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Introduction: Network-based methods are promising approaches in systems
toxicology because they can be used to predict the effects of drugs and
chemicals on health, to elucidate the mode of action of compounds, and to
identify biomarkers of toxicity. Over the years, the network biology community has
developed a wide range of methods, and users are faced with the task of choosing
the most appropriate method for their own application. Furthermore, the
advantages and limitations of each method are difficult to determine without a
proper standard and comparative evaluation of their performance. This study aims
to evaluate different network-based methods that can be used to gain biological
insight into the mechanisms of drug toxicity, using valproic acid (VPA)-induced
liver steatosis as a benchmark.

Methods: We provide a comprehensive analysis of the results produced by each
method and highlight the fact that the experimental design (how the method is
applied) is relevant in addition to the method specifications. We also contribute
with a systematic methodology to analyse the results of the methods individually
and in a comparative manner.

Results: Our results show that the evaluated tools differ in their performance
against the benchmark and in their ability to provide novel insights into the
mechanism of adverse effects of the drug. We also suggest that aggregation of
the results provided by different methods provides a more confident set of
candidate genes and processes to further the knowledge of the drug’s
mechanism of action.

Discussion: By providing a detailed and systematic analysis of the results of
different network-based tools, we aim to assist users in making informed
decisions about themost appropriatemethod for systems toxicology applications.
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1 Introduction

Proteins exert their function in the context of a molecular network of interactions with other
proteins and biomolecules that changes dynamically over time and space. The premise of network
biology is that it is possible to dissect biological function by identifying subnetworks or modules
representing the concerted action of its components within large-scale networks (e.g., representing
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gene co-expression, signalling, or protein interactions) (Barabási et al.,
2011; Liu et al., 2020). Identification of such modules has been proposed
as a cornerstone for precision medicine, as it enables us to gain an
understanding of disease mechanisms and move away from organ-
based, non-mechanistic disease classifications (Nogales et al., 2022).
Disruption of suchmodules can lead to disease phenotypes by interfering
with the function of its members or their relationships. Identification of
such modules and how they are perturbed by drugs can also help in the
elucidation of the mechanism of drug adverse events. Furthermore, this
approach can be applied to unravel the mechanism by which chemical
compounds present in the environment and consumer goods lead to
toxicity. Network-based approaches hold great promise in the area of
systems toxicology to unravel the mechanisms of toxicity (Taboureau
et al., 2020), identify mechanistic biomarkers (Callegaro et al., 2023), and
assess the effect of genetic variability in the susceptibility of drug adverse
reactions (Carss et al., 2022).

Network modules and subnetworks can be identified by different
methods including network clustering and community detection,
path-finding and network propagation algorithms (Cowen et al.,
2017; Liu et al., 2020). However, there is no clear guideline on
what the most appropriate method for its application in systems
toxicology is to unravel the mechanisms of drug or chemical-induced
toxicity. Usually, each methodology is described and evaluated
individually in its original publication, in different experimental
conditions and using different data and benchmarks, making it
extremely difficult to compare results among methods. With the
exception of community evaluation initiatives such as the DREAM
challenge for the identification of disease modules (Choobdar et al.,
2019), and other topics organized under the umbrella of the CAMDA
challenge (http://www.camda.info/), there is no community-led,
standard evaluation of network-based methods in the context of
systems biology or systems toxicology.

In this context, the goal of this study was to perform a systematic
evaluation of different network-based approaches that can be applied to
uncover the mechanisms of drug-induced toxicity in a systematic
manner. To accomplish this goal, we selected a well-characterized
drug-induced adverse effect in terms of mechanistic description to
be used as a benchmark for comparison of the results obtained (liver
steatosis as a result of valproic acid treatment). The interpretation of the
results of a network-based approach usually requires analysis and
functional interpretation of a large set of genes, which can be
facilitated by gene over-representation or enrichment analysis using
a variety of functional annotation databases. However, the results of
such enrichment analysis can also be cumbersome and tedious due to
the large number of statistically significant terms that can be obtained.
To overcome this challenge and support the reproducibility of the
analysis, we present a systematic approach to analyzing the results of
each method, comparing them with each other, and obtaining a
consensus among all methodologies. By applying this systematic
approach, we analyzed the results obtained by each methodology, as
well as a comparison among them. Finally, we combined the results
obtained by the different methods to generate a network of genes,
biological processes, their interrelations, and associations to the drug
and adverse outcome, that can be used to propose novel insights into the
biological processes and candidate genes underlying valproic acid
(VPA)-induced liver steatosis.

2 Materials and methods

2.1 Case study: liver steatosis as a result of
treatment with VPA

VPA is a short-chain fatty acid, an anticonvulsant that is
prescribed to treat epilepsy but also neuropathic pain, migraine,
bipolar disorder, spinal muscular atrophy, leukaemia and some solid
tumours (Di Pasqua et al., 2022). VPA can cause several adverse
effects, such as dizziness, tremor, nausea, endocrinological disorders,
obesity, insulin resistance, weight gain, and hepatotoxicity (Farinelli
et al., 2015). VPA-hepatotoxicity has three main clinical
manifestations: hyperammonemia, acute hepatocellular injury and
Reye-like syndrome, all presenting mitochondrial injury and
microvesicular steatosis (Di Pasqua et al., 2022). The AOP wiki
(AOP Wiki, http://aopkb.org, version March 2022) provides several
AOPs describing the different processes that lead to liver steatosis.
This knowledge resource was used as a benchmark to compare the
results obtained by the network-based approaches applied in our
study. Ten AOPs were selected: LXR activation leading to hepatic
steatosis (AOP:34), Peroxisomal Fatty Acid Beta-Oxidation
Inhibition Leading to Steatosis (AOP:36), AhR activation leading
to hepatic steatosis (AOP:57), NR1I3 (CAR) suppression leading to
hepatic steatosis (AOP:58), HNF4alpha suppression leading to
hepatic steatosis (AOP:59), NR1I2 (Pregnane X Receptor, PXR)
activation leading to hepatic steatosis (AOP:60), NFE2L2/FXR
activation leading to hepatic steatosis (AOP:61), AKT2 activation
leading to hepatic steatosis (AOP:62), NFE2/Nrf2 repression to
steatosis (AOP:232), Glucocorticoid Receptor activation leading
to hepatic steatosis (AOP:318). From those AOPs we obtained
33 unique genes that will be used for the gene enrichment
analysis (Supplementary Table S1). A manual review of the genes
involved in each AOP event (Molecular Initiating Event(s), Key
Event(s) or Adverse Outcome(s)) was performed. Part of the gene-
event association was extracted from the bibliography (Aguayo-
Orozco et al., 2019), and the rest of the associations were extracted
either from the Event title (when the gene is explicitly named in the
KE) or from the bibliography provided in the AOPWiki database.

2.2 Human interactome

The human protein interaction network or interactome was
obtained from the Multiscale Interactome repository (Ruiz et al.,
2021) (https://github.com/snap-stanford/multiscale-interactome, file
3_protein_to_protein.tsv), which integrates data from seven
databases. The interactome includes physical interactions among
human proteins supported by experimental evidence. Indirect and
genetic interactions between proteins and self-interacting proteins
were not included (Ruiz et al., 2021). The MI Score from IntAct (a
quantitative estimation of the confidence for a given interaction
among proteins) was assigned to the edges of the network,
resulting in a weighted, undirected interactome. The protein
interactome network comprising a total of 17,660 proteins and
387,626 edges was used as a network scaffold for the different
network-based approaches considered in this study.
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2.3 Selection of VPA targets and steatosis-
related genes

The human protein targets of Valproic Acid (VPA) were
obtained from ChEMBLv29 (Davies et al., 2015; Mendez et al.,
2019), Comparative Toxicogenomics Database (CTD) (06/01/2022)
(Davis et al., 2023), Papyrus (Version 2, 01/11/2022) (Béquignon
et al., 2023), DrugBank (04/01/2022) (Wishart et al., 2018), and
DrugCentral (10/03/2022) (Ursu et al., 2016). For ChEMBLv29, we
selected associations with type of target “SINGLE PROTEIN” and
discarded all associations with potential errors in their validations
(data_validity_column from ChEMBLv29), confidence scores below
7 (the confidence score value reflects both the type of target assigned
to particular assay and the confidence that the assigned target is the
correct one for that assay), and non-active compound (labels not
active, and inactive). The associations without both compound
activity labels and pChembl values were filtered out. Finally, we
converted the UniProt IDs from ChEMBLv29 to NCBI Gene IDs
using https://www.uniprot.org/uploadlists/. From CTD, only direct
associations (ex: VPA increases the activity of protein Y) and those
associated with proteins were selected. The associations due to
changes in gene expression, response to a substance, mutagenesis,
abundance, oxidation, chemical synthesis, and stability were
discarded. Also, we filtered out all contradictory associations
(VPA activates/inhibits the same protein). For Papyrus, all VPA-
gene associations labelled as “high-quality” were selected. For
DrugCentral, we filtered out all VPA-gene associations without
activity value and Inchikey.

All sources were combined using the VPA Inchi key. Then, all
duplicated interactions, proteins without NCBI Gene ID, and

interactions with VPA targets not included in the human
interactome network were discarded. Finally, we obtained
70 VPA human protein targets (Supplementary Table S1).

The genes associated with liver steatosis were obtained from
DISGENET plus v17.4 (Piñero et al., 2019), including the following
UMLS Metathesaurus concepts: Nonalcoholic Steatohepatitis
(C3241937), Steatohepatitis (C2711227), Microvesicular hepatic
steatosis (C1850415), Macrovesicular hepatic steatosis
(C1837256), Diffuse hepatic steatosis (C1849686), Non-alcoholic
Fatty Liver Disease (C0400966), Fatty Liver (C0015695). We
obtained a list of 1918 genes associated with at least one of liver
steatosis concepts, from which 1772 genes were included in the
human interactome network. From now on, we will refer to this set
of 1772 genes as liver steatosis-associated genes.

The list of VPA targets and liver steatosis genes is provided in
Supplementary Table S1.

2.4 Network-based methods

2.4.1 Network clustering and cluster analysis
Community detection algorithms are widely used in order to find

groups of genes (namely, clusters, modules or communities) that
represent coherent biological functions (Figure 1A). Different
algorithms can be applied to cluster biological networks. MONET
toolbox (Choobdar et al., 2019; Tomasoni et al., 2020) provides the
three top-performing clustering methods from the DREAM challenge
for disease module identification. Concretely, the K1 method applies a
kernel clustering optimization and achieves the best performance to
identify disease modules in the DREAM challenge for disease module

FIGURE 1
Network-based approaches used in this study. (A)Community detection algorithms cluster the nodes in differentmodules based on the topology of
the network. We used the K1 method fromMONET. (B)GUILD uses a combination of network propagation algorithms to rank candidate genes based on
their connectivity to seed genes (red). Genes in close proximity to the seeds are more important (orange) than distant nodes (yellow and grey). (C) iPath
leverages the Steiner tree algorithm to generate a subnetwork minimizing the linker nodes required (orange) to connect all seed nodes (red). (D)
Network diffusion profiles provide the visitation frequency of nodes starting from seed nodes (red, for instance, drug targets or disease-associated genes).
In the example, orange nodes have higher visitation frequency values than yellow or grey nodes. Then, diffusion profiles are compared to identify those
that are more similar and can provide biological insight into the effect of drugs. The Multiscale interactome follows this strategy over a heterogeneous
network.
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identification. K1 relies on the Diffusion by State Distance (DSD)
method (Cao et al., 2014) that assumes that paths through low-
degree nodes are more informative of functional similarity than paths
that traverse high-degree nodes (hubs), and therefore overcomes the “ties
in proximity” problem of biological networks (Arnau et al., 2005).

The Largest Connected Component (LCC) network was
clustered using MONET K1 method using the Intact MI score as
edge weight (17,660 nodes and 387,626 edges). The functional
annotation of clusters was conducted with g:Profiler (Raudvere
et al., 2019) using customized gene sets from DISGENET plus
v17.4 (https://www.disgenetplus.com/) and the Comparative
Toxicogenomics Database (CTD). Clusters were selected for
downstream analysis by their annotation with at least one of the
liver steatosis concepts (Diffuse hepatic steatosis, Fatty Liver,
Macrovesicular hepatic steatosis, Microvesicular steatosis, Non-
alcoholic Fatty Liver Disease, Nonalcoholic Steatohepatitis, and
Steatohepatitis), association with Valproic acid (CTD:D014635),
and inclusion of VPA targets. Clusters were prioritized using
CRANK (version 03/08/2017) (Zitnik et al., 2018), a tool that
evaluates the robustness and magnitude of structural features of
each module such as the connectivity within and between clusters,
and then combines these features into a score. To execute CRANK,
we used the MONET output as Community affiliation data (c), the
edges without probabilities (MI Scores) as input edged list (i), and
the same file with probabilities (ie).

2.4.2 GUILD
GUILD is a network-based prioritization software originally

designed for the identification of novel candidate disease genes
based on their connectivity to previously known disease genes in
the interactome (Guney and Oliva, 2012; Aguirre-Plans et al., 2019).
It relies on a protein interactome network and includes a variety of
network propagation methods to identify molecular networks
underlying human diseases and their comorbidities (Figure 1B).
GUILD requires two files, the edge file, which is the interactome file
(with MI Scores, see section Human Interactome), and the node file.
The node file includes all genes from the edge file, where the seeds
are labelled as 1 and the remaining nodes as 0.1. Our experimental
setting defined VPA targets and liver steatosis genes as seeds. The
rationale behind this design was to identify a network
neighbourhood around the set of seed genes (VPA targets and
liver steatosis genes) in the interactome network that could
represent the protein interaction sub-network that underlies the
adverse effect elicited by the drug. Note that other experimental
designs could be applied (see below in the iPath section). GUILD
was run according to developer recommendations using NetCombo
(http://sbi.imim.es/web/index.php/research/software/guildsoftware). All
genes with a prioritization value ≥0.8 were selected for the gene
enrichment analysis. The seed nodes usually receive the higher
scores, followed by other prioritized genes. Note that prioritized
genes can be directly or indirectly connected to the seed gene
through more than one linker node (Lenselink et al., 2017).

2.4.3 iPath
Among path-finding algorithms, the Steiner tree algorithm (Rintala

et al., 2022), generates a subnetwork that minimizes the costs required to
connect a given set of seed genes within the network (Figure 1C). The
Steiner tree algorithm has been successfully applied to identify the role of

protein COS8 in sphingolipid biosynthesis and TOR signalling (Bailly-
Bechet et al., 2011) or the association of beta-arrestin 1 and beta-arrestin
2 in the human smooth muscle cells treated by DNase I (Gwinner et al.,
2013).

The iPath modelling approach aims at identifying cellular pathways
involved in drug toxicity, providing mechanistic hypotheses for drug
adverse events (https://bio.tools/ipath_IMIM). iPath implements the
Steiner tree algorithm (Rintala et al., 2022), a path-finding algorithm,
to obtain a subnetwork from a larger network minimizing the cost
required to connect a given set of seed genes within the network. We
applied iPath to find the minimum-sized subnetwork that connects the
drug targets (used as seeds) through proteins associated with the
phenotype of interest (steatosis-associated proteins) and other
proteins that are potentially involved in the adverse phenotype
(linker proteins). We used all the VPA targets as seeds for iPath, and
the genes associated with Steatosis as the linker disease proteins. As the
interactome, we used the MSI human interactome file (see below). The
subnetwork retrieved by iPath connects all seed proteins and includes as
linkers some of the steatosis proteins.

2.4.4 Multiscale interactome (MSI)
Network diffusion approaches, such as randomwalk, spread a signal

through the network emulating a “walker” from one node to another
(Cowen et al., 2017; Liu et al., 2020) (Figure 1D). The Multiscale
interactome (MSI) (Ruiz et al., 2021) is a good example of the
application of biased random walks on a heterogeneous network to
model how the effect of a drug or the disease perturbation spread
through a hierarchy of biological processes and protein interactions. A
diffusion profile is computed by biased random walks that start at the
drug or disease node over the heterogeneous network. As such, a drug
diffusion profile identifies key proteins and biological processes involved
in each drug’s effect. Then, by comparing drug and disease diffusion
profiles, the MSI provides an interpretable basis to identify the proteins
and biological processes that explain drug effects on disease. We
modified the MSI approach to incorporate new datasets, and edge
weights and to apply it to drug toxicity (manuscript in preparation).
The heterogeneous network underlying the MSI integrates different
node types and their interactions: proteins, a full hierarchy of biological
processes, drugs, diseases, and their symptoms andmanifestations. From
the original MSI network implementation (https://github.com/snap-
stanford/multiscale-interactome), the data on compound-target and
gene-disease associations were updated. Chemical-protein interactions
were obtained from ChEMBLv29 database (18/02/2022) (Davies et al.,
2015; Mendez et al., 2019) using the assay and activity tables, which
include experimental data from the literature. The tables were combined
using the “Assay ID”, and the information of targets and drugs through
“Molregno ID”. In addition, we included the drug mechanism table, a
manually curated dataset that integrates the putative therapeutic targets.
The studies that evaluate the effect of compounds on human proteins
were selected. Then, the studies focused on protein complexes, chimeric
proteins, protein-nucleic acid complexes, protein families, and those
studies which evaluate the drug against a protein-protein interaction
were removed. All associations with errors in their validations,
confidence scores below 7, potential duplicates, uncertain compound
activities (according to the following labels: Inconclusive, not active,
inactive, not determined, indeterminate, ineffective, lack of solubility, no
compound available, no compound detectable, no data, non-valid test,
not assayed, not detected, qualitative measurement, precipitate, too
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insoluble, unable, approximate value, unspecified, uncertain, insoluble,
not evaluated, TDE, not tested) were removed. The drug_mechanism
from ChEMBLv29 is a manually curated source with putative
therapeutic targets, but has no pChembl value. A median pChembl
value (7.92) was obtained from those associations that overlapped
between the drug_mechanism table and the assay/activity tables (as
explained above). This pChembl value was included in all interactions
from the drug_mechanism table without the pChembl value. Then, the
drug_mechanism table and assay/activity tables were combined. Finally,
the pChembl score was divided by 10 to have it on the same scale as the
MI score (IntAct).

The uniprotIDs identifying Chembl targets were converted to NCBI
Gene IDs using the https://www.uniprot.org/uploadlists/webpage. The
gene symbols were downloaded from https://ftp.ncbi.nih.gov/gene/
DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz and
included in our dataset using the NCBI Gene ID. To obtain
universal compound IDs, the ChEMBL IDs were converted to Inchi
keys using the chembl_29_chemreps.txt file downloaded fromChEMBL
(https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/). The
ChEMBL ids were maintained for those compounds without the
Inchi key. After harmonizing the IDs, we filtered out the duplicated
interactions. Finally, we selected all chemical-target interactions
involving proteins included in the 3_protein_to_protein.tsv file
(human interactome file).

The Gene-Disease Association (GDA) data was obtained from
DISGENET plus (v17.4) (https://www.disgenetplus.com/). We only
considered gene-disease associations whose proteins were included
in the protein interaction dataset (human interactome file).

We modified the diffusion profile algorithm by incorporating
confidence scores on the edges between nodes. The MSI relies on a
biased random walk algorithm to propagate the effect of a drug or a
disease through the network, using optimized edge weights (wt). The
edge weights encode the relative importance of nodes of different
types. M is the biased transition matrix, and each element Mij

denotes the probability pij that a random walker jumps from
node i to node j rather than to another adjacent node of type t.
We introduced confidence scores (uij) of the edges between nodes in
pij: for interactions among proteins, the MI score from IntAct; for
chemical-protein associations, the pChembl; and for disease-protein
associations, the DISGENET score. In the case of the associations
between biological process-biological process and biological
process-protein, we assigned a score of 0.4. The Mij was
computed as follows: Let nt be the number of adjacent nodes of
type t and wt the scalar weight of node type t.

Mij � pi→j �
wt p uij( )

nt

The final heterogeneous network comprises 648,822 nodes and
5,134,150 edges. The nodes are from different types: 17,660 proteins,
590,182 drugs, 31,182 diseases, and 9,798 biological processes.

The MSI was executed based on developer recommendations
computing the diffusion profiles for VPA and each Steatosis concept
(Nonalcoholic Steatohepatitis (C3241937), Steatohepatitis (C2711227),
Microvesicular hepatic steatosis (C1850415), Macrovesicular hepatic
steatosis (C1837256), Diffuse hepatic steatosis (C1849686), Non-
alcoholic Fatty Liver Disease (C0400966) and Fatty Liver (C0015695)).

2.5 Identification of the key proteins and
biological processes for VPA-steatosis
disorders

The diffusion profiles can provide biological insight on how
drugs lead to diseases, by pinpointing the key proteins and Biological
Processes (BP) involved in the drug effect. These key proteins and
BP can be obtained by computing the Treatment Importance (TI), as
the product of the visitation frequency of the corresponding protein
(or BP) in the drug and disease diffusion profiles as described in (12).
We computed the TI for each Steatosis concept (Nonalcoholic
Steatohepatitis (C3241937), Steatohepatitis (C2711227),
Microvesicular hepatic steatosis (C1850415), Macrovesicular
hepatic steatosis (C1837256), Diffuse hepatic steatosis
(C1849686), Non-alcoholic Fatty Liver Disease (C0400966), Fatty
Liver (C0015695)) and VPA from their respective diffusion profiles.
We selected the top 1,000 proteins with high TI for gene enrichment
analysis.

2.6 Gene enrichment analysis with GO
biological processes

To gain insight into the biological processes in which the
candidate genes are involved, the gene sets recovered by the
4 network-based methods were analyzed with TopGO (Alexa
et al., 2006), and Revigo (Supek et al., 2011). These tools were
combined to ease the interpretation of the results of the enrichment
analysis, which usually leads to long lists of significantly enriched
GO terms. TopGO performs gene enrichment analysis with GO
terms taking into account the topology of the GO graph and
therefore enables accounting for similarities and redundancies in
GO terms. TopGO was executed using the elim method, using
GUILD scores for the genes in the interactome and the set of
genes obtained for each network-based method (from now
“candidate genes”). We customized the annotation dataset using
the GMT g:Profiler file (gprofiler_full_hsapiens.ENSG.gmt (date 11/
10/2022)). The ENSEMBL IDs were converted to NCBI gene IDs
using the https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz file. The genes without
NCBI gene IDs were discarded. Finally, the file format of the
custom annotation dataset, the gene list of the interactome, and
the candidate genes were generated according to developer
recommendations (https://bioconductor.org/packages/release/bioc/
vignettes/topGO/inst/doc/topGO.pdf). TopGO was executed using
the Biological Process (BP) category from the Gene Ontology,
discarding GO terms with less than 5 annotated genes. Then, GO
terms with a Fisher test p-value below 0.01 were selected as input for
Revigo. In the case of the clusters obtained with MONET, each one
of the six clusters selected were analyzed with TopGO individually.

Revigo enables summarizing the results of the enrichment
analysis by clustering the resulting GO terms by semantic
similarity and providing a representative GO term for each
cluster. The result of Revigo is a set of clusters of GO terms.
Each GO cluster is represented by the most significant GO term
(“representative GO term”). After running Revigo, GO clusters with
at least 3 GO terms were used for downstream analysis.
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Finally, the similarity among GO clusters was assessed by
computing the Jaccard Index among pairs of clusters. GO
clusters with a Jaccard Index higher than 0.4 were considered
similar.

The Jaccard Index was computed as follows between the set of
GO terms from clusters A (A) and the set of GO terms from cluster
B (B):

JIAB � A ∩ B| |
A ∪ B| |

Comparison among different network-based approaches.
The comparison of gene sets and biological processes obtained

from different network methods was performed in R version
4.2.0 using UpSetR (Conway et al., 2017) to evaluate the overlap
between datasets/subnetworks generated with each approach.

We selected the candidate genes identified by at least two
network-based approaches that were not directly associated with
steatosis or VPA targets for further inspection. We refer to these
genes as “novel candidate genes”. We used the Human Protein
Atlas (HPA) (Uhlén et al., 2015) (https://www.proteinatlas.org/
about/download/rna_tissue_consensus.tsv.zip) to assess if these
genes are expressed in the liver by selecting genes with an NX
score >0 in liver tissue. Finally, the gene enrichment strategy
(section “Gene enrichment analysis with GO Biological
Processes”) was applied to annotate the novel candidate genes
using the Biological Processes terms from the Gene Ontology.

GO terms with a p-value of <0.01 and GO clusters with ≥3 GO
terms were used for the analysis. The Jaccard Index was computed
(details in section “Gene enrichment analysis with GO Biological
Processes”) to compare the GO clusters obtained from Revigo. After
computing the Jaccard index, the GO clusters were combined in GO
groups. The GO groups selected for downstream analysis have to
fulfill at least one of the following conditions: 1- Groups containing
GO clusters from the four methods, 2- Groups with GO clusters with
a Jaccard Index ≥0.4, and 3- Groups that share the
“representative GO term” (obtained by Revigo) with at least two
GO clusters.

Finally, the GO clusters that belong to the selected groups were
compared with GO clusters from the Steatosis AOP using the
Jaccard Index.

The R function “logisticPCA” from logisticPCA library was used
to perform a Principal Component Analysis (PCA) for count data.
Just the groups with one GO cluster for each network method were
included in the analysis. The biological processes from groups were
the PCA components.

2.7 Network representation of novel
candidate genes

A representative network was generated to illustrate how the novel
candidate genes and selected biological processes are related to the liver
steatosis AOPs genes. The novel candidate genes and selected GO
groups were used to develop a heterogeneous network including the
33 genes from the liver steatosis AOPs. For the network representation,
only the biological processes that overlapped with the 26 novel
candidate genes and the 33 genes obtained from liver steatosis
AOPs were selected.

The network was generated using as seeds the novel candidate
genes, selected GO groups, and 33 genes from the steatosis AOP and
the heterogenous network as a scaffold (as described in the section
“Multiscale interactome (MSI)”). The shortest paths between the
novel candidate genes and VPA targets and liver steatosis genes were
extracted using the function “all_shortest_paths” from networkx
version 2.3. From all possible shortest paths among selected nodes,
we kept those paths including at least one of the liver steatosis AOPs
genes. In addition, we selected randomly one shortest path for the
novel candidate genes that did not fulfil the previous condition. The
novel biological processes were integrated based on the overlap
between the genes recovered in the shortest path selection and the
GMT file that include the biological process gene sets (section “Gene
enrichment analysis with GO Biological Processes”). Cytoscape
version 3.9.1 was used for the network representation.

3 Results

This study aims at evaluating different network-based methods that
can be applied to provide biological insights into how a drug can lead to a
disease phenotype. We expect that analyzing in a systematic manner the
results obtained from applying them to a case study will help users in
selecting the most appropriate method to support research on the
mechanisms of drug toxicity. Different network-based approaches
can be used to identify the molecular networks perturbed by drugs
and chemicals and how they lead to disease phenotypes (Figure 1). We
present a framework to compare the results of the different methods in a
systematic manner and to propose candidate genes for downstream
analysis and validation. Using as a case study liver steatosis induced by
VPA, the following network-based methods were evaluated: 1) a
community detection algorithm, that clusters the genes based on
their connectivity in the interactome followed by cluster selection
rules, 2) GUILD, a network-based prioritization method based on
network propagation algorithms, 3) iPath, based on the Steiner tree
algorithm, that identifies the subnetwork that connects the largest
fraction of seed genes within the interactome, and 4) Multiscale
interactome (MSI), which relies on comparison of diffusion profiles
over a multiscale network (Figure 1; Table 1).

Figure 2 presents the proposed workflow to evaluate the results
obtained by each network-based method and the strategy followed for

TABLE 1 Network-based method and their input data.

Input MONET GUILD iPath MSI

VPA targets ✓* ✓ ✓ ✓

Liver steatosis genes ✓* ✓ ✓** ✓

Interactome network ✓ ✓ ✓ X

Heterogeneous network X X X ✓

The scaffold network and the input data for each method are indicated. MONET partitions

the interactome into clusters and the clusters are selected by their enrichment in liver

steatosis genes and Valproic Acid (VPA) targets. The Multiscale Interactome (MSI)

compares the diffusion profiles for VPA and liver steatosis from the multiscale network.

iPath identifies a subnetwork that connects the seed genes (in this case VPA targets),

prioritizing liver steatosis genes as linkers within the interactome. GUILD prioritizes

candidate genes using as seed genes both VPA targets and liver steatosis genes.*Used to

select clusters annotated with these lists of genes ** Used as preferred linker genes.
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the enrichment analysis and comparison with current knowledge on
VPA-induced liver steatosis. Using the interactome network as a
scaffold, each network-based method provided a set of candidate
genes that were analyzed by gene enrichment analysis tools to
uncover the biological processes in which these genes are involved. A
combination of enrichment tools and filtering processes was
implemented to provide a coherent description of the biological
processes that represent the lists of candidate genes. In particular,
Revigo was used to summarize GO terms into GO clusters based on
their semantic similarity. Next, the clusters ofGO terms of each network-
based method were combined into similar GO groups to obtain a
coherent description of GO terms. Finally, a set of novel genes and
biological processes are proposed as candidates for the biological
mechanism underlying the effect of VPA on liver steatosis (Figure 2).

The rest of the manuscript is organized as follows: first, we present
the results of applying each network-based method individually to the
case study, second, we present the results of performing a systematic
comparison of the results between the different network-based
methods, and finally, we propose a candidate network for VPA-
induced liver steatosis including genes and biological processes

obtained from the consensus of the different methods used in this
study. The advantages and limitations of each methodology are
presented in the Discussion section.

3.1 Clustering approach (MONET)

The clustering of the interactome was performed with the
K1 method from MONET, a tool resulting from the DREAM
challenge on clustering approaches for disease module identification
(Tomasoni et al., 2020). The clustering approach consists of grouping
the genes from the network into modules that represent coherent
biological functions. The Largest Connected Component of the
interactome was used as a network scaffold (17,660 nodes and
387,626 edges). Once a network partition was obtained with the
K1 method from MONET, 473 of 1,486 clusters with more than
5 genes were selected for downstream analyses. After the annotation
with g:Profiler, we found 26 clusters associated with at least one of the
following liver steatosis concepts: Diffuse hepatic steatosis, Fatty Liver,
Macrovesicular hepatic steatosis, Microvesicular steatosis, Non-

FIGURE 2
Workflow of the strategy followed in this study. a) The candidate gene sets are recovered after interrogating the network by each tool. A gene
enrichment analysis was performed with TopGo, followed by GO term clustering with Revigo. The clusters of GO terms are represented as “bags”.
Different GO clusters (bags) can be obtained from each set of genes obtained by each network method. Finally, the GO clusters from different methods
are combined in GO groups following the rules exposed in the section “The network approach comparisons”. With novel biological processes
(purple) and candidate genes (yellow), a new hypothesis can be created to describe the effect of Valproic acid (VPA) (green) on liver steatosis (red).
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alcoholic Fatty Liver Disease, Nonalcoholic Steatohepatitis, and
Steatohepatitis. Finally, 6 clusters were selected based on enrichment
with VPA targets (clusters 574, 1,194, 1,237, 1,315, 1,316, 1,330). The
robustness of these clusters for downstream analysis was supported by
CRANK values, showing high values for all 6 clusters (between 0.87 and
1). Particularly, cluster 1,194 has a CRank of 1, indicating that it is stable
against network perturbations. Note that this experimental design
assumes that clusters of interest must contain both drug targets and
disease genes.

The selected 6 clusters contain 6%of Liver Steatosis genes and 16%of
VPA targets (Table 2). After annotating with TopGO the 6 clusters
individually, 548GO termswith a p-value <0.01 were obtained (Table 3).
Clusters 1,194 and 1,330 have the most similar GO terms with
13 overlapping annotations. In particular, the GO term “positive
regulation of transcription by RNA polymerase II (GO:0045944)” is
the most significant in both clusters, which agrees with the results
obtained with the MSI approach. The other 4 clusters are associated
with different terms, for instance, acute-phase response (GO:0006953)
for cluster 1,315, protein autophosphorylation (GO:0046777) for cluster
1,237, mitochondrial translation (GO:0032543) for cluster 574, and
negative regulation of endopeptidase activity (GO:0010951) for
cluster 1,316.

Revigo was used to cluster the GO terms in GO clusters. 196 GO
terms out of 548 were grouped in 80 GO clusters, where 23 clusters
had ≥3 GO terms (Table 3). After comparing the overlap between
23 GO clusters, the Jaccard Index was 0 for all clusters, showing that the
6 clusters represent distinct biological functions. For example, the

largest GO clusters for each of the 6 MONET clusters were the
following ones: For cluster 574 the mitochondrial translation (GO:
0032543), for cluster 1,194 the positive regulation of fatty acid oxidation
(GO:0046321), for cluster 1,237, toll-like receptor 4 signaling pathway
(GO:0034142), for cluster 1,315, the regulation of triglyceride catabolic
process (GO:0010896) and complement activation, classical pathway
(GO:0006958), for cluster 1,316, omega-hydroxylase P450 pathway
(GO:0097267), and cluster 1,330 the RNA polymerase II preinitiation
complex assembly (GO:0051123).

Finally, the results of the GO enrichment analysis of the
MONET clusters were compared with the enrichment analysis of
liver steatosis AOPs. 69 of 178 GO terms annotated with TopGO
using the liver steatosis AOPs genes overlapped with the results
of the enrichment analysis of the 6 MONET clusters. Cluster
1,194 shared 46 of the 69 GO terms, and included the most
significant GO terms recovered by the gene enrichment of liver
steatosis AOPs. Only one GO cluster has a Jaccard Index above
0.4 (Jaccard Index 0.5, cluster 1,194, associated with fatty acid
oxidation and the biosynthetic process of fatty acids and lipids)
when compared to the GO clusters from the liver steatosis AOPs
genes.

3.2 GUILD approach

We applied GUILD using as seeds the list of VPA targets and
liver steatosis genes to prioritize genes potentially involved in VPA-

TABLE 2 Number of genes recovered by each method and comparison with VPA and steatosis genes.

Network
method

Total
genes

VPA targets
recovered
(n = 70)

Steatosis proteins
recovered (n =
1772)

Unique VPA and
steatosis targets
recovered (n = 1808)

Overlap with
steatosis AOP
genes (n = 33)

New gene
candidates for
steatosis induced
by VPA

MONET 421 11 (16%) 111 (6%) 114 (6%) 10 (30%) 307 (73%)

MSI 1,000 29 (41%) 571 (32%) 576 (32%) 25 (75%) 424 (42%)

iPath 126 69 (99%) 85 (5%) 120 (7%) 5 (15%) 6 (5%)

GUILD 823 25 (36%) 817 (46%) 823 (46%) 24 (72%) 0 (0%)

Totals (unique) 1761 69 (99%) 1,015 (57%) 1,050 (58%) 29 (88%) 710 (40%)

The column “Total genes” shows the number of genes recovered by each method, while the columns that follow show the number of genes that overlap with each gene set: VPA targets, liver

steatosis genes, and steatosis AOP genes. The last column shows the number of gene candidates obtained by each method, with percentages shown with respect to the total number of genes

recovered by each method.

TABLE 3 Gene enrichment analysis with the Gene Ontology (Biological Process).

Network
method

Num
genes

Num
biological
processes

Num biological
processes
clustered

Num of GO
clusters
(Revigo)

Num GO
clusters ≥3 GO
terms

Num biological processes
in GO clusters ≥3 GO terms

MONET 421 548 196 80 23 82

MSI 1,000 1814 1,259 307 172 989

iPath 126 402 182 63 29 114

GUILD 823 1,529 1,017 253 146 803

The statistics of the enrichment analysis results are shown, indicating the number of significant terms obtained for each list of genes. The Multiscale Interactome (MSI) and GUILD methods

recover more GO clusters with at least 3 GO terms. Details on the GO terms obtained for each method are provided in Supplementary Table S2 and Supplementary Table S3.
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induced liver steatosis (Table 1). A set of 823 genes was obtained
with a prioritization score ≥0.8. From these 823 genes, 25 genes
overlapped with VPA targets and 817 with liver steatosis-associated
proteins (Table 2). Compared to other approaches, all genes
provided by GUILD were already associated with VPA or liver
steatosis. Finally, 24 of 33 genes from the liver steatosis AOP were
recovered with the GUILD approach.

By gene enrichment analysis a list of 1,529 biological processes
with a p-value ≤0.01 was obtained, the three biological processes
with high p-values were also obtained with the MSI approach
(negative/positive regulation of transcription by RNA polymerase
II and positive regulation of gene expression (GO:000122, GO:
0045994, GO:0010628)). Following the analysis with Revigo,
1,017 of 1,529 biological processes were clustered in
253 modules, with 58% of them having ≥3 GO terms (Table 3).
Particularly, the largest cluster sizes with 18 GO terms, are associated
with a glycolytic process, lipid biosynthetic process, and ERK1/
2 activity.

One-hundred-fifteen out of 178 GO terms overlapped between
Steatosis AOP gene enrichment and GUILD. Fourteen out of fifteen
GO clusters from Steatosis AOP had some GO term overlapped with
253 GO clusters from GUILD. Concretely, 5 GO clusters with a
Jaccard Index above 0.4 were associated with cholesterol
homeostasis, response to hormones, insulin secretion, ethanol
response, and cholesterol transport.

3.3 iPath approach

iPath requires a scaffold network, a set of seed genes, and
another set of genes to be prioritized as linkers (Table 1). The
chosen experimental design resulted in a subnetwork that captures
most VPA targets prioritizing connections through liver steatosis
genes. As such, the resulting subnetwork of 126 genes, which
contains most VPA targets present in the human interactome,
reflects the protein network neighbourhood of the targets of
VPA. As a result, a network of 126 genes including most VPA
targets (69/70) (note that the missing gene, UGT1A3, was one not
included in the scaffold network), and 85 of 1772 Steatosis genes
were obtained (Table 2). Six genes of the iPath subnetwork have not
been previously associated with Steatosis, or VPA (Table 2). Five of
the 33 Steatosis AOP genes were included in the iPath subnetwork
(Table 2).

After the gene enrichment analysis, 402 biological processes were
obtained with a p-value of 0.01 (Table 3). The most significant biological
process was the xenobiotic catabolic process (GO:0042178) with a
p-value of 1.3e-13, which has been associated with fatty liver diseases
[47] followed by the estrogen metabolic process (GO:0008210) (p-value
1.8e-13). After the analysis with Revigo, 182 GO terms were clustered in
63 modules, where 46% of them had ≥3 GO terms (Table 3). Three
clusters had 7 GO terms where the GO representative is associated with
the neuronal action potential (GO:0019228), positive regulation of
glycolytic process (GO:0045821), and regulation of heart rate by
cardiac conduction (GO:0086091).

Comparing the gene enrichment between the Steatosis AOP
gene set and iPath, 50 of 178 GO terms annotated with the Steatosis
AOP gene set were also annotated with the iPath approach. On the
other hand, 7 of 15 GO clusters from Steatosis AOP had some GO

term in common. Two of them had a Jaccard Index above 0.4. One
cluster is associated with the metabolic process of estrogen, cholesterol,
steroid, and androgen (Jaccard Index of 0.75). The second is associated
with the response of ethanol and prostaglandin (Jaccard Index of 0.5).

3.4 Multiscale interactome approach (MSI)

MSI relies on comparing the diffusion profiles of drugs and
diseases that are obtained from the heterogeneous network, which
integrates information on drug targets, disease-associated genes,
protein interactions, and a hierarchy of biological processes. By
comparing diffusion profiles, it is possible to prioritize the genes
and biological processes that are relevant to a particular drug effect.
By comparing the diffusion profiles of VPA and liver steatosis, the
top-1000 genes and biological processes were selected based on
their values of the Treatment Importance (TI) (further details in
the section “Multiscale interactome (MSI)”). One thousand genes
represent 0.15% of each diffusion profile. Smaller sets of genes
could be selected for downstream processing, but we decided to
select a large number of genes to enable covering a large fraction of
seed genes and to emulate situations of analysis of omics datasets
where a large number of genes are obtained for further analysis.
From this selection, 32% of the top-1000 genes overlapped with
liver steatosis genes, while 41% overlapped with VPA targets.
Seventy-five percent of Steatosis AOP genes were included in
the top-1000 gene set (Table 2). Forty-two percent of the top-
1000 genes are not included in the VPA targets, liver steatosis
genes, or liver steatosis AOP gene sets, and therefore could be
novel candidate genes involved in liver steatosis induced by VPA
(Table 2). The set of 1,000 genes was characterized by enrichment
analysis to gain insight into the biological processes in which they
are involved.

The gene enrichment analysis resulted in 1814 GO BP terms
(p-value of 0.01), with the most significant terms related to the
regulation of gene expression: negative/positive regulation of
transcription by RNA polymerase II (p-value < 1e-30), positive
regulation of gene expression (p-value 1.8e-29), positive regulation
of miRNA metabolic process (p-value 2.1e-28). Most of the GO
terms (1,259 of 1814) were clustered in 307 groups by Revigo, where
56% of the clusters have a size ≥3 GO terms (Table 3). The largest
cluster includes 25 GO terms and is associated with “positive
regulation of proteasomal ubiquitin-dependent protein catabolic
process” (GO:0032436), followed by a cluster of 21 GO terms
associated with “positive regulation of fatty acid beta-oxidation”
(GO:0032000) process. These processes have been reported as
associated with liver steatosis (Koo, 2013).

Finally, we contrasted the biological processes obtained from the
top-1000 genes with those obtained by gene enrichment of the liver
steatosis AOPs genes. Overall, 64% of GO terms enriched from liver
steatosis AOPs genes overlapped with the GO terms enriched from
the top-1000 genes. From the 15 GO clusters obtained from liver
steatosis AOPs, 14 GO clusters were found in common with the ones
obtained from theMSI top-1000 genes. Three clusters have a Jaccard
index higher than 0.4, where the cluster with the highest Jaccard
index (0.75) is associated with fatty acid, triglyceride, and cholesterol
homeostasis, followed by a cluster associated with response to
Vitamin A and another with ethanol.
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4 Comparison among methods

4.1 Comparison at the gene level

The number of genes recovered by each method is shown in
Table 2. MSI and GUILD are the methods that result in a higher
agreement with the liver steatosis AOPs, both in terms of genes and
GO Biological Process (BP) annotations. According to MSI, not all
liver steatosis-associated genes nor the VPA targets are important
for VPA-induced liver steatosis (only a fraction of liver steatosis
genes and VPA targets are recovered in the top-1000 genes selected
by Treatment Importance). We can arrive at a similar conclusion by
analyzing the results from GUILD. The ample coverage of both
approaches compared to the other ones tested might be explained by
the threshold resulting in large lists of genes (1,000 genes for MSI
and 823 genes for GUILD). Another factor that could explain the
larger coverage of MSI compared with other approaches is its ability
to identify genes as important for the drug effect on the disease
despite not being in the close network neighbourhood of the seed
genes, a fact that has been reported to be important to explain the
effect of drugs on diseases (Ruiz et al., 2021). Due to the ability of the
Steiner tree algorithm to connect the highest fraction of the genes
used as seed, iPath recovers a comparatively smaller network and
gene set which could explain the very low coverage of the benchmark
dataset. MONET, on the other hand, has the potential of capturing
every gene included in the network but the prioritization and
selection steps condition the coverage of the benchmark dataset.
MONET captures a smaller fraction of VPA targets and steatosis
genes compared with the other approaches (with the exception of
iPath for steatosis genes). The small fraction of VPA targets
recovered might be due to the experimental design in the
clustering approach, which started by selecting disease-enriched
clusters. This step might result in losing clusters that contain
drug targets but not disease genes. The large size of the steatosis
gene list might explain the low coverage by all the methods. It is
surprising that the clustering approach recovers a small fraction of
liver steatosis AOPs genes (30%). By analyzing the results at each
selection step carefully, we found that 29/33 of the liver steatosis
AOPs genes were distributed in 21 of the 473 clusters withmore than
5 genes, indicating that the low coverage is the result of the
subsequent filters applied.

Regarding the set of genes suggested as candidate genes by each
method, we note that GUILD does not provide any candidate gene,
probably due to the threshold used to select the gene set. iPath
suggests only 6 candidate genes, coherent with the results of a small
subnetwork of 126 genes. MONET and MSI are the methods that
provide a larger number of candidate genes (Table 2).

After interrogating the network using the four methods, 503 of
1761 unique genes were recovered by two or more strategies, and
11 genes were detected by all approaches (Figure 3A). The highest
overlap in terms of shared genes was obtained between GUILD and
MSI (328 shared genes, Figure 3A). This set of 328 genes was also
shared with the liver steatosis-associated genes. Seven of 70 VPA
targets were detected by all methods and 16 by three.

GUILD is the tool that recovers most disease-associated genes
(818/1772) and iPath recovers the lowest fraction (85/1772).
Considering the genes detected by four or three methods
respectively, 10 of 11, and 81 of 84 targets overlapped with

Steatosis-associated proteins (Figure 3A), showing consistency of
gene findings with Steatosis. Most of the liver steatosis AOP targets
were detected by at least two approaches (22 of 29), demonstrating
that this selection criterion can be used to select candidate genes for
downstream analyses.

On the other hand, the network approaches can be used to
propose novel candidate genes. In the present study, 710 genes
retrieved by at least one of the methodologies have no previous
direct association with VPA and/or Liver Steatosis (Table 2). MSI
and MONET were the approaches that recover more candidate
genes. In addition, 26 of these genes were detected by two network
methods: 24 were detected by MSI and MONET, and 2 by MSI and
iPath (Figure 3B). The genes THRA and NCOR2 were included in
the 1,194 cluster and are also detected by MSI, suggesting that these
genes could be relevant for the effect of VPA on liver steatosis. The
thyroid hormone is involved in the regulation of lipid and glucose
metabolism, and a knock-out mouse of the thyroid receptor alpha is
protected from diet-induced hepatic insulin resistance (Jornayvaz
et al., 2012). The protein encoded by the NCOR2 gene is part of the
HDAC3 complex, which is involved in gene expression regulation in
hepatocytes in response to environmental stimuli (Liang et al.,
2019). In addition, gene expression analysis shows that the set of
26 genes are expressed in the liver, with 20 of them having a medium
level of expression (data not shown). Finally, there is evidence of
association with a variety of liver phenotypes for an important
fraction of the candidate genes (Figure 4), providing additional
evidence for their validity as candidates for the effect of VPA on liver
steatosis.

4.2 Comparison at the level of biological
processes

Considering all networkmethods, a total of 2,691 biological processes
with a p-value <0.01 were obtained after the gene enrichment analysis,
and 1,207 were common at least by two strategies. The largest
number of significantly enriched GO terms was obtained for GUILD
and MSI (Table 3), probably due to the larger gene sets. The larger
gene sets in combination with the 328 genes shared between both
approaches (Figure 3A) could explain why GUILD and MSI share
660 biological processes (Figure 5A). Furthermore, 56 biological
processes were shared across all methods (Figure 5A).

Contrasting the annotation with Steatosis AOP gene
enrichment, 118 of 178 liver steatosis AOPs GO terms
overlapped at least with two strategies. In addition, 60 of
118 Steatosis GO terms were detected at least by three methods,
suggesting that the same biological process obtained from different
network methods can be considered for downstream analysis.

Revigo was used to organize and summarize the results of the
enrichment analysis and find a representative subset of biological
processes. 1,400 of 2691 GO terms were clustered in 307 GO
modules with a size of ≥3 GO terms. Comparing the clusters
obtained by each network method, 220 of 307 GO modules have
some biological processes in common.

The GO clusters were combined in GO groups based on one of the
following three conditions: GOGroups containing GO clusters from the
four methods, Groups with GO clusters with a Jaccard Index ≥0.4, and
Groups that share the “representative GO term” with at least two GO
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clusters. As a result, 149 GO clusters were considered similar and
grouped in 92 GO groups. Note that 7 groups included GO clusters
from the four network-based methods. The 7 GO groups were formed
by 25 GO clusters which included 135 GO terms (a list of terms is
provided in Supplementary Table S2 and Supplementary Table S3). The
7 GO groups are associated with 1) Omega-hydorxylase/Epoxygenase
P450 pathway, 2) Regulation of insulin and hormone secretion, 3)
Regulation of p38MAPK and ERK1/ERK2 cascades 4) Histone
Deacetylation, 5) Fatty acid processes, 6) Protein ubiquitination, and
7) DNA regulation processes (Figure 5B). The seven groups can be
distributed in three regions in the PCA (Figure 5B), based on the
similarity among the biological processes they represent. The closest

groups are the ones representing DNA regulation process and Histone
Deacetylation.

From the 15 liver steatosis AOPs GO clusters, 14 have GO terms
in common with the 25 GO clusters from all the network methods.
In addition, the GO groups associated with positive regulation of
fatty acid beta-oxidation, positive regulation of insulin secretion,
and fatty acid beta-oxidation included five GO clusters from the liver
steatosis AOPs (representative GO terms: fatty acid beta-oxidation
(GO:0006635), positive regulation of fatty acid beta-oxidation (GO:
0032000), regulation of insulin secretion (GO:0032024), negative
regulation of fatty acid metabolic process (GO:0045922), and
positive regulation of hormone secretion (GO:0046887). These

FIGURE 3
Comparison of genes across methods. (A) Genes obtained by each method and their overlap. Few overlaps were appreciated across all methods,
29% of 1761 genes overlapped by at least two methods. (B) Novel candidate genes obtained by each method and their overlap. Note that GUILD did not
propose any candidate gene.
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similarities suggested that the combination of results from different
methods could help in the identification of biological processes
underlying the effect of VPA on liver steatosis.

4.3 Network representation of novel
candidate genes and biological processes
for VPA-induced steatosis

We combined the results of the different approaches to propose
novel candidate genes and biological functions that can provide
biological insights into the mechanism by which VPA leads to liver
steatosis. A representative network was generated to show how the
novel candidate genes and selected biological processes are related to
the liver steatosis AOPs genes, VPA targets and liver steatosis genes.

The network was generated using as seeds the 26 novel candidate
genes, 25 GO clusters from the 7 GO groups (representing 135 GO
terms), and 33 genes from the steatosis AOP. Using the heterogeneous
network as a scaffold, theVPA targets and liver steatosis were connected
using shortest paths (for more details see Methods). Fourteen of the
135 biological processes included genes that overlappedwith at least one
of the 26 novel candidate genes and 33 genes from the liver steatosis
AOPs. These 14 biological processes are mainly associated with protein
regulation, kinase activity, histone deacetylation, and phosphorylation
processes.

A network was created from the 26 novel candidate genes, the
14 biological processes connected by 23 linker genes (Figure 6).

5 Discussion

This study aims at evaluating different network-based methods
that can be applied to provide biological insights into how drugs lead
to diseases. The approaches evaluated in this study are based on
different network medicine assumptions (Barabási et al., 2011; Liu
et al., 2020) and also differ in the experimental setting (Table 4).
More concretely, each method accepts as input a different set of
genes (a.k.a. Seed genes) and a scaffolding network and requires the
definition of criteria for setting thresholds or prioritization rules. For
instance, the method based on clustering (referred to as MONET)
starts with a partition of the scaffold network into modules (note
that different clustering methods could be applied to partition the
network) and then requires the definition of criteria on how to select
the relevant modules, which frequently require projecting a set of
seed genes into the clusters to identify those clusters that contain the
genes. Some methods assume closeness in the network, while others
are more flexible in this regard and do not assume that drug target
genes and disease genes have to be close in the network (Ruiz et al.,
2021). Thus, the results of applying each method are conditioned
by the selection of input data, experimental design, and the
threshold and criteria for prioritization of candidate networks
and genes.

The purpose of this study was not to provide insights into the
potential mechanisms of liver toxicity due to VPA treatment but to
illustrate the underlying assumptions, advantages, and limitations
of a selection of network-based approaches. There are plenty of

FIGURE 4
Association of novel candidate genes with liver diseases and phenotypes. A network representation of the gene-disease association of 16 of the
candidate genes with liver diseases was obtained using DISGENET plus (https://www.disgenetplus.com/) and the disgenetplus2r package (https://
medbio.gitlab.io/disgenetplus2r/). The width of the edges is proportional to the DISGENET plus score.
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network-based approaches and tools available, we selected 4 of
them that differ in their principles and results for illustrative
purposes. Moreover, most of them require consideration of the
experimental design and the definition of thresholds and filtering

strategies that are more relevant to the problem under study. Since
there are no clear guidelines on how the experimental setting,
selection of input data, and filtering criteria should be set, the user
must consider all these aspects carefully before designing an

FIGURE 5
Comparison of Biological Processes obtained by each network method and their combination in GO groups. (A) Biological Processes significantly
enriched in each gene list of the network-based methods and their comparison. (B) PCA depicting the 7 GO groups of GO clusters supported by the four
network-based methods. Each dot represents the group of GO clusters from Revigo. The rules followed to generate the GO groups are described in the
section “Comparison among different network-based approaches”. The PCA shows three different organizations across the 7 GO groups,
suggesting different modes of action for the Steatosis development.
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experiment and bear in mind these aspects during the
interpretation of the results.

The biological interpretation of a set of genes recovered by
network approaches represents a major challenge (Reimand et al.,
2019) and is usually facilitated by enrichment analysis using a variety
of gene annotations that provide insights on molecular functions,
biological processes, pathways, regulation by transcription factors,
and miRNAs, among others aspects of biology. There are many
enrichment analysis tools that allow functional interpretation of
gene lists, such as g:Profiler, a tool that maps genes to known
functional information sources and detects statistically significantly
enriched terms with the Fisher test (Raudvere et al., 2019), or others
like TopGO (Alexa et al., 2006), which integrate two algorithms that
use the hierarchical structure of Gene Ontology (GO) and the gene

set data to obtain confident GO terms associated significantly, thus
increasing the explanatory power of gene enrichment analysis.
However, the enrichment analysis detects redundant GO terms,
obtaining unintelligible lists which hampers biological interpretation
(Reimand et al., 2019). Semantic similarity approaches to reduce those
redundancies have been implemented in tools such as Revigo (Supek
et al., 2011). To overcome this challenge and support the reproducibility
of the analysis, we applied a systematic approach to analyze the results
of eachmethod, compare themwith each other, and obtain a consensus
among all methodologies.

Our analysis shows that the results of applying the different
methods on a case study used as a benchmark differs in terms of
the number of genes recovered and the biology these genes
represent. More importantly, they differ in how well they

FIGURE 6
Network representation of novel candidate genes and biological processes for Valproic acid-induced liver steatosis. The network integrates the
novel candidate genes and biological processes obtained from the combination of the four network methods. Both 26 novel candidate genes and
14 biological processes are associatedwith the liver steatosis AOPs genes (20 genes), VPA targets and liver steatosis genes through linker genes (23 genes,
in grey). The network contains 86 nodes and 218 edges.

TABLE 4 Summary of the methods used in this study.

Clustering (MONET K1) GUILD iPath MSI

• Provides a partition of the scaffold network • Provides a ranked list of genes • Requires selecting a list of seed
genes

• Similarity of drug and disease
profile

• Requires setting a criteria for selecting relevant
clusters

• Requires setting a threshold to
prioritize genes based on scores

• The output is a subnetwork that
connects most of the genes in the
seed list

• TI allows identifying relevant
nodes (genes & BP)

• Mapping or enrichment analysis can be used to
select clusters

• Genes can be mapped to the scaffold
network to visualize how they are
connected to seed and linker genes

• Can provide candidate genes, but
the number is limited due to small-
sized network obtained

• A subnetwork can be obtained by
projecting nodes into the network

• The clusters can provide candidate genes (e.g.,
genes that belong to the same cluster as the
seed genes; guilt-by-association principle)

• Requires selecting a list of seed genes • Requires setting a threshold to
prioritize nodes based on TI values

• Can provide candidate genes (by
selecting the appropriate threshold)

• Can provide candidate genes

• The method has predictive capacity
if trained against a benchmark of
drug-disease associations

The main features of each of the methods are briefly presented. Note that the predictive capacity of the MSI was not evaluated in the current study.
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capture the genes and biological processes of the benchmark case
study. The MSI and GUILDmethods showed better performance
in this regard, while iPath proved to be more limited in
recovering the genes and biological processes of the
benchmark. Moreover, some methods, such as MONET and
MSI, are more suitable to provide candidate genes and biological
processes than other methods and are therefore more interesting
for exploring alternative mechanistic hypotheses for a drug-
disease association. This is an important feature if these methods
are aimed to be used to propose the mode of action of
compounds. The main features of the methods are
summarized in Table 4. We also observe that each method
recovers genes and biological processes that differ among
them, suggesting that combining the results could provide a
more complete picture of the processes underlying the drug’s
effect on the disease phenotype. In addition, we present a
multiscale network containing candidate genes and biological
processes obtained by combining the results of the different
methodologies.

By providing a detailed and systematic analysis of the outcomes
of the different network-based tools, we aim at supporting users in
making informed decisions on the choice of the most suitable
method in the context of systems toxicology.
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