, and vascular smooth muscle cells also leads to the inhibition of autophagy,
which leads to vascular endothelial injury and foam cell formation.
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PTPN2, inhibiting its downstream signaling pathway (Krishnan,
Penrose, Shah, Marchelletta and McCole, 2016). Activation of
PPARδ in the nucleus can form a stable complex with TC45,
which can prolong the time that TC45 stays in the nucleus,
thereby reducing IL-6-induced insulin resistance, promoting the
inactivation of STAT3-suppressor Of cytokine signaling 3(SOCS3)
signaling, and alleviating inflammatory response (Mattila et al.,
2010). Ruthenium red, MDL-26,630-trihydrochloride, N21
(C15H13N5), and F12 (C30H38N4O2) are also found to be
agonists of PTPN2 by high-throughput screening and activate
PTPN2 in a concentration-dependent manner (Mattila et al.,
2010). In addition, synthetic activators or agonists for specific
PTPN2 have not been identified in animal models of
atherosclerosis, but further research may be required in the
future, and this area of research will certainly facilitate the
development of PTPN2 centered therapies that ultimately reduce
the risk of atherosclerotic cardiovascular disease.

7 Conclusion and future directions

PTPN2 is an important member of the protein tyrosine
phosphatase family, which has attracted more and more attention
in recent years. PTPN2 mainly inhibits the occurrence and
development of atherosclerosis by negatively regulating the
expression of downstream target genes and their signaling
pathways. These target genes are involved in a series of
inflammatory responses, which in turn affect the function of
VECs, monocyte proliferation and migration, macrophage
polarization, T cell polarization, autophagy, pyroptosis, and
insulin resistance, and play an important role in the disease
progression of atherosclerosis. In addition, the development of
atherosclerosis is closely related to lipid metabolism disorders,
cholesterol reverse transport plays a good protective role in
atherosclerosis. ABCA1 is a key protein in the reverse cholesterol
transport process, which can promote macrophages’ excretion of
lipids, thereby inhibiting the development of atherosclerosis. These
current studies demonstrate that PTPN2 in macrophages inhibits
the development of atherosclerosis by regulating IFN-γ, JAK/
STAT1, IL-4/6, and NF-κB-induced inflammation. Our group’s
study showed that in macrophages, IFN-γ downregulates the
expression of ABCA1 by activating the JAK/STAT1 signaling
pathway, thereby promoting the development of atherosclerosis
(Hao et al., 2009). Moreover, IL-4/6 and NF-κB can also
downregulate the expression of ABCA1 in macrophages and
promote the development of atherosclerosis (Ren et al., 2018;
Zhao et al., 2021). Therefore, I speculate that PTPN2 may inhibit
the progression of atherosclerosis by regulating lipid metabolism in
macrophages, but this requires further investigation in the future.

Although abundant data is demonstrating that PTPN2 alleviates
insulin resistance in diabetic mice, some studies have shown a
conflicting result that activation of PTPN2 inhibits insulin
signaling, thereby exacerbating the development of diabetes
(Tiganis, 2013; Wang et al., 2021). Numerous studies have shown
that the deletion of PTPN2 upregulates the expression of
inflammatory factors such as TNF-α, NF-κB, IFN-γ, and IL-6 in

THP-1 macrophages and promotes the activation of MAPK.
However, in RAW264.7 macrophages, the deletion of
PTPN2 downregulates the expression of inflammatory factors
and MAPK phosphorylation (Ha Thi et al., 2016). Therefore,
further studies of PTPN2 are required to clarify its exact role in
atherosclerosis in the future. Although numerous studies have
demonstrated the beneficial effects of high PTPN2 expression,
effective strategies to promote PTPN2 expression require further
exploration. In addition, more work is needed to elucidate how
PTPN2 can be most efficiently targeted through transcriptional/
post-transcriptional regulation or post-translational modification.
In addition, several key questions remain to be answered in future
studies: 1) Are there other target genes of PTPN2 that can influence
the progression of atherosclerosis? 2) Which genes can regulate the
expression of PTPN2 and its downstream signaling pathways? 3) Do
the two isoforms of PTPN2, TC45 and TC48, respectively regulate
different signaling pathways due to their different intracellular
localization? Are the two isoforms consistently expressed in
various diseases? 4) What is the specific mechanism by which
PTPN2 reduces serum triglyceride, total cholesterol, and LDL-
cholesterol levels in diabetic mice? 5) In addition to affecting the
polarization of macrophages by affecting the occurrence of
inflammatory responses, does PTPN2 also affect the uptake and
excretion of lipids by macrophages to inhibit the development of
atherosclerosis? 6) PTPN2 can promote the autophagy of
macrophages, but does it promote the autophagy of VSMCs and
VECs? Answers to such questions will undoubtedly provide unique
insights into the role of PTPN2 in atherosclerosis and make
PTPN2 an attractive therapeutic target aiming at reducing
atherosclerosis.
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Glossary

PTPN2 Tyrosine-protein phosphatase non-receptor type 2

CVD Cardiovascular disease; As, Atherosclerosis

VECs vascular endothelial cells

TCPTP T-cell protein-tyrosine phosphatase

MAPK Mitogen-Activated Protein Kinase

JAK/STAT Janus Kinase/signal transducer and activator of transcription

IFN-γ γ Interferon

TNF-α/NF-κB Tumor Necrosis Factor -α/nuclear factor kappa-B

IL-4 interleukin-4

ERK1/2 extracellular regulated protein kinases1/2

VSMC vascular smooth muscle cells

Th1/Th17 Type 1/17 helper T cells

NO Nitric oxide

ROS reactive oxygen species

LDL Low-density lipoprotein

VCAM-1 vascular cell adhesion molecule-1

MCP-1 monocyte chemoattractant protein-1

PAF platelet activating factor

AP-1 activator protein-1

C/EBPß CCAAT/enhancer binding protein β

VEGF vascular endothelial growth factor

VEGFR2 Vascular Endothelial Growth Factor Receptor 2

HUVECs Human umbilical vein endothelial cells

ITGA1 integrinα1

AKT protein kinase B

Ang-1 Angiogenin-1

Tie-2 endothelial cell-specific receptor tyrosine kinase 2

ZO-1 zonule occluden 1

HBMECs Human brain micro-vascular endothelial cells

CXCL9 chemokines Chemokine (C-X-C motif) ligand 9

iNOS Inducible Nitric-Oxide Synthase

Treg regulatory T cells

TGF-β transforming growth factor-β

VAT visceral adipose tissue

BCL2 B-cell lymphoma-2

MCL1 myeloid cell leukemia-1

PIK3R1 Phosphoinositide-3-Kinase Regulatory Subunit 1

LC3B-II microtubule-associated protein 1 light chain 3B-Ⅱ

MDP muramyl-dipeptide

ATG autophagy-related gene

ATG16L1 autophagy-related 16-like 1

LRP3 nod-like receptor protein 3

JNK c-JunN-terminal kinase

Syk spleen tyrosine kinase

PYK2 Proline-rich tyrsosine kinase 2

ASC apoptosis-associated speck-like protein containing CARD

RTK receptor tyrosine kinase

PPARδ peroxisome proliferator-activated receptor δ

SOCS3 suppressor Of cytokine signaling 3
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