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Objective:Due to a lack of effective therapy, triple-negative breast cancer (TNBC)
is extremely poor prognosis. Metabolic reprogramming is an important hallmark in
tumorigenesis, cancer diagnosis, prognosis, and treatment. Categorizing
metabolic patterns in TNBC is critical to combat heterogeneity and targeted
therapeutics.

Methods: 115 TNBC patients from TCGA were combined into a virtual cohort and
verified by other verification sets, discovering differentially expressed genes
(DEGs). To identify reliable metabolic features, we applied the same
procedures to five independent datasets to verify the identified TNBC
subtypes, which differed in terms of prognosis, metabolic characteristics,
immune infiltration, clinical features, somatic mutation, and drug sensitivity.
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Results: In general, TNBC could be classified into two metabolically distinct
subtypes. C1 had high immune checkpoint genes expression and immune and
stromal scores, demonstrating sensitivity to the treatment of PD-1 inhibitors. On
the other hand, C2 displayed a high variation in metabolism pathways involved in
carbohydrate, lipid, and amino acid metabolism. More importantly, C2 was a lack of
immune signatures, with late pathological stage, low immune infiltration and poor
prognosis. Interestingly, C2 had a high mutation frequency in PIK3CA, KMT2D, and
KMT2C and displayed significant activation of the PI3K and angiogenesis pathways.
As a final output, we created a 100-gene classifier to reliably differentiate the TNBC
subtypes and AKR1B10 was a potential biomarker for C2 subtypes.

Conclusion: In conclusion, we identified two subtypes with distinct metabolic
phenotypes, provided novel insights into TNBC heterogeneity, and provided a
theoretical foundation for therapeutic strategies.

KEYWORDS

metabolic subtypes, triple-negative breast cancer, metabolic pathway, immune signature,
immunotherapy response, mutation landscape

1 Introduction

In 2020, breast cancer become the main cause of malignant
tumors and the fifth leading cause of death. Three million new
patients and 685,000 deaths (Sung et al., 2021). As a disease with
high heterogeneity, the treatment and prognosis of patients are
greatly different. With the definition of breast cancer molecular
subtypes being proposed, triple-negative breast cancer (TNBC) is
classified as a type of breast cancer. This type has no expression of
estrogen receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 (HER2) (also known as
ERBB2) (Goldhirsch et al., 2013; Waks and Winer, 2019).
TNBC accounts for 10%–20%, with being prone to recurrence
and metastasis. Due to the high early recurrence rate and limited
treatment, the prognosis is very poor (Denkert et al., 2017;
Garrido-Castro et al., 2019). Much effort has been devoted to
classifying TNBC into subtypes of several molecular with
different mutational characteristics and genomic changes
(Bareche et al., 2018; Garrido-Castro et al., 2019; Jiang et al.,
2021). Previous studies showed that cluster analysis identified
TNBC subtypes, which provided new ideas for the treatment of
TNBC (Lehmann et al., 2011; Jiang et al., 2019; Xiao et al., 2022).

Metabolic reprogramming, as an emerging hallmark, is a new
tumor biomarker that plays a major role in the occurrence,
progression, diagnosis, treatment, and prognosis (Martinez-
Outschoorn et al., 2017; Xia et al., 2021). Due to the
heterogeneous metabolic dependencies existing across different
tumor types and even the same tissue (Hensley et al., 2016; Kim
and DeBerardinis, 2019), we know little about the impact of tumor
metabolic reprogramming on TNBC. In addition to some previous
pan-cancer analysis (Rosario et al., 2018), the understanding of
TNBC metabolic heterogeneity is still insufficient. Thanks to
advancements in bioinformatics, we are now equipped to analyze
high-throughput genetic data to gain insights into diseases, such as
autoimmune disorders (Li et al., 2022; Li et al., 2023a; Li et al.,
2023b) or cancers (Cheng et al., 2023; Tu et al., 2023). Building on
this, our study delves into classifying Triple-Negative Breast Cancer
(TNBC) from a metabolic perspective, shedding light on its
underlying heterogeneity.

We used the screened metabolic genes to systematically check
the diverse metabolic signatures of TNBC and identify two distinct
metabolic subtypes. Differentially expressed genes (DEGs) were
revealed by comparing transcriptome levels of patients with
different subtypes. Subtyping TNBC Prognosis, metabolic
characteristics, immune infiltration, clinical features, in vivo cell
mutation characteristics, and drug sensitivity vary. Finally, a 100-
gene classifier was designed and preliminarily verified to determine
the classification of TNBC. This investigation may also provide
insightful information into tumor-immune cell interactions, which
retains tremendous potential for clinical therapeutic interventions in
TNBC patients.

2 Materials and methods

2.1 Patients and samples

BRCA gene expression profiles were downloaded from five
independent cohorts of patients, including TCGA-BRCA,
GSE25066, GSE21653, GSE103091and METABRIC. Only
samples from TNBC were reserved in all cohorts. Survival
analysis only considered overall survival (OS) and disease-free
survival (DFS). In the above five cohorts, METABRIC had no
patient prognostic information. The remaining histological data
were obtained from the TCGA-BRCA cohort, including copy
number variant data obtained via firehose, and mutation MAF
files obtained from the cBioPortal Pancancer Project. TCGA-
BRCA partial samples of the predicted neoantigen numbers
were obtained from published literature (Rooney et al., 2015).
The metabolic gene file used for clustering (Possemato et al., 2011),
the metabolism signatures (Rosario et al., 2018), the immune
pathway signatures (Bindea et al., 2013) and the oncogenetic
signature.txt (Sanchez-Vega et al., 2018) from different
published literature. The drug information is from the GDSC
database involving the drug’s R package “pRRophetic” for use
in predicting the drug’s IC50. The external datasets were used to
determine whether the defined subtypes are likely to respond to
immunotherapy (Roh et al., 2017).
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Limma package used for identifying DEGs (|log2FC| > 1 and p <
0.01). Genetic feature set files “c2.cp.kegg.v6.2.symbols.gmt” and
“h,all,v60.2.symbols” were obtained from the Molecular Signature
Database (MSigDB). Then, Clusterprofiler R package was used for
Gene Set Enrichment Analysis (GSEA) (Yu et al., 2012).

To identify Aldo-Keto reductase family 1 member B10
(AKR1B10), we collected peripheral blood samples from
30 TNBC patients and 30 healthy individuals as controls from
Tianjin Medical University Cancer Institute and Hospital
(Tianjin, China) in 2022 for RT-qPCR, and their paraffin-
embedded tissues for IHC. All patients were female patients who
were recently admitted and had not undergone radiotherapy,
chemotherapy, or surgery. Control group was determined to be
free from TNBC and other malignant tumors.

2.2 Identification of TNBC subtypes through
non-negative matrix factorization clustering

Because all data used in this study were derived from five
platforms, and some of the data were normalized, we combined the
data after normalizing each data using z-score to eliminate
potential batch effects. We performed consensus NMF
(Possemato et al., 2011) with 2-5 cluster numbers using TCGA
data expression profiles and calculated the covariance coefficients
for each decomposition. The MOVICS package (Lu et al., 2021)
was used for differential expression analysis of these two subtypes,
while the top 50 most significantly upregulated genes in each
subtype were used as biomarkers for the different subtypes (p <
0.05, FDR < 0.25). In addition, we constructed a template using
MOVICS.

2.3 Gene mutation analysis and single-
sample gene-set enrichment analysis
(ssGSEA)

Genomic variation analysis (GSVA) is a method genome
augmentation, which calculates the characteristics of certain
pathways or different populations based on expression spectra.
The differences of gene sets between samples were investigated
by GSVA R software package from relevant metabolic pathway
gene sets (Rosario et al., 2018). Then, the limma package (Liu et al.,
2019) was used to obtain the substitution gene scores, analyze the
differences, and screen for DEGs features.

To identify the extent to which genes are up or
downregulated within a single sample, ssGSEA is used for
quantifying the immune composition of tumors. Here, we
assessed the enrichment fraction of gene sets representing
biological processes as well as biological pathways in bulk
tumors or individual cancer cells by ssGSEA.

2.4 Detection of tumor microenvironment
characteristics

The ESTIMATE algorithm (Yoshihara et al., 2013) can be
applied to calculate the permeability and matrix content of

immune cells (immune fraction) and stromal content (stromal
fraction) of different subtypes, thus reflecting the
microenvironmental characteristics of tumors.
Microenvironmental Cell Population counter (MCPcounter)
(Becht et al., 2016) was used for evaluating the penetration
frequency of immune and non-immune cell populations in two
subtypes.

2.5 Evaluation of genomic changes, number
of new antigens, tumor mutation burden
(TMB) and copy number variant (CNV) in
different groups

The detection of co-occurrence and mutually exclusive
mutations mainly relied on the CoMEt algorithm. Next, we
predicted the different genotypes between different subtypes,
including the number of neoantigens, TMB, copy number
amplification, and the frequency of copy number deletions. We
also performed an online analysis using GISTIC2 (Cibulskis et al.,
2013) to obtain the number of amplifications and deletions for all
samples and to calculate arm- and focal level somatic copy-number
alterations (SCNAs) and G-scores in tumors with the input of
“SNP6” files.

2.6 Prediction of treatment for each
subgroup of immune checkpoint

MD-Anderson melanoma cohort treated with anti-CTLA-4 or
anti-PD-1 is considered to be used to predict immunotherapy
response (Roh et al., 2017). And then, we analyzed the sub map
from the Genomics of Drug Sensitivity in Cancer (GDSC) database
(Roh et al., 2017) and studied the sensitivity differences between the
C1 and C2 groups after multiple drug treatments.

2.7 IHC staining

IHC staining was used to slice the dewaxed tissue portion of
TNBC samples and cure with 3% hydrogen peroxide for a period of
time. Block endogenous peroxidase for 30 min, then solidify with
appropriate horseradish AKR1B10 antibody. The IHC fraction is
calculated by multiplying the dyeing intensity by the percentage of
cells. Definition of intensity: 0 (unstained), 1 (soft), 2 (medium), 3
(strong). Definition of percentage of cells: 1 (25%), 2 (26%–50%), 3
(51%–75%), and 4 (>75%). More than 3 was defined as positive,
while less than or equal to 3 as negative.

2.8 RNA isolation and RT-qPCR

Triazole solution (AC0101-B; SparkJade, China) was used for
extracting RNA from blood and tissues samples. 2×HQ SYBR qPCR
Mix (ZF501; ZOMANBIO; Beijing, China) was used for PCR
reaction. Primer sequences were listed in Supplementary Table
S1. The levels of AKR1B10 expression were calculated by the
method of 2−ΔΔCq.
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FIGURE 1
Subtyping of TNBC tumors according to non-negative matrix factorization (NMF) in five datasets. (A) Principal component analysis (PCA) of
integrated expression profiles based on five TNBC datasets. (B) After comprehensive consideration, the optimal clustering number (k value) was 2. (C) PCA
dimension reduction analysis was used to support the classification into two TNBC-subtypes. (D) Overall survival (OS) analysis of two subtypes in TCGA
datasets. (E–G) Overall survival (OS) analysis of validation datasets (GSE25066, GSE21653, and GSE103091, excluding METABRIC with a lack of
patient OS). The results of OS revealed that C1 had significantly better than C2 in TCGA datasets and validation datasets (GSE25066, GSE21653, and
GSE103091) (p = 0.014, p = 0.014, and p = 0.017, respectively).
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FIGURE 2
TNBCmetabolic subtypes and tumor progression-related features. (A)Heatmap ofmetabolism-related features in the two subtypes. C1 and C2 had
specific metabolic characteristics, with 2 metabolism-related pathways upregulated in C1 and 17 metabolism-related pathways significantly upregulated
in C2. (B) Box plots of tumor progression-related signaling pathways in the two subtypes. After quantifying 11 carcinogenic pathways, the results showed
differences between the them onmultiple classic carcinogenic pathways. (C) Box line plots of the immune fraction andmatrix fraction of ESTIMATE
in the two subtypes (*p < 0.05, **p < 0.01, ***p < 0.001).
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2.9 Statistical analysis

R software (version 4.0.2) was used to process all data.
Contingency table (χ2) variables used the chi-square test and
Fisher’s precision probability test for statistical significance.
Kaplan-Meier method was used for survival analysis and
compared the results by the log-rank test. Z test was used to
assess whether there was a significant difference between the two
groups. Univariate Cox proportional hazards regression models
were used to assess the risk ratio for univariate analysis. A two-
tailed p-value < 0.05 was considered statistically significant.

3 Results

3.1 NMF distinguishes two subtypes of TNBC

Based on TCGA database and NMF algorithm analysis, we divided
TNBC into two subtypes with differentmetabolic characteristics. In this
study, 115 cases of TCGA-TNBC patients were screened.
Supplementary Table S2 showed clinical characteristics of TNBC
patients. Before analyzing the TNBC NMF algorithm, we used the
ComBat algorithm to eliminate batch processing effects in the TNBC
queue. And after deleting the batch processing effect, draw a key
element analysis diagram (Figure 1A). Previously, a total of
2,752 reported metabolic related genes (Possemato et al., 2011) were
screened and downloaded as the basis for analyzing metabolomics in
our study (Supplementary Table S3).

To identify subtypes in TNBC, Cox regression was used. A total
of 637 prognostic genes were obtained (Supplementary Table S4).
After a further adjusted p-value (p < 0.05), 277 candidate genes were
identified (Supplementary Table S5). We then used the NMF
algorithm to cluster the 277 candidate genes and drew the NMF
with two to five sets (Figure 1B). After comprehensive consideration,
the optimal clustering number (k value) was 2, defining two subtypes
C1 (n = 80) and C2 (n = 35). To verify the consistency between
subtype designations and two-dimensional distribution patterns, we
reduced the PCA dimension (Figure 1C). Subsequently, the same
conclusion was validated in the validation set (GSE25066,
GSE21653, and GSE103091, excluding METABRIC with a lack of
patient OS).

Finally, two TNBCmolecular subtypes were established.We also
used the survival information in the four queues to analyze the
subtype survival of TNBC subsets. The OS of C1 was verified better
than that of C2 in TCGA-TNBC patients (p = 0.014, Figure 1D) and
other datasets patients (GSE25066 and GSE103091) (p = 0.014 and
p = 0.017, respectively) (Figures 1E, G). No significant difference was
observed in datasets (GSE21653) (p = 0.15) (Figure 1F).

3.2 Association of TNBC subtypes with
metabolism-related signatures

In this study, we analyzed whether different TNBC subtypes
have their own characteristics in distinct metabolic pathways.
Firstly, we used the GSVA R package to score metabolic
pathways (Rosario et al., 2018) (Supplementary Table S6). Limma
difference test cross group was performed to confirm subtype-

specific differential metabolic pathways, and heatmaps were
constructed for visualization (Supplementary Figure S1).

Furthermore, the DEGs between two groups were detected by
GSVA enrichment again, and it was found that C1 and C2 had
specific metabolic characteristics (Figure 2A). There were
17 metabolism-related pathways in C2 that were significantly
upregulated, mainly involving pentose and glucuronate
interconversion, steroid hormone biosynthesis, tyrosine
metabolism, oxidative phosphorylation, ketone biosynthesis and
metabolism. Similar outcomes that 17 metabolism-related
pathways were activated in C2 were observed in the validation
datasets (GSE25066, GSE21653, GSE103091 and METABRIC)
(Supplementary Figures S2, S3). To determine the different
activities of metabolic pathways, we represented the two subtypes
in the TCGA-TNBC cohorts and validation cohorts and revealed
that C2 contained the highest activation of metabolic pathways in all
cohorts (Supplementary Figure S4).

In analyze the differences between the two subtypes in
carcinogenesis-related pathways, we counted the GSVA
enrichment points and plotted box-line plots. Eleven
carcinogenesis-related pathways were selected and quantified. The
results showed that different subgroups were closely related to the
activation of different carcinogenic signaling pathways, which
mainly involved cell cycle, PI3K, RTK-RAS, and angiogenesis
(Figure 2B). C2 displayed significant activation of the PI3K and
angiogenesis pathways. C1 had a stronger cell cycle, HIPPO, RTK-
RAS andWNT signature than C2. These differences in carcinogenic
pathway activity may affect their prognosis. After evaluating
whether the subtype was related to the tumor microenvironment,
it was found that the immune score of C1 was higher than that of C2
(p = 0.046), and the stromal score had no significant difference
(Figure 2C).

3.3 Association of TNBC subtypes with
immune infiltration

To evaluate the immune status of two subtypes, the MCP
counter and ssGSEA algorithm were used to estimate the
abundance of immune cells (Figure 3A). The results showed
significant differences between different immune cell groups
between the two subtypes (Figures 3B, C). Especially, the
immune value of C2 in most immune cells was obvious lower
than that of C1, except for neutrophils, fibroblasts and
Th17 cells. According to this study, C1 was rich in more
immune cells and had the highest immune score, which
indicated that differences in the distribution of different immune
cells may be the reason for the poorer prognosis of C2 than C1.

3.4 Association of TNBC subtypes with
clinical features

To explore the relationship between these subtypes and clinical
features, we analyzed the clinicopathological parameters between
the two subtypes and constructed a clinical information heatmap
of subtypes (Figure 3A). The results revealed that larger tumor
size (p = 0.007) and advanced pathologic stage (TNM III/IV stage)
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(p = 0.001) were related to the C2 subtype (Supplementary Table S7).
We also constructed a clinicopathological variables heatmap of
subtypes in the validation cohorts and presented detailed data

(Supplementary Figure S2; Supplementary Table S2). It is well
known that larger tumor size and advanced TNM stage represent
shorter survival in TNBC (Johansson et al., 2021).

FIGURE 3
Immune characteristics of the two subtypes in the TCGA datasets. (A) Expression heatmap of immune cell and stromal cell populations in two TNBC
subtypes. (B) Eight immune checkpoint genes in two TNBC subtypes. (C) Expression of different immune cells and stromal cells in C1 and C2 subtypes
(*p < 0.05, **p < 0.01).
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FIGURE 4
Relationship between TNBC subtypes and tumor mutation-related features. (A)Driver-type oncogenic mutations according to TCGA-TNBC typing
with intragroup aggregation waterfall plots (see detailed statistical analysis in Supplementary Table S8). (B) Violin plots of gene mutations. There was a
trend to show that the TMB of C1 was higher than that of C2, however there was no difference (p = 0.16). (C) Violin plots of predicted neoantigens. The
quantity between two subtypes were significantly different (p=0.0033). (D,E) Violin plots of copy number amplification and copy number deletion in
TNBC subtypes. Patients within C1 only showed higher amplification than C2 (p = 0.043).
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FIGURE 5
The landscape of somatic copy-number alterations in the two subtypes. (A) After adjusting p < 0.05, the genes with the most significant mutation
frequencies between C1 and C2 groups were displayed. Specifically, C2 had a significantly higher mutation frequency of PIK3CA, KMT2D, KMT2C, and so
on (see detailed statistical analysis in Supplementary Table S9). (B,C) Cytoband indicated differences in genomic copy-numbers between the two
subtypes, with red representing amplification and blue representing deletion.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2023.1224828

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1224828


3.5 Association of TNBC subtypes with
mutations and created heatmaps for
visualization

Breast cancer has been closely related to many genomic
mutations in the body (Kim et al., 2021). To investigate the
difference of somatic mutations frequency between TNBC
subtypes, we applied specific driver mutations for breast cancer
(Bailey et al., 2018) to estimate gene mutations and draw waterfall
map. High mutation frequencies of TP53, BRCA1, PIK3CA, PTEN,
FBXW7, NF1, RB1, KMT2C, and PTPRD in both TNBC subtypes
were observed (Figure 4A; Supplementary Table S8). We found that
C2 exhibited different mutation characteristics from C1. Specifically,

C2 has a higher mutation frequency, such as PIK3CA, KMT2D,
KMT2C, and so on (Figure 5A; Supplementary Table S9). We
calculated the TMB for each metabolic subtype (Figure 4B).
Although there was no difference (p = 0.16), a trend showed that
the TMB of C1 was higher than that of C2.We also analyzed the total
number of mutations and expected neoantigens (Figure 4C) and
observed a significant difference between them (p = 0.0033).
Subsequently, the frequency of amplification (Figure 4D) and
deletion (Figure 4E) was showed and found that patients within
C1 only showed higher amplification than C2 (p = 0.043).

Finally, we mapped a cell column to change the number of
copies of each group by performing online GISTIC2.0 analysis, in
which red represented gains and blue represented losses (Figures 5B,

FIGURE 6
Immunotherapy and targeted therapy sensitivity of different subtypes. (A) The box plots of sensitivity to chemotherapy drugs in the two subtypes.
The results indicated that C2 may not be sensitive to chemotherapy (All p < 0.001). (B) C1may be more effective to PD1 inhibitors (Bonferroni correction,
p = 0.02), and C2 may be more effective to CTLA4 inhibitors.
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FIGURE 7
Performance validation of predictive metabolic-genes, and expression signature and preliminary validation of AKR1B10. (A) A 100-gene classifier
was composed of the top 50 genes with significant differences in each TNBC subtype, and visualized by a heatmap. (B)Constructing a 100 gene classifier
for identifying TNBC classification. (C) Expression of AKR1B10 was significantly increased in peripheral blood of TNBC patients (***p < 0.0001). (D) IHC
score of AKR1B10. (E,F) The difference of tumor size and number of lymph nodemetastasis between AKR1B10 positive group and AKR1B10 negative
group (**p < 0.005). (G) AKR1B10 was significantly overexpressed in part of TNBC tissues. From left to right, they were HE staining, negative and positive
respectively (×200 in the upper section, ×400 in the lower section).
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C). Both C1 and C2 observed copy number alterations in
chromosome regions, including amplification at 11p13 and
deletion at 8p23.2, 9p21.3, 13q14.2, and 19p13.3. In contrast to
C1, C2 has significant amplification at 1q23.3 and 7p11.2. These
differences could also explain that C2 has a better prognosis than C1.
Therefore, changes in copy quantity might be the main mechanism
behind the differences in metabolism and prognosis between the two
group.

3.6 Specific sensitivity of TNBC subtypes for
potential therapy

The difference in sensitivity to chemotherapeutic drugs and
targeted drugs between two groups was analyzed by using the GDSC
drug sensitivity database. The top 12 drugs with differential
responses were plotted and listed (Figure 6A). After estimating
the IC50 value, we found that C2 may be less sensitive to
chemotherapy, including bleomycin, vinorelbine and doxorubicin
(all p < 0.001).

The different immune infiltration patterns among TNBC
subtypes suggested that further research on the response of
immunotherapy was needed. To this aim, we matched the
expression spectra of two subspecies to determine the similarity
of the TCGA reaction spectra (Figure 6B). The results indicate that
C1 may be more sensitive to PD1 treatment (p = 0.02), and C2 may
have a better therapeutic effect on anti-CTLA4.

3.7 Performance validation of one hundred-
gene classifier, and expression signature of
Aldo-Keto reductase family 1 member B10
(AKR1B10)

And then, we extracted the top 50 genes of each metabolic
specificity as biomarkers and constructed clinical models, and
plotted correlation heatmaps using MOVICS (Bailey et al., 2018)
package analysis. The classifier based on 100 genes was generated
and visualized by heatmap (Figure 7A; Supplementary Table S10). In
order to predict the identification of metabolic subtypes in each
sample, we conducted consistency testing on the results of the two
subtypes using the NTP algorithm and indicated that the
characteristics of these genes can be replicated to determine the
TNBC type (Figure 7B).

To better distinguish the two subtypes, we assume that
AKR1B10 was an effective biomarker for C2. RT-qPCR and IHC
staining were used to preliminarily verify this hypothesis.
AKR1B10 were overexpressed in peripheral blood of TNBC
patients than in healthy control (Figure 7C). IHC showed that
AKR1B10 were positive in 11 cases of TNBC, with a positive rate
of 36.7% (Figures 7D, G). The average tumor size of
AKR1B10 positive group was 2.2 cm from 0.8 to 3.5 cm, which
was higher than that of negative group (Figure 7E). In addition, the
number of lymph node metastasis in AKR1B10 positive group were
more than that in negative group (Figure 7F). Large tumor andmany
lymph node metastases often indicate poor prognosis of TNBC,
which was consistent with C2 subtype. These results were listed in
Supplementary Table S11.

4 Discussion

It is well known that the overall prognosis of TNBC is poor
(Bianchini et al., 2016). With the increased understanding of
metabolic reprogramming in breast cancer, traditional molecular
characterization is no longer sufficient to fully elucidate tumor
heterogeneity. As an important hallmark of tumors (Pavlova and
Thompson, 2016; Pavlova et al., 2022), metabolic reprogramming
may be beneficial to targeted therapy of TNBC. Recently, many
TNBC classifications methods have been proposed, but a consensus
on molecular taxonomy has not been reached. Thus, deeply
exploring the metabolic characteristics and heterogeneity of
TNBC is the key to providing provide precise treatment.

In this study, TNBC could be divided into two different
metabolic related subtypes. Each subtype had different metabolic
characteristics, prognoses, clinical features, tumor
microenvironment characteristics, and so an. For C1, it was rich
in immune signals and hardly involved in metabolic signals, gene
expression was relatively high at immune monitoring points and
scoring points. The increase of immunity and matrix indicated that
these patients were allergic to drug allergy containing PD-1
inhibitor. In contrast, the C2 subtype displayed high variation in
metabolism pathways involved in carbohydrate, lipid, and amino
acid metabolism and a lack of immune signatures, with late
pathological stage, weakened immunity and poor prognosis.

Our study indicated that C1 had abundant immune signatures
and that C2 had overactivated metabolic related pathways.
Considering the above results, we named C1 as the immune-
related subtype and C2 as the metabolically active subtype.
Subsequently, Patients in C2 had larger tumor size and later
pathological stages, which implied that their overall prognosis
were poor. The difference in metabolic characteristics and
immune infiltration might be the important reason for the
different prognoses of them. In this study, 17 associated
metabolic pathways were significantly upregulated in C2,
including pentose and glucuronate interconversions, oxidative
phosphorylation, amino acid metabolism, steroid hormone and
so on.

Previous studies have shown that glucose, amino acids and free
fatty acids are important energy sources for tumor growth (Pavlova
and Thompson, 2016), and metabolic disorders have a crucial
impact on cancer (Micalizzi et al., 2021). Oxidative
phosphorylation can promote distant metastasis and even induce
chemotherapy resistance in TNBC (Davis et al., 2020; Evans et al.,
2021). Tyrosine phosphorylation is an important mechanism for
regulating signal transduction pathways and is also a common
feature in oncogenic activation in cancer (Ostman et al., 2006;
Taddei et al., 2020). Hence, the relationship between TNBC
molecular subtypes may reveal the determining factors for TNBC
metabolic differentiation classification.

Recently, more and more studies have confirmed that the tumor
microenvironment (TME) plays an important role in the formation
of breast cancer (Reis et al., 2018). Neoantigens can regulate the
interaction between breast tumor cells and immune cells. This effect
is presented by antigen-presenting cells (APCs) (Harbeck et al.,
2019; Lhuillier et al., 2021). Although immune checkpoint inhibitors
have achieved great advances in TNBC treatment, it is necessary to
clearly distinguish which patients can benefit the most from this
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treatment (Li et al., 2021). Therefore, we compared the response to
immune checkpoints of two TNBC-subtypes to obtain the potential
significance of immunotherapy. Our results showed that C1 was
significantly superior to C2 in both immune cell infiltration and
neoantigens, which indicated that C1 has a higher response to
treatment targeting immune checkpoints. Due to the inconsistent
in carcinogenic signaling pathways, C1 may benefit from RAS
inhibitors and WNT inhibitors in the future, while C2 may
benefit from targeting PI3K and anti-angiogenesis. A series of
studies have shown that targeting RAS, WNT, and
PIK3 signaling pathways and angiogenesis are potential strategies
to enhance the efficacy of cancer therapy (Verret et al., 2019; Xu
et al., 2020).

In order to identify the molecular driving factors between two
groups, we noticed that C2 had significant mutation frequencies in
PIK3CA, KMT2D, KMT2C, and so on. Notably, C2 was
accompanied by special chromosome copy number alterations,
such as amplification at 7p11.2 and deletion at 9p21.3 and
13q14.2. Amplification at chromosome 7p11.2 (EGFR) can
promote the invasion and metastasis of breast tumors (Chen
et al., 2022). EGFR was overexpressed in metaplastic breast
cancer, and EGFR inhibitor was potential therapeutic agent for
metaplastic breast cancer with 7p11.2 amplification (Reis-Filho
et al., 2006). Patients with 9p21.3 deletion and concomitant
PIK3CA mutation were prone to recurrence and distant
metastasis (Bartels et al., 2018). The mutation frequency of
PIK3CA is only second to TP53 (Pascual and Turner, 2019). The
same characteristics were obtained in our study.

Multiple studies have clarified that PI3K inhibitors are beneficial
in enhancing the sensitivity of PIK3CA mutant TNBC to CDK4/
6 inhibitors (Asghar et al., 2017), and have a good effect on HR+
breast cancer carrying PIK3CA mutations (Di Leo et al., 2018),
which indicates the potential of combined targeted therapy. In this
study, C2 was not sensitive to a variety of chemotherapies and
immunotherapies, with high PI3K mutations and amplification at
7p11.2 (EGFR), suggesting that these TNBC patients may receive
good treatment outcomes after receiving PI3K inhibitors or EGFR
inhibitors. Previous studies have shown that When PIK3CA
mutates, the glutamate pyruvate transaminase 2 in colorectal
cancer (CRC) cells is significantly upregulated, thereby affecting
the reprogramming of glutamine metabolism (Hao et al., 2016). The
metabolites of glutamine can be used not only to produce ATP, but
also to synthesize certain macromolecules to promote tumor
formation. For example, the ATP concentration and ATP/ADP
ratio in PIK3CA mutant cells were higher. Mutations in PIK3CA
in adipose tissue can lead cells to acquire many characteristic
changes of cancer cells, such as increased glucose uptake,
enhanced Warburg effect activity, and increased synthesis of
oncogenic macromolecules (Ladraa et al., 2022). KMT2D
mutations can significantly alter the biosynthesis of various
metabolic products within cells, such as aerobic glycolysis and β-
Oxidation, degradation, and uptake of lipids (Koutsioumpa et al.,
2019). The above results indicate that these gene mutations can
promote the differentiation of C2 subtypes by affecting metabolic
reprogramming. Meanwhile, once these genes undergo mutations,
they will further promote tumor progression by altering the activity
of glucose and lipid metabolism in C2 patients. This may be the root
cause of poor prognosis in C2 patients.

Our study had some limitations. First, bioinformatic analysis of
metabolic and genomic alterations failed to pinpoint the precise
cause of the difference in prognosis between the two subtypes.
Second, the two subtypes classified according to immune and
metabolic conditions need to be functionally validated further.
Furthermore, the sensitivity of different subtypes of drugs must
also be validated through clinical trials to explore the feasibility of
translating these results into clinical practice. Finally, although it was
preliminarily verified to identify the subtypes of TNBC, data from
multiple centers and large samples will be needed to support this
conclusion in the future.

5 Conclusion

In summary, this study revealed differences in TNBC
metabolism and identified two subtypes. Subtype C1 was
abundant in immune signatures but barely active in metabolic
signatures, with higher gene expression at immune checkpoints
and higher immune and matrix scores. This indicated that the
C1 was allergic to PD-1 inhibitors. Subtype C2, on the other
hand, had a high variation in metabolic pathways and a lack of
immune signatures, as well as late pathological stage, low immune
infiltration and poor prognosis. By dividing TNBC into two clusters,
this study elucidated the reasons for the differences in prognosis of
TNBC from the perspectives of metabolism and immune response.
For the first time, we proved that C1 may be more sensitive to
immunosuppressive drugs. RAS inhibitors and WNT inhibitors,
whereas C2 may benefit from targeting PI3K and anti-angiogenesis.
Furthermore, AKR1B10 based on the one hundred-gene classifier
was a potential biomarker for identifying C2 subtypes. This provides
a theoretical basis for further rationalizing TNBC subtypes to
provide precise therapeutic strategies.
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SUPPLEMENTARY FIGURE S1
Heatmap of metabolic related characteristics in TCGA cohorts. Univariate
Cox regression was used to identify metabolic related genes related to OS
and visualized with heatmap.

SUPPLEMENTARY FIGURE S2
TNBC metabolic subtypes and tumor progression-related features in
validation datasets. Heatmap of all metabolism-related genes were
structured between two subtypes in the GSE25066 cohorts (A),
GSE21653 cohorts (B), GSE103091 cohorts (C) and METABRIC cohorts (D) to
verify the initial classification in TCGA cohorts. The results showed that the
classification was consistent.

SUPPLEMENTARY FIGURE S3
Association between 17 metabolism-related signatures and the TNBC
subtypes in validation datasets. There were 17metabolism-related pathways
in C2 that were significantly upregulated in GSE25066 cohorts (A),
GSE21653 cohorts (B), GSE103091 cohorts (C) and METABRIC cohorts (D).

SUPPLEMENTARY FIGURE S4
Validation of the differential activity of metabolic pathways between the
two subtypes. The nearest template prediction (NTP) indicated two
subtypes in TCGA-TNBC cohorts and validation cohorts, and
demonstrated that C2 subtypes from five cohorts had stronger metabolic
activity. Representing the two subtypes in the TCGA-TNBC cohorts (A),
GSE25066 cohorts (B), GSE21653 cohorts (C), GSE103091 cohorts (D)
and METABRIC cohorts (E).
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